
CHAPTER 5

EXPERIENCE WITH THE MASH SYSTEM

Conceptual design of the MASH system began in the summer of 1970. Implementation of initial

modules of the system began in the spring of 1971, and a basic framework for microsimulation and

associated activities was completed by the end of 1971. During the next six months, the initial

demographic source model was completed, translated into object model form, and was implemented within

MASH. Initial and exploratory simulation results were available in May 1972.

Active development work continued on the system through the summer of 1974, but emphasis

shifted gradually from refinements in the system to the development of additional source and object

submodels to form the complete microanalytic model of the household sector. Policy experiments were

formulated resulting in the introduction of alternatives into the source model, and were executed using

MASH. Recent effort has been directed toward substantial source model extensions and revisions and the

accompanying object model modifications with only moderate changes to the system structure and content

of MASH.

Since 1971, there have occurred approximately 5,000 separate computer executions of the MASH

system for a variety of purposes--system checkout, model development, model testing, simulation activity,

and production of results. Based upon this experience, it is appropriate to ask a number of questions

concerning the development and use of the system. Were the hypotheses described in Chapter 1 concerning

the utility of a time sharing environment justified? How well did MASH meet its own system design goals

and how well did it support the goals of the overall project? What lessons were learned in the development

and in the use of MASH that might be helpful in further work in this field? What directions seem

promising for future evolution of MASH and other such systems? The following sections address these and

similar questions and provide some tentative evidence concerning the underlying issues.

Development Experience

The MASH system was essentially developed in a three and one half year period from March 1971 to

September 1974. Approximately three and one half man years of effort were used in the development of the

system, and resulted in approximately 40,000 lines of operational source code. Since September 1974,

system modifications and extensions have continued but at a much slower rate.

134

135

The interactive time sharing system used for MASH development work met our initial expectations

in most ways. The ability to enter, translate, test and modify programs rapidly and interactively contributed

substantially to efficient system development. On-line program and text entry contributed substantially to

the generation of adequate documentation of source program modules. On-line access to project files

allowed multiple users to access and use the project's modules and outputs effectively. Development time

was substantially decreased as a result of working in an interactive computing environment. Shortcomings

in the environment were related the specific environment itself.

One unexpected and annoying problem arose as a result of problems encountered with PDP-10

hardware and several earlier levels of monitor software. During periods when the system was failing several

times a day, it became extremely frustrating to perform any but simple, straightforward tasks. During those

periods when mean time to failure was of the order of several hours, each failure could mean the loss of the

past 15-30 minutes of work, regardless of how quickly the failure was remedied. Under such circumstances

the strategies and actions of all interactive users on the system became quite defensive and efficiency

suffered.1 While such failures might occur in a batch environment, they would have manifested themselves

to the user generally only in terms of increased turnaround time.

The use of Fortran as the primary implementation language, augmented by assembly language where

required for efficiency, was a pragmatic decision. It allowed a group of programmers of different skill levels

working on object model modules to interface easily with the MASH system. The standard recognized

benefits of use of a higher level language -- relatively rapid code generation, reasonably efficient generated

object code, some self-documentation, and others -- were realized. Since the system itself was written

largely in Fortran, its source programs could be distributed to programmers using the system and could be

understood by them for purposes of understanding system functions exactly and interfacing with them.

As anticipated, the choice of Fortran also had drawbacks. The lack of more general data structures

introduced cumbersome constructions into the code. The lack of any meaningful character string capability

was quite annoying. The absence of more powerful syntax such as implicit array calculations and nested if-

then-else control structures caused additional code to be written that would not have been required in some

other higher level languages.

1 Such periods of frequent failure occurred only very occasionally during system development and did not affect it
adversely in any substantial manner. As hardware and software for interactive computing becomes reliable, there
is every reason to believe that such episodes will become increasingly rare. Nevertheless, it was interesting to
observe how the impact of such failures was amplified through the interactive network.

136

MASH is a system that supports socioeconomic research and policy evaluation, and as such -- like

much similar computer based activity in the social sciences -- it reflects the manner in which

socioeconomic research and policy evaluation processes occur. The model for such activity is not

sequential; rather it reflects an environment in which progress occurs as the result of a complex search

process. Programming activity that supports such research rarely begins with a coherent and well-defined

set of specifications, but rather a general set of research objectives which are translated into computer based

requirements as research proceeds. Since research contains a component of trial and error, to the extent that

computer based activity "tracks" it there will be inefficiencies in the implementation process and vestigial

modules of code generated in intermediate versions of the system.

Within such an environment, the conventional wisdom dictates that generality should be emphasized

as much as possible in the system design stage so that implementation activity will be allowed substantial

dimensions of freedom in which to follow and meet perceived requirements. Such a strategy was adopted

with respect to MASH within the restrictions imposed by the choice of computer and language and by the

resources available for the task. While such a strategy is generally effective, it often implies a trade of

efficiency for flexibility.

The trade of efficiency for flexibility is one that is often made in social science computing because

the end product is generally not used for production purposes. In the case of MASH, however, the system

had both to continue a process of gradual evolution and to serve as a reasonably efficient production

program for simulation exercises. These dual and conflicting goals were approached by generalizing system

design to the maximum extent possible and then optimizing parts of the system implementation on the

basis of operating experience. This approach is nicely described by Knuth [K4] as follows:

"There is no doubt that the grail of efficiency leads to abuse. Programmers waste enormous
amounts of time thinking about, or worrying about, the speed of noncritical parts of their
programs, and these attempts at efficiency actually have a strong negative impact when
debugging and maintenance are considered. We should forget about small efficiencies, say
about 97% of the time: premature optimization is the root of all evil.

"Yet we should not pass up our opportunities in that critical 3%. A good programmer will
not be lulled into complacency by such reasoning, he will be wise to look carefully at the
critical code; but only after that code has been identified. It is often a mistake to make a
priori judgments about what parts of a program are really critical, since the universal
experience of programmers who have been using measurement tools has been that their
intuitive guesses fail."2

After MASH had been running in production status for a period of time, it was possible to determine

areas of substantial inefficiency and make investments in these areas to increase their efficiency. For

2 Donald E. Knuth, "Structured Programming With Go To Statements," Computing Reviews. Vol. 6, December
1974, p. 268.

137

example, the substitution of a pseudo-cache buffer for time series values in place of a strategy of searching

the data bank in the aggregate model solution program reduced the costs of that module by approximately

90%. Analysis of specific operating characteristic modules led to ways of reducing the cost of their

execution without altering them functionally. Analysis currently being performed on the virtual memory

simulator offers the promise of increasing the efficiency of that major module. It is expected that such

performance measurement activity will continue to take place throughout the life of the system, and a

variety of measurement devices have been embedded in it to assist the identification of appropriate targets

for such investment.

Insufficient evidence was generated on the question of the extent to which an interactive environment

helped to link a community of professionals through ability to share results easily. Significant interplay

between members of the model development team occurred, but such a result would have been expected

under any circumstances. The user feedback mechanism through the protocol file was more useful for

documentation than for feedback, since there have not yet been any "unknown" users of the system.

Operational Experience

MASH has now been used for approximately 3 years to produce results of a variety of simulation

experiments. During this period, the source models have undergone substantial revision, and the nature of

policy questions to which modelling activity has been oriented has slowly broadened.

In general, it appears that most of the functions required to support research and policy exploration

have been included within MASH. The open ended command language, coupled with the free form of the

various commands, has allowed the addition of functions as the need for them was realized. Further,

interpretation of such commands is rapid relative to the response time requirements of a system user.

MASH commands are generally powerful commands in the sense that one or a few commands can initiate a

complex resource consuming and result producing procedure. Thus, the overhead required by the

interpretation of commands is more than compensated for by the ability to optimize the process invoked by

the command, independently of the form of specification. Such flexibility is available because of the

interpretive nature of the system.

One expectation that has not been realized to date is the use of MASH by persons who are not

computer oriented. It was hypothesized that the user orientation of the MASH command language would

encourage social scientists to use the system directly. Such direct use would increase the self-sufficiency of

researchers in the use of such systems by reducing substantially their dependence upon technically trained

intermediaries. To encourage such use, features such as data browsing were added to the language to

138

strengthen the user's interaction with data. The command language was designed to be pseudo-English in

style on the assumption that such a format would be more appealing to a non-programmer user of the

system. However, direct use of the system by non-programmers was observed only occasionally; rather, it

was observed that social scientists preferred in general to use the system through trained technical

intermediaries.

There are a number of plausible explanations for this observed behavior. First, the design of the

system may have been unappealing for use. What may appear to the designer of a system to be an

appropriate design and easy to use may not be comprehended by the intended users in the same manner or

with the same degree of enthusiasm. Second, the pseudo-English nature of the command language can be

deceptive and frustrating. While commands do appear to be sentences, there is nevertheless a reasonably

inflexible set of syntactical rules to which they must adhere in order to be decipherable. To the user, small

variations in form may appear insignificant, but to the system many such variations are illegal. While this

problem can be alleviated to some extent by the use of synonyms, optional "noise" words and free ordering

of phrases, the user senses the underlying rigidity and reacts cautiously to it. Further, some users have a

personal reticence to become directly involved with machinery. For such users, direct contact with a

computer terminal may provoke more anxiety than dealing with computing machinery at some distance,

such as in a batch environment or through an assistant. Finally, the more traditional methods of division

of labor allocated hierarchically among members of a research team may be perceived as yielding greater

benefits than direct contact between senior research staff and computer systems.

To the extent that computer related work is performed by trained intermediaries, the strategy of

creating command languages oriented to users without computer skills deserves to be questioned.

Command languages oriented toward more technically trained users could provide more detailed control

functions that could be combined more flexibly than higher level mechanisms, since it could be assumed

that system users would obtain a good technical understanding of both internal and external system

functions. On the basis of experience to date with MASH, it appears that more consideration should be

given to recognizing explicitly the role of technical intermediaries in such group research efforts, training

staff to fulfill such roles, and orienting computer based tools toward use primarily by them.

There has not yet been time to test thoroughly the hypothesis regarding the adequacy of access to a

central system as opposed to system portability. The evidence that exists is essentially positive. Some use

of the system has been made from remote locations using the switched public telephone network for

communication. More recently, two other PDP-10 installations have been used for large scale simulation

experiments, and little difficulty was encountered either in moving the system or in accessing it remotely.

139

The more formidable barriers to remote access that have existed in the past have been

communications costs and administrative barriers to use of foreign facilities. Prior to 1975, almost the

only alternative to the use of voice grade lines for low speed data communication was the use of privately

multiplexed lines, which are only economical given geographically concentrated demand of sufficient

volume to justify the investment and dedicated line costs. More recently, licensing of "value added"

communications networks such as Telenet promises to reduce data communications costs drastically while

at the same time minimizing the effect of distance. Such networks will reduce the cost of remote low speed

data communication with systems like MASH to an almost insignificant level, probably within several

years.

It was hypothesized that administrative barriers to use of remote computing facilities would be

observed, but there was insufficient external use to be able to study the issue adequately. Such barriers have

been observed in the past in other situations. They generally arise through the commitment of an

institution to purchase or lease computer capacity which is not fully utilized. For the institution, the

marginal cost of additional internal computer use is low, while external use is not only presumed to be at

some higher average cost but also represents a transfer of real funds out of the institution. It is therefore

not surprising that institutions often establish barriers of varying severity to use of external computing

facilities. It remains to be seen whether the availability of inexpensive digital communication will induce

increased "trade" between these local computing economies and whether some specialization of labor will

result from the resultant increase in the size of the market. A good discussion of these issues is contained

in Berg [B10].

The costs of performing simulation experiments using MASH have been moderate, but not as low as

was initially hoped. At the present time, the price of executing one year of a simulation run consisting of

three iterations through a micropopulation of 20,000 persons and solution of the associated macroeconomic

model is approximately $100. This price is based upon average costs incurred by a computer center

operated by a not-for-profit organization; the institution's charging algorithm sets prices of individual

computer resources in approximate proportion to their cost. More recently, commercial service bureau

costs have declined to approximately the same level, partially as a result of the introduction of more cost-

effective compatible computer hardware.

Within a typical year of simulation, the time spent in the virtual memory software is approximately

40% of the total central processor time used.3 This figure should be compared with a minimum of one-

fifth of it which would be required if all data accesses were to real memory--assuming that a sufficient

3 This figure excludes the time spent executing the paging functions which is relatively low given a reasonably
local address trace and an adequate number of page frames in primary memory.

140

amount existed to satisfy all data storage requirements. Thus, the use of simulated virtual memory to

provide substantial data address spaces buys this space at a cost of an approximate 47% increase in

execution time during simulation activity.

In summary, while the operational experience acquired with MASH to date is not sufficient to

provide definitive answers to the hypotheses conjectured in Chapter 1, some conclusions are possible.

MASH has been heavily used, with some worthwhile results. The attempt to narrow the gap between

social and economic research staff and computer systems has not been very successful, and it now appears

that the alternative of explicitly training technical intermediaries and constructing systems oriented to them

deserves stronger consideration than it received in the design of MASH. While MASH has been sufficiently

flexible to accommodate all object models constructed to date, the operating costs have exceeded the

expectation of the research team. A continuing program of identifying areas of poor performance and

making appropriate modifications will ultimately make the existing implementation near optimal within

the present design, and to the extent that cost expectations for the processes specified are realistic, costs will

be close to an acceptable minimum for the tasks to be performed.

Directions for the Future

Programming systems, like proverbial old Generals, do not often die, but they do have a tendency to

fade away. Unless they continue adapting to new environments and new demands, they are in danger of

being replaced by other products based upon newer technology and responding to more recent requirements.

A program or programming system is a piece of vintage capital resulting from an initial investment at one

time and from possible subsequent investments at later times. As technology progresses more effective

investments become possible, so that there is reason to expect that eventually investment in newer and

more effective programs will occur.

If an obituary were to be written for MASH, however, it would probably look somewhat like this:

"Washington, D.C. 1982. The MASH system for microanalytic simulation died this year
of old age. It was 11 years old.

"MASH was conceived in 1970 and was born in 1971. Its formative years were spent at
The Urban Institute in Washington, D.C. During its most productive years (1973-1978) it
was a prodigious producer of simulation results relating to social science research and policy
exploration; at one time, it was one of the most powerful programs in its field.

"As time passed, however, its comparative advantages declined, and the rigidity of its
structure became more noticeable. The increasing complexity of the demands of the research
and policy world in which it existed created a burden that was difficult to cope with. Several
years ago it began to operate only in a limited area, performing only those tasks for which
it was most capable.

141

"It is survived by a number of more powerful and applicable systems for socioeconomic
research and a respectable variety of useful research results and policy assessments."

While the ultimate demise of MASH is not inevitable, there are already apparent weaknesses which,

if not remedied, will be sufficient to cause it to be replaced in the medium term future. In general, these

weaknesses fall into three areas: (1) hardware base; (2) software implementation strategy; and (3) system

structural design.

The implementation of MASH began in 1971 on a PDP-10 computer with a KA10 processing unit.

Since that time, Digital Equipment Corporation has announced the KI10 processor, the KL10 processor,

and most recently the DECsystem 20 computer. All of these components are upward compatible from the

KA10 processor and offer improved price-performance ratios. The effect of these new product offerings is

that in 1976 it is possible to obtain a DECsystem 20 which is about 50% faster than a KA10 processor

based PDP-10 for approximately 50% of the price of the earlier machine. This is a gain of a factor of 4 in

price-performance. It is highly likely that there will be additional products in the future that will be

functionally equivalent to the PDP-10, since the product has been well received and there exists a robust

collection of software available for it.

Nevertheless, there may come a time when no further improved models of the PDP-10 computer will

be made. Although such an event is unlikely, its occurrence would limit MASH to existing hardware stock

that would soon be rendered ineffective by technical progress. Transfer of the MASH system to different

hardware might then be required for it to continue to be economically viable.

Microsimulation experiments depend substantially upon the processing resources of the computer

environments in which they are executed. That is, much of the cost of simulation experiments derives from

the substantial processor time required to apply a sizeable number of complex operating characteristics to a

large population of micro entities. Even with the moderate costs achieved to date, the cost of large

simulations is still quite high. Further, the number of operating characteristics would be expected to

increase as model development continued, and the complexity of each characteristic would probably increase

also. Larger populations will be required as distributional questions become important and as small cell

conditions become of interest to users.

Current informed prognoses regarding the capacities and costs of the pure hardware component of

future computer systems are in general agreement that the costs of such processor hardware for

approximately equivalent capacity will continue to decrease steadily at a rate of at least 15-25% per year.

For entire computing systems, such a consistent decline is increasingly offset by other costs such as input-

output equipment, and software which do not rapidly decline and which are already beginning to dominate

142

computational costs. Thus, for many computing environments, the declining cost of computation may not

have a significant effect since processor resources may not be a critical bottleneck.

Processor resources are critical, however, for some classes of computations. These are often referred

to in the industry as "number crunching" tasks and include, inter alia, numerical weather prediction,

trajectory and orbit calculations, nuclear reactor calculations, simulation of physical systems, and geological

explorations. Such application areas have specifically encouraged the construction of "super machines"

with processing capacities beyond the current state of the art, such as the LARC, the IBM 7030 (Stretch),

and the CDC 6600, 7600, and Star machines. In the past, such machines have provided both a significant

expansion in processing power, or bandwidth, (and often primary memory capacity also) and a lower cost

per computation than had been associated with processor economies of scale existing prior to their

operation.

More recently, it appears that significant advances in computational bandwidth can result from

increasing parallelism in hardware system design. The Burroughs Illiac IV with its 64 parallel processors

represents a recent large-scale effort to obtain such capacity. Another example of parallel processing is

provided by the IMSAI hypercube design, in which Intel microprocessors are connected in a 4-dimensional

hypercube and operate simultaneously, executing synchronized processes in parallel. IMSAI estimates that

their largest hypercube containing 4x4x4x4=256 processors has a bandwidth of approximately 350 million

instructions per second (MIPS). Since technical progress in large scale integration is now extremely rapid,

such an approach could yield rapid decreases in the costs of high bandwidth processors as well as other

benefits. One initial drawback is that programming techniques for such parallel architectures are not as well

understood as those for uniprocessor systems.

Our experience indicates that large scale socioeconomic microsimulation is a processor intensive

task. While other resources such as significant amounts of primary and secondary memory are also required,

the complexity of such models, the size of the micropopulations desired for use, the length of simulations,

and the number of simulation exercises required for thorough exploration of a set of policy questions all

combine to place enormous demands upon the processing resources of a computer system. Within the next

5-10 years it is highly probable that new computer systems will be available that will provide significantly

increased processing bandwidth. Provided that such systems are supplied with efficient user software that

includes mechanisms for the effective use of parallel processors for user tasks, these systems will be

extremely attractive to designers of application systems for implementing microanalytic simulation models.

Unless there is a substantial increase in the processing power of future PDP-10 environments and in the

cost of computation, it is quite possible that the focus of such activity could shift to these alternative

computing environments.

143

Advances in software could also have the effect of reducing the effective lifetime of the MASH

system. While the strategy of using Fortran IV as the primary implementation language may have been a

good choice in 1970, it will become increasingly less so in future years. As the implementation of the

microanalytic model described in [O6] has proceeded, it has become increasingly apparent that Fortran IV is

an undesirably low level language for effective implementation of such models. The weaknesses of Fortran

as an implementation language have affected both the development of the MASH system and the

specification of object models that execute within it.

At the system level, it is increasingly apparent that a major function of MASH -- if not the

dominant one -- is data management, though not in the sense that the term is commonly used. At present,

MASH deals with many types of entities -- micropopulation units, structural and membership

relationships, genealogical links, aggregate time series, lists, equations, classifications, name lists,

commands and others. Many of these entities are used for reference occasionally, while others such as the

micropopulation entities are subject to intensive processing during a simulation exercise.

The first group of entities is certain to expand if systems for microanalytic simulation become more

complex, yet MASH does not now possess effective mechanisms for managing a complex or large "space"

of such entity types. Further, implementation in Fortran allows only array structures to be represented

efficiently, and although stacks, queues, hierarchies and lists are utilized within MASH, their management

is cumbersome. Higher level languages and environments that support efficiently the maintenance of large

collections of diverse entity types will have a strong absolute advantage as implementation vehicles for

future systems for microanalytic simulation.

Management of micropopulation entities for simulation must be both flexible and efficient.

MASH's management of these entities is only somewhat flexible and somewhat efficient. Greater

flexibility will be required in order to allow object models to represent as accurately as possible the source

specifications of the modeler. Greater efficiency is required so that the series of simulation requirements

often required for meaningful results can be executed at a price that can be afforded by research teams and

policy analysts. Certainly systems that structure, store, and process their microentity data in a more

flexible and efficient way will have an advantage over MASH.

While the specification of object model modules can be expressed in Fortran IV, the resulting code

often obscures the formulation of the module and is lengthy compared with that formulation. Of the higher

level languages known to the author, only Simscript II comes reasonably close to being an effective

language for model specification, and it has substantial shortcomings for implementing models such as that

144

described in [O6]. Given the experience obtained both with MASH and with other microanalytic simulation

activities, it may now be possible to begin a first attempt to design a more powerful set of language

constructs for specifying microanalytic models. Such a language would require many components for

handling algebraic calculation, decision making, stochastic imputation, entity and attribute manipulation

including creation and deletion of either or both, self-correcting feedback mechanisms or "tracking,"

summarization through event reporting and table generation, population housekeeping and maintenance, and

other similar functions. If such a specification language existed, it would be of very substantial assistance

in helping programmers to construct object model modules and in helping modelers to understand these

modules.

Such a language would probably contain a large and diverse set of statement types and would ideally

allow translations from source to object model modules with only moderate effort. However, the efficient

implementation of such a language would also be important because of the compute intensive nature of

microsimulation. The requirement for efficiency rules out interpretation, but a two-phase translation

process utilizing a high level language supported by the host computer as an intermediate representation

might be effective. Such a strategy would partition the process into two parts, the first consisting of a

detailed analysis of the new language statements in the source program and the specification of a program in

the high level language for their efficient execution and the second consisting of actual code generation for

that module. Only the first part would require new investment in software.

Such a strategy has been used in a number of system implementations. For example, the

STATPAK/TARELA table generation system, developed by Statistics Canada primarily for production of

1971 Decennial Census results, uses such a system. It shares with MASH the requirements of flexible

specification but efficient execution. This system is described in [P3] and [P4].

Finally, the system design underlying MASH appears increasingly restrictive. While it is believed

that it represents a substantial advance over earlier systems supporting work in this field, both the

experience obtained in the past several years and the increased appetites of research workers for larger models

combine to cause one to regard the current design as restrictive. While MASH supports a macroeconomic

model with one sector greatly expanded into a micro population of 3-level hierarchical structures, more

recently formulated models require either a more general data structure for the microentity in the microsector

of the model or multiple heterogeneous microsectors or both. Such models can be supported by MASH

either with great difficulty or not at all. Future systems that can support such a broader universe of models

will be likely to be used more intensively than MASH.

145

Conclusion

It appears that in general many of the hypotheses concerning the use of MASH and the environment

in which MASH was built and operated were supported by observations made to date. Certainly the use of

an interactive environment was on balance a very effective mode of operation. On the other hand, the

reluctance of social science researchers to use the system directly raises doubts both about the structure of

the command language and the extent of the demand for direct control of a computer based interactive

process by social scientists. But in general, the MASH system appears to have provided a reasonably

productive environment for microanalytic simulation and will probably do so for a number of years in the

future.

In the longer run, technical progress and demand for modelling environments and tools allowing

more general models and more efficient execution of microsector submodels will cause MASH as it now

exists to lose its advantages as a modelling environment. It is expected that these newer systems will be

characterized by increased processor bandwidth possibly provided by new parallel architectures, higher level

languages with a stronger correspondence with the components of microanalytic model specification and

execution, and a structure that both allows a substantially larger universe of microanalytic models to be

implemented and processes large microsector operations in a more efficient manner. However, before such a

replacement occurs, MASH will have served a valuable purpose both in supporting the construction and use

of a number of complex, second generation socioeconomic microanalytic models and as and a crude

prototype of its more effective successors.

