1)		
Correct Answer	Mark	
D	1	
2)		
Correct Answer	Mark	
D	1	
3)		
Correct Answer	Mark	
Α	1	
4)		
Correct Answer	Reject	Mark
Α		1
5)		
Correct Answer	Reject	Mark
В		1
6)		
Correct Answer	Reject	Mark
D		1
7)		
Correct Answer	Reject	Mark
С		1
8)		
Correct Answer	Reject	Mark
Α		1
9)		
Correct Answer	Reject	Mark
A		1
10)		·
Correct Answer	Reject	Mark
С		1

11)			
(a)	First mark: Mass of an atom/mass of an isotope (of an element) (1) IGNORE any references to average or	Mass of (all the) isotope <u>s</u> /atom <u>s</u> 'Mass of an element'	2
	(weighted) mean Second mark: relative to 1/12 th the mass of a ¹² C atom (1)		
	NOTE: The second mark is awarded for any mention of ¹² C IGNORE throughout the candidate's answer any references to 'moles' or '1 mol' or '12 g' Mark the two points independently		

	Mark the two points independently	/			
estion mber	Acceptable Answers		Reject		Mark
(b)(i)	{(35 x 75.53) + (37 x 24.47)} ÷	100 (1)			2
	= 35.4894	(-)			
	= 35.49	(1)			
	Answer to 4 s.f. only.				
	Correct answer no working	(2)			
	IGNORE units of any kind (e.g. 'g' 'g mol ⁻¹ ' 'amu', etc.)				
umper					
1(b)(ii)	³⁵ Cl ₂ +/(³⁵ Cl - ³⁵ Cl)+ (1)	70Cl ₂ 74Cl ₂	+	2	
		Cl2			
	³⁷ Cl ₂ +/(³⁷ Cl - ³⁷ Cl)+ (1)				
	ALLOW (35Cl + 35Cl)* and/or (37Cl + 37Cl)* OR (35Cl35Cl)* and/or (37Cl37Cl)* OR (35Cl and 35Cl)* and/or (37Cl and 37Cl)*				
	If the 'formal' charge is omitted on either ion (or both the ions), then award (1) mark only.				
	NOTE: 35Cl+ 35Cl+ and 37Cl+ 37Cl+ scores (1) as each ion has an extra + charge. 235Cl+ and 237Cl+ scores (1) Accept mass number written as superscript to right of symbol.		l and/or l scores (0)		

iestion imber	Acceptable Answers		Reject	Mark
l(b)(iii)	72	(1)		2
	³⁵ CI — ³⁷ CI ⁽⁺⁾	(1)		
	ALLOW (35Cl + 37Cl)(+) and/or (37Cl + 35Cl)(+) OR (37Cl35Cl)(+) and/or (37Cl35C) OR (35Cl and 37Cl)(+) and/or (37Cl and 35Cl)(+)	J) ⁽⁺⁾		
	NOTE: The + charge is not neede ion	d on this		
	IGNORE extra + charges, s ³⁵ Cl ^{+ 37} Cl ⁺ and/or ³⁷ Cl ^{+ 35} Cl			
12)				

12)				
(a)(i)	$Ba(s) + 2H_2O(I) \to Ba(OH)_2(aq) + H_2(g)$			2
	OR			
	$Ba(s) + 2H_2O(I) \rightarrow Ba^{2+}(aq) + 2OH^{-}(aq)$ $H_2(g)$	+	Ba ₂ H ₂ O(aq) BaO ₂	
	Correct products	(1)	5302	
	State symbols and balancing	(1)		

estion mber	Acceptable Answers		Reject	Mark
.(a)(ii)	Ba(increases in ON) from 0 to +2	(1)		2
	H (decreases in ON) from +1 to 0	(1)		
	TE from (a)(i)		Inclusion of oxygen changes will lose 1	
	Stand-alone marks		mark	

iestion imber	Acceptable Answers	Reject	Mark
(b)	Ba(OH) ₂ + 2HCl \rightarrow BaCl ₂ +2H ₂ O IGNORE state symbols even if incorrect ALLOW H ⁺ +OH ⁻ \rightarrow H ₂ O TE from (a)(i): BaO + 2HCl \rightarrow BaCl ₂ + H ₂ O		1

estion mber	Acceptable Answers	Reject	Mark
(c)	White precipitate / white solid / white crystals (rather than colourless solution) (1)	'Cloudy' alone	2
	Barium sulfate is insoluble (whereas barium chloride is soluble) (1) Stand-alone marks		

mber				
(d)(i)	If flame test is described in (d)(i) the award appropriate marks for (d)(ii). A correct decomposition equation giv in (d)(i) would score 1 mark.			2
	Allow valid discussion of thermal stability appearing in (d)(ii) for mark (d)(i)	c in		
	Barium carbonate is more thermally stabl (than magnesium carbonate) / requires more heating / needs a higher temperatu		Just 'barium'	
	/ decomposes more slowly / produces carbon dioxide more slowly		Just 'produces more carbon dioxide'	
	OR			
	Reverse argument (MgCO ₃ decomposes faster)		Just 'magnesium'	
	ALLOW BaCO ₃ doesn't decompose on heating but MgCO ₃ does	(1)		
	MCO ₃ → MO + CO ₂ Where M stands for Mg or Ba	(1)		
	IGNORE state symbols even if incorrect	(-)		
action	Acceptable Answers		Deject	Marek

estion mber	Acceptable Answers	Reject	Mark
(d)(ii)	Flame test or description of: Mg does not colour flame (1) ALLOW colourless / clear	Magnesium gives white / bright flame	2
	Ba: (pale / apple) green flame (1)	'blue-green'	
	Stand-alone marks	Instrument analysis	

13)

IIDCI			
		Dipole-dipole	1
	temporary dipole-induced dipole	Permanent dipole-	
	(attractions) / dispersion forces /	dipole	
	instantaneous dipole-dipole	Just abbreviations,	
		eg ID-ID, VdW	

estion nber	Acceptable Answers	Reject	Mark
b)	18 /eighteen		1

estion nber	Acceptable Answers	Reject	Mark
(c)	(Permanent) dipole-dipole attractions (also) present	Hydrogen bonds Reference to CH ₃ F having more electrons than F ₂	1

nber		
(d)	Hydrogen bonds (also) present (1)	2
	Which are stronger / which require more	
	energy to break than	
	dipole-dipole / London forces /	
	van der Waals' forces /	
	Or strongest intermolecular force (1)	

estion nber	Acceptable Answers	Reject	Mark
e)	HCl does not have hydrogen bonds (between molecules)	Just 'chlorine does not have hydrogen bonds'	US035563
	IGNORE references to electronegativity		

14)

14)			
B(a)	London/dispersion forces greater (ALLOW 'more') (in HI) ALLOW van der Waals forces/ temporary dipole (forces)/induced dipole (forces) Just 'Intermolecular (forces)' does not score this mark Stand alone mark		3
	(1)		
	Any two from		
	Because (Iodine/HI) has more electrons/iodine has more electron shells ALLOW bigger surface area (1)	Iodide/bromide More electrons in the bond HI has more electron shells	
	(So) more energy needed (ALLOW 'harder') to separate molecules / break the (London) forces ALLOW more energy needed to boil compound ALLOW intermolecular (forces) here (1)	Just 'easier to boil compound'	
	Permanent dipole in HI is weaker than the permanent dipole in HBr (1)		
	The increase in London forces (from HCl to HI) outweighs the decrease in permanent dipole (1)		

CHERRY HILL TUITION EDEXCEL CHEMISTRY AS PAPER 5 MARK SCHEME

٠.			
3(b)	HF has hydrogen bonding (and HCl does not)	Just 'HF has stronger intermolecular	3
	Stand alone mark (1)	forces (than HCI)'	
	Any two from	HF/F for fluorine	
	Fluorine very electronegative/more electronegative than chlorine (1)	Tity Tol Hadrine	
	Hydrogen bonding is (much) stronger (than other/named intermolecular forces) ALLOW Hydrogen bonding is (very) strong (1)		
	So more energy needed (ALLOW 'harder') to separate molecules/ break the hydrogen bonds ALLOW more energy needed to boil compound (1)	Just 'easier to boil compound'	
	HCl has London/dispersion (and (weak) dipole-dipole) forces ALLOW (weak) dipole-dipole forces ALLOW 'Only London/dispersion forces'		
	ALLOW van der Waals forces/ temporary or induced dipole forces for London/dispersion		

ion er	Acceptable Answers	Reject	Mark
3(c)	Water forms (up to) two hydrogen bonds (per molecule but HF only one). IGNORE references to numbers of lone pairs.	More/stronger/ greater than two	1

15)

nber			
(a)(i)	Time for the first (permanent) cloudiness to appear in the limewater ALLOW Time for the limewater to turn milky/cloudy ALLOW Time for the limewater to turn milky/cloudy and (ppt) to dissolve ALLOW how long for time IGNORE references to volume of CO2	How fast/how quickly	1

CHERRY HILL TUITION EDEXCEL CHEMISTRY AS PAPER 5 MARK SCHEME

nner			
(a)(ii)	Any three from		3
	Constant Bunsen flame/electrical heater setting Fixed height of test tube above the flame	Constant temp/ heat Water bath Fixed angle	
	Fixed moles/(ALLOW mass/amount) of carbonate	Volume/quantity	
	Fixed volume/amount/mass of limewater	Concentration / quantity	
	Penalise use of quantity once only		
	Same surface area/particle size (of solid)		
	Standardise cloudiness of limewater using the disappearance of a cross (or similar)		
	IGNORE repeats & use same measuring instruments /same person		
(h)(!)	Mana atable //themsel atability)		

(b)(i)	More stable/(thermal stability)	1
	increases (as the group is descended)	

stion nber	Acceptable Answers	Reject	Mark
(b)(ii)	Ignore an incorrect answer to 19b(i) and mark statements given independently Cation/positive (ALLOW metal) ion becomes larger (charge unchanged) OR cation charge density reduced (1)	Atomic/metal radius/charge density of atom / molecule	3
	IGNORE references to shielding		
	Polarisation/distortion reduced (1)		
	(ALLOW polarising power reduced)		
	of carbonate electron cloud/ carbonate ion/C-O bonds /anion (1)		
	OR reverse argument for stability decreasing as group ascended		