Hippo and YAP Activities

Quantum biology has identified AMOLT1 and AMOTL2 as constituting the pair of epigenetic activities that form the Hippo pathway. Alternative designations are NF1 and NF2, the latter activities are known as neurofibromatosis cancer factors.

YAP can be verified as being an alternative designation for calcineurin and NF-kB.

Refer to the following for discussion purposes with qualified computational biologists.

```
Cell Alignment: For Discussion Purposes

TNF-Alpha: TGF- Alpha (Calnexin) Density
Calcium - threonine - magnesium (BRCA1) p16
Calcium - serine - magnesium (BRCA2) p18
Calcium - cysteine - magnesium (BRCA3) p19
For Discussion: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3436948/

TNF-Beta: TGF-Beta (Calmodulin) Motility
Calcium - phenylalanine - magnesium (HRas) p21
Calcium - tyrosine - magnesium (KRas) p27
Calcium - tryptophan - magnesium (NRas) p57

TNF-Gamma: TGF-Gamma [VEGF] (Calcineurin) Modulatory Enzyme Iron - serine - Manganese Iron - threonine - Manganese
Iron - threonine - Manganese
Tron - threonine - Manganese
The following are examples of bioidentical "enzymes" that have evolved with various designations; e.g. AKT, mTOR, PTEN, NF-kB, and MYC.
```

The elemental constituents of both designations for AMOTL1 and AMOTL2 and NF1 and NF2 can be verified as being the following that correspond to the illustration above;

AMOTL1 and NF1are calnexin and TNF-TGFα

AMOTL2 and NF2 are calmodulin and TNF-TGFβ

Summary

The processes described in the document provide near certain verifiable causal paths for Hippo/YAP cancers that are also known as neurofibromatosis types 1 and 2.