

CONFIGURATION

VS

CONFORMATION

Characteristics of proteins

• SOLUBILITY at physiologic pH: SOLUBLE vs NON-SOLUBLE

• SHAPE: GLOBULAR vs FIBROUS

 NONPROTEIN GROUPS: LIPOPROTEINS, GLYCOPROTEINS, METALLOPROTEINS

Levels of the protein structure

- PRIMARY STRUCTURE—the sequence of the amino acids
- SECONDARY STRUCTURE geometrically ordered units
- TERTIARY STRUCTURE—the assembly of secondary structural units into larger functional units
- **QUATERNARY STRUCTURE** the number and types of polypeptide units of oligomeric proteins and their spatial arrangement

Secondary Structure

Ramachandran plot shows allowed and non-allowed phi (Φ) and psi (Ψ) values

α-Helix

- constant Φ and Ψ angels
- average of 3.6 amino-acyl residues per pitch
- R groups face outward
- only L-amino acids
- only right-handed helices

α-Helix

- HYDROGEN BONDS between the oxygen of the peptide bond carbonyl and the hydrogen atom of the peptide bond nitrogen of the fourth residue down the polypeptide chain
- amphipathic helices

β-Sheet

Figure 4-10 part 2 of 2 Essential Cell Biology, 2/e. (© 2004 Garland Science)

- zig-zag pattern
- R groups of adjacent residues point in opposite directions
- the peptide backbone is highly extended
- hydrogen bonds adjacent segments of the sheet

Supersecondary structures

Tertiary Structure

- 3D conformation of a polypeptide
- The sequence of amino acids determines the tertiary structure
- DOMAINS formation of assembled secondary structural features (helix, sheet, bend, turn, loop) – functional unit of protein

Quaternary structure

- Two or more polypeptide chains (protomers)
- MONOMERIC, DIMERIC etc.
- HOMODIMER vs HETERODIMER

Stabilization of the Tertiary & Quaternary Structure

- noncovalent interactions
- hydrophobic interactions
- hydrogen bonds
- disulfide bonds

X-Ray Crystallography NMR spectroscopy

• determination of protein 3D structure

Folding ↔ Denaturation

Chaperones

Collagen

- FIBROUS protein
- structural strength for cells and tissues
- constituent of skin, bones, teeth, ligaments, tendons

Collagen

5. Fiber

• triple helix

S. S. S. S.

- TROPOCOLLAGEN
- every third amino acid residue is **GLYCINE**
- rich in proline and hydroxyproline

Collagen

OSTEOGENESIS IMPERFECTA

SCURVY

Myoglobin

Hemoglobin

Myoglobin & Hemoglobin

• HEME proteins

Supply of OXYGEN:
✓ Myoglobin → red muscle
✓ Hemoglobin → erythrocytes

Myoglobin

- oxygen storage in red muscle
- responsible for RED COLOR of tissues
- ONE polypeptide chain + ONE Heme
- GLOBULAR protein
- sea mammals = lots of myoglobin in muscle

CO and O₂ are competing for the same binding site on heme

- Isolated heme binds CO 25,000 times more strongly than O₂
- Distal His weakens the binding of CO:
- forcing it to links an angle and not perpendicular
- enhances the binding of O₂
- Hb and Mb bind CO 200 times more strongly than O₂

The Oxygen Dissociation Curves

- Myoglobin (monomer) $Mb + O_2 \rightarrow MbO_2$ hyperbolic curve
- Hemoglobin (tetramer)
- $Hb + 4O_{2} \rightarrow Hb(O_{2})_{4}$ sigmoid curve

Hemoglobin quatenary structure

- ALLOSTERIC protein
- TETRAMERIC pairs of two different polypeptide subunits: $\alpha_1 \alpha_2 \beta_1 \beta_2$
- Covalent bonds between subunits

Myoglobin & the Subunits of Hemoglobin Share Almost Identical Secondary and Tertiary Structures

Cooperative binding

Fetal hemoglobin HbF ($\alpha_2 \gamma_2$)

Oxygenation of Hemoglobin Is Accompanied by Large Conformational Changes

Transition from the T structure to the R structure

- all subunits of deoxyHb are in T structure
- successive O₂ binding makes R structure more probable
- first molecule O₂ binds to T structure, and fourth molecule to R structure

Bohr effect

- Reciprocal coupling of proton and O₂ binding
- Mechanism of oxygen delivering to the cells according to their needs
- Metabolically active cells, which need lot of oxygen, produce lot of waste products: H⁺ and CO₂

2,3- bisphosphoglycerate (BPG) stabilizes the T structure of hemoglobin

- BPG forms salt bridges with the terminal amino groups of β chains
- BPG binds more weakly to HbF than to HbA → HbF having a higher affinity for O₂ than HbA.

Adaptation to high altitude

- increased number of erythrocytes
- increased concentration of Hb and BPG

Methemoglobin

- Heme iron is ferric (Fe³⁺) rather than ferrous (Fe²⁺)
- Fe³⁺ doesn't bind O_2
- is coordinated by H₂O molecule on 6th coordination site
- Causes the brown color of dried blood or old meat
- Enzyme methemoglobin reductase reduces the Fe³⁺ of methemoglobin to Fe²⁺
- The resulting tissue hypoxia leads to **polycythemia**, an increased concentration of erythrocytes

Hemoglobin S – sickle cell anemia

Biomedical implications of Hb

- Myoglobinuria myoglobin in urine
- Anemia reduction in the number of red blood cells or of hemoglobin in the blood
- Thalassemia partial or total absence of one or more or chains of hemoglobin
- Glycated Hemoglobin (HbA_{1c})