Question			Answer	Marks	Guidance
1	(a)	(i)	 all correct 2 marks $\checkmark \checkmark$ amide link only \checkmark	2	ALLOW - any correct structural formula including skeletal - mixtures of structural and skeletal - -CONH- - Cs and Hs on ring IGNORE brackets and n etc
		(ii)	-CONH- circled \checkmark	1	ALLOW adjacent C atoms in circle
		(iii)	1,6-diamino \checkmark hexane \checkmark OR hexane \checkmark-1,6-diamine \checkmark	2	If butane ALLOW 1,4-diamino for ecf mark IGNORE commas and dashes ALLOW 1,6-hexanediamine
	(b)	(i)		1	ALLOW any formula that makes structure clear ALLOW cyclic amide

| Question | | Answer | Marks | Guidance |
| :--- | :--- | :--- | :--- | :--- | :--- |
| (c) | (i) | condensation
 AND water is eliminated/formed/lost \checkmark
 IF cyclic amide in 1b(i) THEN addition AND hydrolysis (of ring) /
 water added | 'addition' or 'addition polymerisation' is a CON
 ALLOW 'small molecule' instead of water
 any other named small molecule is a CON | |
| (phains/molecules are (highly) ordered/aligned AW \checkmark | 1 | ALLOW labelled diagram that shows alignment of
 chains by using parallel lines | | |
| AW means other suitable phrases | | | | |
| eg | | | | |
| 'stacked closely and neatly' | | | | |
| 'arranged regularly'/'regularity of chains' | | | | |

Question		Answer	Marks	Guidance
(d)	(i)	$\begin{array}{ll}\text { 1. } & \text { elimination } \checkmark \\ \text { 2. } & \text { addition } \checkmark \\ \text { 3. } & \text { addition } \checkmark\end{array}$	3	IGNORE 'nucleophilic'
	(ii)	can be used in step 3 AW \checkmark	1	NOT step 2 ALLOW - can be sold - can be used as a source of energy - can be recycled
(e)		acidified dichromate \checkmark	1	IGNORE - metal cation - name of acid - wrong formulae if name given - oxidation state of 'dichromate' ALLOW $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{H}^{+}$and $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ DO NOT ALLOW just dichromate
		Total	17	

Question			Answer	Marks	Guidance
2	(a)		$-\mathrm{COOH} /$ carboxyl / carboxylic acid group \checkmark is a proton $/ \mathrm{H}^{+}$donor / loses $\mathrm{H}^{+} \checkmark$	2	correct equation showing dissociation gains both marks ALLOW 'gives H^{+} Mark separately
	(b)	(i)	$\mathrm{CH}_{2} \mathrm{OHCOOH}+\mathrm{NaOH} \rightarrow \mathrm{CH}_{2} \mathrm{OHCOONa}+\mathrm{H}_{2} \mathrm{O} \checkmark$	1	```ALLOW CH2OHCOO- Na+, Na+CH2OHCOO- OR Na(CH2OHCOO) IGNORE state symbols NOT CH2OHNaCOO```
		(ii)	1. moles of NaOH used in titration $=16.00 / 1000 \times 0.250 \checkmark=0.00400$ 2. moles of glycolic acid used in titration $=$ answer from 1, scaled by ratio in equation in 2bi \checkmark 0.00400 CHECK equation in 2(b)(i) 3A. moles of glycolic acid in $250 \mathrm{~cm}^{3}$ $=(\text { answer from 2) } \times 10 \checkmark=0.0400 \mathrm{~mol}$ OR 3B. mass of glycolic in $25 \mathrm{~cm}^{3}$ $=\left(\right.$ answer from 2) $\times \boldsymbol{M}_{\mathrm{r}}$ of glycolic acid $\checkmark 0.304 \mathrm{~g}$ OR 3C. concentration of glycolic acid $=\left(\right.$ answer from 2) $\times 1000 / 25 \checkmark 0.16 \mathrm{~mol} \mathrm{dm}^{-3}$ 4. $\quad M_{\mathrm{r}}$ of glycolic acid $=76$.(0) \checkmark	6	There are several possible routes through this question after point 2, the 'mole route' A, the 'mass route' B and the 'concentration route' C If final answer is incorrect please annotate with ticks where the marks are awarded 2. ALLOW by implication if 0.004 used subsequently The marks are awarded for the working out given in bold OR the correctly calculated answer to that working (but no mark if calculated answer is shown and is wrong)

Question		Answer	Marks	Guidance
		```5A. moles of glycolic acid in \(100 \mathrm{~cm}^{3}\) \(=(\) answer from 3A) \(\times 100 / 14 \checkmark \quad 0.286 \mathrm{~mol}\) OR 5Bi. mass of glycolic acid in \(250 \mathrm{~cm}^{3}\) \(=\left(\right.\) answer from 3A) \(\times \boldsymbol{M}_{\mathbf{r}}\) of glycolic acid \(\checkmark 3.04 \mathrm{~g}\) OR 5Bii. mass of glycolic in \(250 \mathrm{~cm}^{3}\) \(=(\) answer from 3B \() \times 10=\checkmark 3.04 \mathrm{~g}\) OR 5C. concentration of undiluted glycolic acid \(=\left(\right.\) answer from 3C) \(\times 250 / 14 \checkmark 2.86 \mathrm{~mol} \mathrm{dm}^{-3}\) 6. mass of glycolic acid in \(100 \mathrm{~cm}^{3}\) undiluted \(=\left(\right.\) answer from 5A) \(\times \boldsymbol{M}_{r}\) of glycolic acid OR = (answer from 5B) \(\times\) 100/14 OR = (answer from 5C/10) \(\times M_{r}\) of glycolic acid \(=21.7\) (3 sf) AND correct comment```		ALLOW ecf for incorrect equation AND between each step   ALLOW 'Acnegone' for 'glycolic acid'   ALLOW answers in standard form   The following on the answer line with correct corresponding comment, score as follows, irrespective of working or lack of it:   21.7 scores 6   1.22 scores 5 (error in 5C)   12.2 scores 5 (error in 6C)   2.17 scores 5 (error in 3A or 5Bii)   3.04 scores 5 (error in 6)   these to other sf OR with incorrect comment score one mark less   If one of the answers above applies place correct number of ticks by answer
(c)	(i)		2	IGNORE where the circle cuts the bond as long COO is included ALLOW adjacent $C$ atoms in circle   ALLOW butylethanoate without gap
	(ii)	butan-1-ol   concentrated sulfuric acid/hydrochloric acid $\checkmark$	2	MUST HAVE number 1   DO NOT ALLOW ecf for alcohol in 2(c)(i)   ALLOW formula for acid ONLY   IGNORE spelling of name for $\mathrm{H}_{2} \mathrm{SO}_{4}$ as long as it is clear


Question		Answer	Marks	Guidance
	(iii)	ethanoic acid: hydrogen bonding $\checkmark$ IGNORE pd-pd compound D: pd-pd $\checkmark$ hydrogen bonding is CON instantaneous dipole - induced dipole / id-id in both $\checkmark$	3	ALLOW 'pd-pd' / id-id abbreviations here ALLOW Van der Waals for id-id
(d)	(i)	The answer requires a comment for a carboxylic acid AND an alcohol so award ONE mark from each section below:   CARBOXYLIC ACID   (strong) peak at $1743\left(\mathrm{~cm}^{-1}\right)$ shows $\mathrm{C}=\mathrm{O}$ in ester not acid OR no peak $1700-1725\left(\mathrm{~cm}^{-1}\right)$ shows no $\mathrm{C}=\mathrm{O}$ in acid OR no broad peak at 2500-3200 (cm ${ }^{-1}$ ) shows no O-H in acid $\checkmark$   ALCOHOL   no peak greater than 3000 / in range $3200-3600$ (allow 3640) so no O-H in alcohol	2	answers may be given on spectrum   to score each point, range, bond and group in which it is found must be given   ALLOW carboxyl or carboxylic acid or COOH or ethanoic acid (or formula) for 'acid'   FOR O-H ALLOW OH / hydroxyl FOR C=O ALLOW carbonyl NOT CO
	(ii)	peak at $\boldsymbol{m l z} 73$ : $\mathrm{CH}_{3} \mathrm{COOCH}_{2} / \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}$   positive charge on any formula $\checkmark$   species lost: $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} / \mathrm{C}_{3} \mathrm{H}_{7}(\mathrm{NO} \text { charge) } \checkmark$	3	ALLOW any correct structural or molecular formula for both answers   ALLOW $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}^{+}$   IF $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}^{+}$given above   THEN species lost must be $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CO}$
(e)	(i)	nucleophilic $\checkmark$ addition $\checkmark$	2	


| Question |  | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| (ii) |  |  |  |  |



Question		Answer	Marks	Guidance
(c)	(i)	  ANY TWO of the THREE CORRECT chiral Cs ONLY $\checkmark$	1	
	(ii)	arrows as in (d) (i) $\checkmark$	1	IGNORE extra arrows pointing to $\mathrm{C}-\mathrm{N}$ bonds at ends of chain.   Any other arrows are a CON
	(iii)	  correct amino acid (see opposite) $\checkmark$   correct formula of ion $\checkmark$	2	IGNORE any cations   ALLOW any correct structural formula   IGNORE species formed from amino acids to right and left   IGNORE   - added $\mathrm{H}^{+}$to $-\mathrm{NH}_{2}$   - negative charge on alcohol i.e. $-\mathrm{O}^{-}$   - -COOH instead   NO ecf   IF anion formed at $\mathrm{CH}_{2} \mathrm{O}^{-}$then 1 mark max for amino acid
	(iv)	secondary:   folding/twisting of polypeptide/amino acid chains/primary structure   tertiary:   further/final folding OR 3D shape/structure	2	ALLOW (alpha)-helix/coiled OR (beta-)sheets / pleated sheets   ALLOW overall/global structure
		Total	14	


Question			Answer	Marks	Guidance
4	(a)	(i)	correct inside oval (around peroxy Os) rest correct $\checkmark$	2	ALLOW another symbol for S electrons   second mark depends on first
		(ii)	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8} \checkmark$	1	ALLOW   - with correct charges   - $\mathrm{S}_{2} \mathrm{O}_{8}\left(\mathrm{NH}_{4}\right)_{2}$
	(b)		$\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}$ (is the stronger oxidising agent) because   $\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}$ has a more positive $E^{9}$ value   indicates a greater tendency AW to gain/attract/accept electrons/to be reduced   ORA ie:   $\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}$ (is the stronger oxidising agent) because $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ has a less positive / more negative $E^{\theta}$ value $\checkmark$   indicates a smaller tendency AW to gain/attract/accept electrons/to be reduced   OR indicates a greater tendency AW to lose electrons/to be oxidised $\checkmark$	2	without reference to oxidising strength of $\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}$ only scores 1 as it doesn't answer the question   NOT 'higher' for 'more positive' both statements MUST BE comparative
	(c)	(i)	$\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}+2 \mathrm{I}^{-} \rightarrow 2 \mathrm{SO}_{4}{ }^{2-}+\mathrm{I}_{2}$   correct equation balanced	1	IGNORE state symbols


Question	Answer	Marks	Guidance
(ii)	1. use filter of complementary colour to iodine/solution $\checkmark$	6	Using starch ANYWHERE is a CON and CANNOT gain marking point 3 ALLOW   - filter/wavelength giving maximum absorption/absorbance   - green/blue filter   - suitable filter
	2. zero colorimeter with water $\checkmark$   3. measure absorbance readings of standard solutions/solutions of known concentration (of iodine)		orange/yellow/brown is CON NOT 'solvent' instead of 'water'
	4. plot calibration graph $\checkmark$   5. take absorbance readings of the reacting mixture at known/certain times AW (must refer to time - may state units of time)		
	6. convert absorbance readings to iodine concentrations using the calibration curve   QWC:   In order to gain the mark for point 3,5 or 6, absorbance must be used AND spelled correctly at least once		IGNORE references to quenching procedures


| Question |  |  | Marks | Guidance |
| :--- | :--- | :--- | :--- | :--- | :--- |
| (iii) |  | gnswer <br> decreasing from left to right (ANY decreasing <br> curve will do) |  |  |


Question		Answer	Marks	Guidance
	(iii)	1. $\mathrm{Fe}^{3+}$ reacts with/oxidises $\mathrm{I}^{-}$ORA $\checkmark$ $2 \mathrm{Fe}^{3+}+2 \mathrm{I}^{-} \rightarrow 2 \mathrm{Fe}^{2+}+\mathrm{I}_{2} \checkmark$   explanation:   the $E^{\circ}$ of $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ half-cell is more positive / less negative than that of the $\mathrm{I}^{-1} \mathrm{I}_{2}$ half-cell ORA $\checkmark$ AW   2. $\mathrm{Fe}^{2+}$ reacts with/reduces $\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}$ ORA $\checkmark$ $\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}+2 \mathrm{Fe}^{2+} \rightarrow 2 \mathrm{SO}_{4}{ }^{2-}+2 \mathrm{Fe}^{3+} \checkmark$   explanation:   the $E^{\circ}$ of $\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-} / \mathrm{SO}_{4}{ }^{2-}$ half-cell is more positive than that of the $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ half-cell ORA $\checkmark$ AW   QWC: to gain the explanation mark for either 1 or 2, the data has to be linked correctly to the reaction	6	IGNORE references to activation enthalpy OR variable valency/oxidation states   ALLOW $E^{\circ}$ of $\mathrm{Fe}^{3+}$ is more positive etc   ALLOW $E^{\circ}$ of $\mathbf{S}_{2} \mathrm{O}_{8}{ }^{2-}$ is more positive etc   NOTE   If answer starts with $\mathrm{Fe}^{2+}$ rather than $\mathrm{Fe}^{3+}$ lose $1^{\text {st }}$ mark but ecf since not answering question so can get 5 marks
(e)	(i)	Rate $=\mathrm{kx}\left[\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}\right] \checkmark \times\left[\mathrm{I}^{-}\right] \checkmark$	2	IGNORE state symbols
	(ii)	uses one of the 3 sets of results:   1. $\mathrm{k}=2.0 \times 10^{-5} /(0.075 \times 0.040)$   2. $k=4.0 \times 10^{-5} /(0.150 \times 0.040)$   3. $k=1.0 \times 10^{-5} /(0.075 \times 0.020) \checkmark$ $k=0.0067 \checkmark$   $\mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~s}^{-1} \checkmark$	3	ecf from part e(i) provided working is shown ALLOW standard form (eg $6.7 \times 10^{-3}$ ) Correct numerical answer without working scores 2 for calculation part   NO ecf from first mark to second   ALLOW any number of sig figs e.g. 0.007, 0.00667 NOT 0.006 NOR 0.0066   ALLOW units in any order, e.g. $\mathrm{dm}^{3} \mathrm{~s}^{-1} \mathrm{~mol}^{-1}$
	(iii)	$\begin{aligned} & 2.0 \times 10^{-5} \checkmark \\ & \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1} \end{aligned}$	2	Mark separately
		Total	31	

