G	luesti	on	Answer	Marks	Guidance
1	(a)	(i)	$\begin{array}{c} 0\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	2	 ALLOW any correct structural formula including skeletal mixtures of structural and skeletal -CONH- Cs and Hs on ring IGNORE brackets and n etc
		(ii)	–CONH– circled ✓	1	ALLOW adjacent C atoms in circle
		(iii)	1,6-diamino ✓ hexane ✓ OR hexane ✓ -1,6-diamine ✓	2	If butane ALLOW 1,4-diamino for ecf mark IGNORE commas and dashes ALLOW 1,6-hexanediamine
	(b)	(i)	HO CH ₂ CH ₂ CH ₂ CH ₂ NH ₂ HO CH ₂ CH ₂ CH ₂ CH ₂ VH ₂	1	ALLOW any formula that makes structure clear ALLOW cyclic amide

Que	estion	Answer	Marks	Guidance
	(ii)	condensation AND water is eliminated/formed/lost ✓ IF cyclic amide in 1b(i) THEN addition AND hydrolysis (of ring) / water added	1	'addition' or 'addition polymerisation' is a CON ALLOW 'small molecule' instead of water any other named small molecule is a CON
((c) (i)	(polymer) <u>chains/molecules</u> are (highly) ordered/aligned AW ✓	1	ALLOW labelled diagram that shows alignment of chains by using parallel lines AW means other suitable phrases <i>eg</i> 'stacked closely and neatly' 'arranged regularly'/'regularity of chains'
	(ii)	PPA chains are closer together ORA ✓	3	AS ALWAYS intermolecular bonds is synonymous with intermolecular forces NOT more areas of contact NOT just compacted together NOT just closely packed NOTE ALL 3 marking points are comparative
		so intermolecular bonds in PPA will be stronger OR more hydrogen bonds in PPA OR more intermolecular bonds in PPA ORA ✓ more energy/heat will be required to break the intermolecular bonds OR melt the polymer OR allow chains to move over each other ORA ✓		ALLOW any named intermolecular bond NOT 'higher temperature' for 'energy'
	(iii)	cold-drawing ✓	1	NOT co-polymerising IGNORE 'necking'

Question	Answer	Marks	Guidance
(d) (i)	 elimination ✓ addition ✓ addition ✓ 	3	IGNORE 'nucleophilic'
(ii)	can be used in step 3 AW ✓	1	 NOT step 2 ALLOW can be sold can be used as a source of energy can be recycled
(e)	acidified dichromate ✓	1	 IGNORE metal cation name of acid wrong formulae if name given oxidation state of 'dichromate' ALLOW H₂SO₄/H⁺ and Cr₂O₇²⁻ DO NOT ALLOW just dichromate
	Total	17	

Ques	stion	Answer	Marks	Guidance	
2 (a))	–COOH / carboxyl / carboxylic acid group ✓ is a proton/H ⁺ donor / loses H ⁺ ✓	2	correct equation showing dissociation gains both marks ALLOW 'gives H ⁺ ' <i>Mark separately</i>	
(b)) (i)	CH ₂ OHCOOH + NaOH → CH ₂ OHCOONa + H ₂ O \checkmark	1	ALLOW CH ₂ OHCOO ⁻ Na ⁺ , Na ⁺ CH ₂ OHCOO ⁻ OR Na(CH ₂ OHCOO) IGNORE state symbols NOT CH ₂ OHNaCOO	
	(ii)	1. moles of NaOH used in titration= 16.00/1000 x 0.250 \checkmark = 0.004002. moles of glycolic acid used in titration= answer from 1, scaled by ratio in equation in 2bi \checkmark 0.00400CHECK equation in 2(b)(i)3A. moles of glycolic acid in 250 cm ³ = (answer from 2) x 10 \checkmark = 0.0400 molOR3B. mass of glycolic in 25 cm ³ = (answer from 2) x M_r of glycolic acid \checkmark 0.304 gOR3C. concentration of glycolic acid= (answer from 2) x 1000/25 \checkmark 0.16 mol dm ⁻³ 4. M_r of glycolic acid = 76.(0) \checkmark	6	 There are several possible routes through this question after point 2, the 'mole route' A, the 'mass route' B and the 'concentration route' C If final answer is incorrect please annotate with ticks where the marks are awarded 2. ALLOW by implication if 0.004 used subsequently The marks are awarded for the working out given in bold OR the correctly calculated answer to that working (but no mark if calculated answer is shown and is wrong) 4. Award if 76 used correctly anywhere 	

Ques	stion	Answer		Guidance	
		5A. moles of glycolic acid in 100 cm ³ = (answer from 3A) x 100/14 \checkmark 0.286 mol OR 5Bi. mass of glycolic acid in 250 cm ³ = (answer from 3A) x <i>M</i> _r of glycolic acid \checkmark 3.04 g		ALLOW ecf for incorrect equation AND between each step ALLOW 'Acnegone' for 'glycolic acid' ALLOW answers in standard form	
		OR 5Bii. mass of glycolic in 250 cm ³ = (answer from 3B) x 10 = \checkmark 3.04 g OR 5C. concentration of undiluted glycolic acid = (answer from 3C) x 250/14 \checkmark 2.86 mol dm ⁻³		The following on the answer line with correct corresponding comment, score as follows, irrespective of working or lack of it. 21.7 scores 6 1.22 scores 5 (error in 5C) 12.2 scores 5 (error in 6C)	
		 6. mass of glycolic acid in 100 cm³ undiluted = (answer from 5A) x <i>M</i>_r of glycolic acid OR = (answer from 5B) x 100/14 OR = (answer from 5C /10) x <i>M</i>_r of glycolic acid 		 2.17 scores 5 (error in 3A or 5Bii) 3.04 scores 5 (error in 6) these to other sf OR with incorrect comment score one mark less If one of the answers above applies place correct 	
		= 21.7 (3 sf) AND correct comment \checkmark		number of ticks by answer	
(c) (i)	H ₃ C- O-CH ₂ CH ₂ CH ₂ CH ₃	2	IGNORE where the circle cuts the bond as long COO is included ALLOW adjacent C atoms in circle	
		butyl ethanoate ✓ ester link correct ✓		ALLOW butylethanoate without gap	
	(ii)	butan-1-ol ✓ <u>concentrated</u> sulfuric acid/hydrochloric acid ✓	2	MUST HAVE number 1 DO NOT ALLOW ecf for alcohol in 2(c)(i) ALLOW formula for acid ONLY IGNORE spelling of name for H ₂ SO ₄ as long as it is clear	

Qu	estion	Answer	Marks	Guidance
	(i	 i) ethanoic acid: hydrogen bonding ✓ IGNORE pd-pd compound D: pd-pd ✓ hydrogen bonding is CON instantaneous dipole – induced dipole / id-id in both ✓ 	3	ALLOW 'pd-pd' / id-id abbreviations here ALLOW Van der Waals for id-id
((d) (i	The answer requires a comment for a carboxylic acid AND an alcohol so award ONE mark from each section below:	2	answers may be given on spectrum to score each point, range , bond and group in which it is found must be given
		CARBOXYLIC ACID (strong) peak at 1743 (cm ⁻¹) shows C=O in ester not acid OR no peak 1700 – 1725 (cm ⁻¹) shows no C=O in acid OR no broad peak at 2500 – 3200 (cm ⁻¹) shows no O–H in acid \checkmark ALCOHOL no peak greater than 3000 / in range 3200 – 3600 (allow 3640) so no O–H in alcohol \checkmark		ALLOW carboxyl or carboxylic acid or COOH or ethanoic acid (or formula) for 'acid' FOR O–H ALLOW OH / hydroxyl FOR C=O ALLOW carbonyl NOT CO
	(i	peak at m/z 73: CH ₃ COOCH ₂ / C ₃ H ₅ O ₂ ✓ positive charge on any formula ✓ species lost: CH ₂ CH ₂ CH ₃ / C ₃ H ₇ (NO charge) ✓	3	ALLOW any correct structural or molecular formula for both answers ALLOW $C_4H_9O^+$ IF $C_4H_9O^+$ given above THEN species lost must be C_2H_3O / CH_3CO
((e) (i	nucleophilic ✓ addition ✓	2	

C	Question		Answer	Marks	Guidance
		(ii)	H ⁺ or H ₂ O or HCN	5	
			$H \xrightarrow{C} C \xrightarrow{O^{\delta}} H \xrightarrow{O^{\circ}} H $		ALLOW CN ⁻ without triple bond ALLOW –ve charge on N of CN ⁻
			both curly arrows correct (lower one must be from C of CN) ✓ intermediate ion correct ✓ gain of H ⁺ from water, HCN or direct to form the cyanohydrin ✓		IGNORE any arrow used to add H ⁺ etc to the intermediate
			Total	28	

Q	uesti	ion	Answer	Marks	Guidance	
3	(a)	(i)	repeating unit in DNA is a <u>nucleotide</u> ✓ formed from pentose/ sugar/ deoxyribose, phosphate and a base AW ✓	2	 <i>mark separately</i> ALLOW names for the four bases (T,A,C,G) instead of 'bases' a named example of a base IGNORE ribose for two marks it must be clear that the sugar etc makes up the nucleotide 	
		(ii)	proteins are formed from <u>amino acid(s)</u> ✓	1		
		(iii)	proteins have more amino acids than the bases/nucleotides in DNA ✓ from which to construct many unique/different/more structures/arrangements/combinations to carry genetic data AW ✓	2	ALLOW actual numbers <i>eg</i> there are 20/21 amino acids in proteins and only 4 bases/nucleotides in DNA	
	(b)		$\begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$	3		

Question	Answer	Marks	Guidance
(C) (i)	$H_{N-H_2C} \xrightarrow{O}_{C} \xrightarrow{H}_{N-C} \xrightarrow{O}_{C} \xrightarrow{C}_{H} \xrightarrow{C}_{N-C} \xrightarrow{C}_{H} \xrightarrow{C}_{N-C} \xrightarrow{C}_{H} $	1	
(ii)	arrows as in (d) (i) ✓	1	IGNORE extra arrows pointing to C–N bonds at ends of chain. Any other arrows are a CON
(iii)	$H_2N \xrightarrow{H_2C} O$ $H_2C \xrightarrow{O} OH$ correct amino acid (see opposite) \checkmark correct formula of ion \checkmark	2	IGNORE any cations ALLOW any correct structural formula IGNORE species formed from amino acids to right and left IGNORE • added H ⁺ to -NH ₂ • negative charge on alcohol i.eO ⁻ • -COOH instead NO ecf IF anion formed at CH ₂ O ⁻ then 1 mark max for amino acid
(iv)	secondary: folding/twisting of polypeptide/amino acid chains/primary structure ✓ tertiary:	2	ALLOW (alpha)-helix/coiled OR (beta-)sheets / pleated sheets
	further/final folding OR 3D shape/structure ✓		ALLOW overall/global structure
	Total	14	

_ - - -

Q	Question		Answer	Marks	Guidance
4	(a)	(i)	$\begin{array}{c} \begin{array}{c} & & & & & & & & & & \\ & & & & & & & & $	2	ALLOW another symbol for S electrons second mark depends on first
		(ii)	(NH ₄) ₂ S ₂ O ₈ ✓	1	 ALLOW with correct charges S₂O₈(NH₄)₂
	(b)		$S_2O_8^{2-}$ (is the stronger oxidising agent) because $S_2O_8^{2-}$ has a more positive E^{e} value \checkmark indicates a greater tendency AW to gain/attract/accept electrons/to be reduced \checkmark	2	without reference to oxidising strength of S ₂ O ₈ ²⁻ only scores 1 as it doesn't answer the question NOT 'higher' for 'more positive' both statements MUST BE comparative
			ORA ie: $S_2O_8^{2^-}$ (is the stronger oxidising agent) because $Cr_2O_7^{2^-}$ has a less positive / more negative E^9 value \checkmark indicates a smaller tendency AW to gain/attract/accept electrons/to be reduced OR indicates a greater tendency AW to lose electrons/to be oxidised \checkmark		
	(c)	(i)	$S_2O_8^{2-} + 2I^- \rightarrow 2SO_4^{2-} + I_2$ correct equation balanced \checkmark	1	IGNORE state symbols

- - - -

_ - - - -

Question	Answer	Marks	Guidance	
(ii)	1. use filter of complementary colour to iodine/solution \checkmark	6	Using starch ANYWHERE is a CON and CANNOT gain marking point 3 ALLOW • filter/wavelength giving maximum absorption/absorbance • green/blue filter • suitable filter	
	2. zero colorimeter with water \checkmark		orange/yellow/brown is CON NOT 'solvent' instead of 'water'	
	 measure absorbance readings of standard solutions/solutions of known concentration (of iodine) ✓ 			
	 plot calibration graph ✓ 			
	 take absorbance readings of the reacting mixture at known/certain times AW (must refer to <u>time</u> – may state units of time) ✓ 			
	 convert absorbance readings to iodine concentrations using the calibration curve ✓ 		IGNORE references to quenching procedures	
	QWC: In order to gain the mark for point 3, 5 or 6, absorbance must be used AND spelled correctly at least once			

-

- - - -

Q	uesti	on	Answer	Marks	Guidance
		(iii)		3	graph should show a curve (NOT straight line) decreasing from left to right (ANY decreasing curve will do)
			t _{1/2} $t_{1/2}$ suitable graph sketched \checkmark		at least two sets of construction lines should be shown on graph
			construction lines to determine half-lives from graph \checkmark		
			constant half-life (means first order) ✓		dependent on showing half-lives on graph (numbers on scale \textit{or} by labelling with $t_{1/2}$)
	(d)	(i)	homogeneous, reactants and catalyst/Fe ³⁺ are in the same phase / state ✓	1	MUST mention 'reactants and catalyst' IGNORE 'redox' NOT 'substrate' ALLOW 'all in solution' for 'same phase'
		(ii)	Fe^{2+} $1s^22s^22p^6 3s^2 3p^6 3d^6$ Fe^{3+} $1s^22s^22p^6 3s^2 3p^6 3d^5$ correct number of EXTRA electrons added $14(Fe^{2+})$ and $13(Fe^{3+}) \checkmark$ both fully correct \checkmark	2	IGNORE 4s ⁰

Question	Answer	Marks	Guidance
(iii)	 Fe³⁺ reacts with/oxidises I⁻ ORA ✓ 2Fe³⁺ + 2I⁻ → 2Fe²⁺ + I₂ ✓ <i>explanation:</i> the <i>E</i>⁹ of Fe³⁺/Fe²⁺ half-cell is more positive / less negative than that of the I⁻/I₂ half-cell ORA ✓ AW 	6	IGNORE references to activation enthalpy OR variable valency/oxidation states ALLOW <i>E</i> ^e of Fe ³⁺ is more positive etc
	2. Fe^{2+} reacts with/reduces $S_2O_8^{2-}$ ORA \checkmark $S_2O_8^{2-} + 2Fe^{2+} \rightarrow 2SO_4^{2-} + 2Fe^{3+} \checkmark$ <i>explanation:</i>		
	 the <i>E</i>^o of S₂O₈²⁻/SO₄²⁻ half-cell is more positive than that of the Fe³⁺/Fe²⁺ half-cell ORA ✓ AW QWC: to gain the explanation mark for either 1 or 2, the data has to be linked correctly to the reaction 		ALLOW E° of $S_2O_8^{2-}$ is more positive etc NOTE If answer starts with Fe ²⁺ rather than Fe ³⁺ lose 1 st mark but ecf since not answering question so can get 5 marks
(e) (i)	Rate = $k \times [S_2O_8^{2^-}] \checkmark \times [I^-] \checkmark$	2	IGNORE state symbols
(ii)	uses one of the 3 sets of results: 1. $k = 2.0 \times 10^{-5} / (0.075 \times 0.040)$ 2. $k = 4.0 \times 10^{-5} / (0.150 \times 0.040)$ 3. $k = 1.0 \times 10^{-5} / (0.075 \times 0.020) \checkmark$ $k = 0.0067 \checkmark$ $mol^{-1} dm^3 s^{-1} \checkmark$	3	ecf from part e(i) provided working is shown ALLOW standard form (eg 6.7 x 10 ⁻³) Correct numerical answer without working scores 2 for calculation part NO ecf from first mark to second ALLOW any number of sig figs <i>e.g.</i> 0.007, 0.00667 NOT 0.006 NOR 0.0066
/iii)	2.0 x 10 ⁻⁵ ✓	2	ALLOW units in any order, <i>e.g.</i> dm ³ s ⁻¹ mol ⁻¹ Mark separately
	mol dm ⁻³ s ⁻¹ \checkmark		
	Total	31	