Discuss...

Which of these resources do you currently use in your classroom?

Concrete, Pictorial and Abstract Methods

Course Lead

White Rose Maths
@WhiteRoseMaths

Importance of CPA

In his research on the cognitive development of children (1966), Jerome Bruner proposed three modes of representation:

- Enactive representation (concrete)
- Iconic representation (pictorial)
- Symbolic representation (abstract)
'From concrete manipulatives and experiences, students are guided to uncover abstract mathematical concepts or results... The role of the teacher is that of a facilitator who guides students through the concrete, pictorial and abstract levels of understanding by providing appropriate scaffolding and feedback.'

Content

- Same concept, different representations
- Making connections
- Understanding the problem
- Proving why

Same concept, different representations

'A mathematical concept or skill has been mastered when, through exploration, clarification, practice and application over time, a person can represent it in multiple ways, has the mathematical language to be able to
communicate related ideas, and can think mathematically with the concept so that they can independently apply it to a totally new problem in an unfamiliar situation.'

Same concept, different representations

How can we represent the number $29 ?$

What does this tell us about the number 29 ?

Same concept, different representations

How can we represent the number 29 ?

$29=29$ ones $29=2$ tens +9 ones
$29=20+9 \quad 29=10+10+9$

Same concept, different representations

How can we represent the number 29?

$29=29$ ones $29=2$ tens +9 ones
$29=20+9 \quad 29=10+10+9$

Same concept, different representations

How can we represent the number 29?

$$
\begin{aligned}
& 29=10+10+9 \\
& 29=2 \text { tens }+9 \text { ones } \\
& 29=20+9
\end{aligned}
$$

What does this tell us about the number $29 ?$

Same concept, different representations

How can we represent the number 29?

$$
\begin{aligned}
& 29=10+10+9 \\
& 29=2 \text { tens }+9 \text { ones } \\
& 29=20+9 \\
& \mathbf{2 9}=\mathbf{2 9} \text { ones }
\end{aligned}
$$

What does this tell us about the number 29 ?

Same concept, different representations

How can we represent the number $29 ?$

$$
\begin{aligned}
& 29=10+10+9 \\
& 29=2 \text { tens }+9 \text { ones } \\
& 29=20+9 \\
& 29=29 \text { ones }
\end{aligned}
$$

What does this tell us about the number $29 ?$

Same concept, different representations

How can we represent the number $29 ?$

$$
\begin{aligned}
& 29=2 \text { tens }+9 \text { ones } \\
& 29=20+9 \\
& 29=10+10+9 \\
& 29=29 \text { ones } \\
& 29=1 \text { ten }+19 \text { ones } \\
& 29=10+19
\end{aligned}
$$

How could you represent this in a part whole model?

Same concept, different representations

Base 10

Place value counters

29

Place value grid
Cuisenaire rods

'Students may require concrete materials to build meaning initially, but they must reflect on their actions with manipulatives to do so. They need teachers who can reflect on their students' representations for mathematical ideas and help them develop increasing sophisticated and mathematical representations.'

Making connections

'Good manipulatives are those that aid students in building, strengthening, and connecting various representations of mathematical ideas.'

Making connections

$12 \div 3$

What other questions could we ask?

Making connections

$\frac{1}{3}$ of $12=4$
'A key thing is whether our focus is on finding answers to calculations or becoming mindful of the underlying mathematics.'

Key vocabulary: exchange
Can we exchange any ones?

Key vocabulary: exchange
Can we exchange any ones?

Solve...
 $243+368=$

Model

Calculations

$$
243
$$

$$
\begin{array}{r}
+368 \\
\hline 611 \\
\hline 11
\end{array}
$$

$405+347=$
$525+378=$

Key vocabulary: exchange
Can we exchange any counters?

Making connections

If there is nothing in a place value column, we use 0 as a place holder.

The written method matches the concrete representation.

Shows exchange when there are 10 in a column.

Start from the right hand column and work to the left.

Solve...
 $34-12=$

Key vocabulary: exchange
Do we need to exchange any tens?

Solve...
 $3.4-1.8=$

Calculations

$\left.{ }^{2} \not\right)^{1} .^{4}$
-1.8
1 . 6

Key vocabulary: exchange
Do we need to exchange any ones?

Making connections

$\begin{array}{rr}\text { Solve... } & 34- \\ & \text { Model }\end{array}$

Tens	Ones
0	

$\stackrel{\text { Ones }}{\text { One }}$

$$
3.4-1.8=
$$

Calculations
343.4
-18 -1.8
-

Making connections

If there is nothing in a place value column, we use 0 as a place holder.

The written method matches the concrete representation.

$\begin{array}{r}\text { Calculations } \\ { }^{2} \not \supset . .^{1} 4 \\ \frac{-1.8}{1.6} \\ \hline\end{array}$

Shows where we can make an exchange.

Start from the right hand column and work to the left.

Solve...
 $23 \times 6=$

Calculations
23

$\times \quad 6$
138
141

$35 \times 5=$

Used well, manipulatives can enable pupils to inquire themselves- becoming independent learners and thinkers. They can also provide a common language with which to communicate cognitive models for abstract ideas.'

Understanding the problem

'For when the learner has a well-developed symbolic system, it may be possible to by-pass the first two stages. But one does so with the risk that the learner may not possess the imagery to fall back on when his symbolic transformations fail to achieve a goal in problem solving.'

Understanding the problem

There are 42 crayons in a box.
They are shared between three children.
How many crayons do they get each?

How could you represent this problem?

Division - Sharing

There are 42 crayons in a box. They are shared between three children. How many crayons do they get each?

In this version, the children have split 42 into 3 equal groups.

Solve...
 $42 \div 3=$

Model

Calculations

$42 \div 3=14$

Understanding the problem

There are 42 crayons in a box.
They are put in pots with three in each pot.
How many pots are needed?

How could you represent this problem?

Division - Grouping

There are 42 crayons in a box. They are put in pots with three in each pot. How many pots are needed?

In this version, the children have counted how many 3 s go into 42

Solve...
 $42 \div 3=$

Model

Calculations

14

$3 \longdiv { 4 ^ { 1 } 2 }$
$92 \div 4=$

Division

$$
92 \div 4=
$$

$$
\begin{array}{cc}
{ }_{c}^{92} \\
80 & 12 \\
\div 4 \mid & \mid \div 4 \\
20 & 3
\end{array}
$$

$$
96 \div 2=
$$

$$
96 \div 3=
$$

$$
96 \div 4=
$$

$$
96 \div 6=
$$

$$
96 \div 8=
$$

'These images and models may be viewed as 'stepping stones' within the construction of joint mathematical expertise in relation to a particular task or procedure. They come into their own as the teacher and child negotiate the transition from collaborative activity to internalised individual practice.'

Proving why

Proving why

Make a 2 digit number.
Reverse the digits to make another 2 digit number.
Add the two numbers together.
What is the total of the numbers?

Repeat with other numbers.
What do you notice? Why does this happen?

Proving why...
 $26+62=$

Calculations

$$
\begin{array}{r}
26 \\
+62 \\
\hline 88 \\
\hline
\end{array}
$$

Does this work when we have to exchange in a column?

Proving why...
 $85+58=$

Calculations

Proving why

$143=100+40+3$
$143=1$ hundreds +4 tens +3 ones

Proving why

$143=14$ tens +3 ones
$143=13$ tens +13 ones

Proving why

Make a 2 digit number.
Reverse the digits to make another 2 digit number.
Find the difference between the numbers.

Repeat. What do you notice? Why does this happen?
Prove it using concrete or pictorial representations.

If we do not use concrete manipulations, then we can not understand mathematics. If we only use concrete manipulations, then we are not doing mathematics.'

Any Questions?

Thank you

White Rose Maths

 (f)@WhiteRoseMaths @WRMathsSec
www.whiterosemaths.com

References

- Askew, M. (2012). Transforming Primary Mathematics. Routledge. Oxon.
- Ball, D. L. (1992). Magical hopes: manipulatives and the reform of math education, American Educator.
- Bruner, J. S. (1966). Toward a theory of instruction. MA: Harvard University Press.
- Clements, D.H. (1999). Concrete’ Manipulatives, Concrete Ideas. State University of New York, Buffalo, US.
- Drury, H. (2015). Mastering Mathematics. Oxford University Press, Oxford.
- Gu, D. (2015). Analysis of Four Lessons. 8th September 2015, Shanghai Normal University, Shanghai, China.
- Merttens, R. (2012). The Concrete- Pictorial- Abstract Heuristic, Mathematics Teaching 228 Journal of the Association of Teachers of Mathematics 38.
- Ministry of Education. (2012). O-level teaching and learning syllabus. Singapore: Author.
- Gifford, S. (2016). Making Numbers: Using manipulatives to teach arithmetic. OUP Oxford. UK ed.

