RECOGNISING ACHIEVEMENT
GCE

Chemistry A

Mark Scheme

Annotations

Annotation	Meaning
[1]	Benefit of doubt given
[cold	Contradiction
3	Incorrect response
[1+5	Error carried forward
I	Ignore
WT:	Not answered question
\%	Benefit of doubt not given
Fir	Power of 10 error
^	Omission mark
$\square \square^{1 \times}$	Rounding error
+1\%	Error in number of significant figures
	Correct response

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Subject-specific Marking Instructions

The following questions should be annotated with ticks to show where marks have been awarded in the body of the text: 3(d)(i), 3(d)(ii) and 4(b).

Question			Answer			Marks	Guidance
1	(a)	(i)	mass of the isotope compared to 1/12th OR mass of the atom compared to $1 / 12$ th \checkmark (the mass of a) ${ }^{12} \mathrm{C}$ (atom) \checkmark			2	ALLOW for ${ }^{12} \mathrm{C}$: carbon-12 OR C-12 OR C 12 OR 12 C IGNORE reference to average OR weighted mean (ie correct definition of relative atomic mass scores both marks) ALLOW mass of a mole of the isotope/atom with $1 / 12$ th \checkmark the mass of a mole OR 12 g of carbon- $12 \checkmark$ ALLOW 2 marks for: 'mass of the isotope OR mass of the atom compared to ${ }^{12} \mathrm{C}$ atom given a mass of 12.0^{\prime} ie 'given a mass of 12 ' communicates the same idea as $1 / 12$ th' ALLOW FOR 2 MARKS: mass of the isotope mass of 1/12th mass of carbon-12 ie fraction is equivalent to 'compared to' ALLOW 1 MARK FOR a mix of mass of atom and mass of mole of atoms, ie: 'mass of the isotope/mass of an atom compared with 1/12th the mass of a mole OR 12 g of carbon-12' DO NOT ALLOW mass of ion OR mass of element BUT ALLOW mass of an atom of an element
		(ii)	Both rows completed correctly \checkmark			1	ALL four entries in table correct for 1 mark
					neutrons		
			iodine-127	53	74		
			iodine-131	53	78		

Question			Answer	Marks	Guidance
1	(b)	(i)	FIRST CHECK THE ANSWER ON ANSWER LINE IF answer $=91.6(\mu \mathrm{~g})$, must be 3 sf , award 2 marks Amount of I- mark: $=70.0 \times 10^{-6} / 126.9$ $\mathrm{OR}=5.52 \times 10^{-7} \checkmark(\mathrm{~mol})$ Mass of KI $=\left(5.52 \times 10^{-7} / 10^{-6}\right) \times 166.0$ $=91.6(\mu \mathrm{~g})$ must be $3 \mathrm{sf} \checkmark$	2	If there is an alternative answer, check to see if there is any ECF credit possible FOR ONE MARK ONLY using working below ALLOW $70.0 \times 10^{-x} / 126.9$ OR 5.52×10^{-x} (ie wrong conversion of $\mu \mathrm{g}$ and g) ALLOW calculator values which round to 5.52×10^{-x}, ie 3 significant figures or more ALLOW ECF for incorrect calculated amount of $I^{-} \times 166.0$, must be 3 sf ALLOW calculator value or rounding to 3 significant figures or more BUT IGNORE 'trailing' zeroes, eg 0.200 allowed as 0.2 . Answers with 91.6×10^{-x} (ie wrong conversion of $\mu \mathrm{g}$ and g) would get one mark
		(ii)	Ethical implications Some people feel it is wrong to put additives into the national diet OR Dietary issues Food OR diet contains sufficient amounts of iodide \checkmark	1	ALLOW some people disapprove of additives in their food Assume 'it' refers to KI IGNORE economic reasons ALLOW (excess) potassium OR $\mathrm{K}^{(+)}$OR KI is harmful OR toxic ALLOW too much iodine OR iodide OR $I^{(-)}$is harmful OR toxic ALLOW iodine OR iodide OR $\mathrm{I}^{(-)}$OR KI is radioactive ALLOW any effect which would be detrimental to human health OR well-being OR eg 'lead to heart problems' ALLOW some table salt already contains iodide (eg sea salt) ALLOW some countries do not have (access to) KI IGNORE references to dangerous OR taste IGNORE responses referring solely to intake going above GDA IGNORE carcinogenic
	(c)	(i)	$\mathrm{Cl}_{2}+2 \mathrm{I}^{-} \rightarrow 2 \mathrm{C} \Gamma+\mathrm{I}_{2} \checkmark$	1	IGNORE state symbols

Question			Answer	Marks	Guidance
1	(c)	(ii)	Two alternative explanations to award the two marks: Explanation 1 ICl has permanent dipole (-dipole) (interactions) AND Cl_{2} has (only) van der Waals' forces \checkmark Forces are stronger in ICl ORA OR More energy is needed to overcome forces in ICl \checkmark ORA Explanation 2 ICl has more electrons \checkmark ORA Stronger van der Waals' forces in ICl (than in Cl_{2}) ORA OR More energy is needed to overcome van der Waals' forces in IC $l \checkmark$ ORA	2	Quality of Written Communication: ‘dipole' OR ‘permanent’ spelled correctly at least once and in context for marking point 1 in explanation 1 ALLOW 'vdW' for van der Waals' IGNORE references to van der Waals' forces in ICl in explanation 1 DO NOT ALLOW 'dipole-dipole interactions' without reference to these being permanent for marking point 1 DO NOT ALLOW marking point 2 for comparison of ICl having stronger ionic OR covalent bonds than Cl_{2} Quality of Written Communication - ‘electrons' spelled correctly once and used in context for marking point 1 of explanation 2 ALLOW I has more electrons ALLOW more van der Waals' forces ALLOW 'vdW' for van der Waals'
			Total	9	

Question			Answer	Marks	Guidance
2	(a)		Add (aqueous) silver nitrate $\mathrm{OR} \mathrm{AgNO}_{3} \mathrm{OR} \mathrm{Ag}^{+}$ions \checkmark white AND precipitate \checkmark	2	IGNORE references to nitric acid DO NOT ALLOW references to any other additional reagent added to silver nitrate for marking point 1 ALLOW 'solid' OR 'ppt' for 'precipitate'. Both colour AND state is needed. IGNORE references to solubility in ammonia for marking point 2 if colour of precipitate is stated BUT ALLOW 'dissolves in dilute ammonia' if no colour of precipitate is given DO NOT ALLOW marking point 2 if additional reagent leads to invalid test
	(b)		The mixture effervesced OR fizzed OR bubbled OR produced a gas X is $\mathrm{CaCO}_{3} \mathrm{OR}$ calcium carbonate \checkmark	2	ALLOW CaO would not fizz IGNORE name of gas
	(c)	(i)	Contains water (of crystallisation) \checkmark	1	ALLOW 'with water' OR 'has water' DO NOT ALLOW 'in solution' OR 'in water'
		(ii)	Working must be marked first $\begin{aligned} & 219.1-111.1=108 \checkmark \\ & 108 / 18 \text { (=6) AND CaCl } l_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O} \end{aligned}$	2	```ALLOW \(\mathrm{CaCl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\) ALLOW \(\mathrm{CaCl}_{2} 6 \mathrm{H}_{2} \mathrm{O}\) (ie no 'dot') ALLOW [219.1-(40.1 + \(2 \times 35.5)] / 18\) AND \(\mathrm{CaCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}\) for two marks ALLOW ECF for incorrectly calculated mass of \(\mathrm{H}_{2} \mathrm{O} / 18\) provided final answer is rounded to nearest whole number for marking point 2```

Question		Answer	Marks	Guidance
2	(d)	Ca shown with either 8 or 0 electrons AND Cl shown with 8 electrons with 7 crosses and one dot (or vice versa) \downarrow correct charges on both sets of ions \checkmark	2	For first mark, if eight electrons are shown in the cation then the 'extra' electron in the anion must match symbol chosen for electrons in the cation IGNORE inner shell electrons Circles not essential ALLOW One mark if both electron arrangement and charges are correct but only one Cl is drawn ALLOW 2[Cl $\left.{ }^{-}\right] \quad 2\left[\mathrm{Cl}^{-} \quad\left[\mathrm{Cl}^{-}\right]_{2}\right.$ (brackets not required) DO NOT ALLOW $\left[\mathrm{Cl}_{2}\right]^{-}\left[\mathrm{Cl}_{2}\right]^{2-}[2 \mathrm{Cl}]^{2-}\left[\mathrm{Cl}_{2}{ }^{-}\right.$
	(e)	Ba is more reactive than Ca \checkmark ORA Br_{2} is less reactive than $\mathrm{Cl}_{2} \checkmark$ ORA	2	ALLOW reactivity increases down Group 2 ORA Provided Ca and Ba have been identified as Group 2 elements ALLOW reactivity decreases down Group 7 ORA Provided Cl and Br have been identified as Group 7 elements ALLOW one mark for both sentences if no ascribing to groups ALLOW Br for Br_{2} and Cl for Cl_{2} DO NOT ALLOW Br^{-}for $\mathrm{Br}_{2} \mathrm{OR} \mathrm{Cl}^{-}$
		Total	11	

Question			Answer	Marks	Guidance
3	(d)	(i)	From F to Ne Nuclear charge mark: Ne has (one) more proton OR Nuclear charge increases Same shell or energy level mark: (Outermost) electrons are in the same shell OR energy level OR (Outermost) electrons experience the same shielding \checkmark Nuclear attraction mark: Greater nuclear attraction (on outermost electrons) OR Outer electrons are attracted more strongly (to the nucleus) \checkmark	3	Use annotations with ticks, crosses, ECF etc for this part ALLOW proton number increases but IGNORE atomic number increases IGNORE nucleus gets bigger IGNORE 'charge increases' ie must be nuclear charge IGNORE 'effective nuclear charge increases' ALLOW sub-shell for shell but IGNORE orbitals ALLOW shielding is similar ALLOW screening for shielding IGNORE Atomic radius decreases (because given in question) OR outermost electrons are closer DO NOT ALLOW 'distance is the same' for second mark ALLOW greater nuclear pull for greater nuclear attraction DO NOT ALLOW 'greater nuclear charge' instead of 'greater nuclear attraction' for the third mark IGNORE 'pulled closer' for 'pulled more strongly'
		(ii)	From Ne to Na Extra shell or energy level mark: Na has (one) more shell(s) OR energy level \checkmark Shielding mark: (Outermost) electron experiences greater shielding \checkmark Nuclear attraction mark: Less nuclear attraction (on outermost electrons) OR Outer electrons are attracted less strongly (to nucleus) \checkmark	3	Use annotations with ticks, crosses, ECF etc for this part ALLOW 'next' shell OR 'new' shell ALLOW (outermost) electrons in a higher energy level ALLOW outermost electrons OR shell further from nucleus IGNORE Atomic radius increases (because given in question) DO NOT ALLOW orbitals OR sub-shells ALLOW screening for shielding ALLOW more electron repulsion from inner shells ALLOW 'less nuclear pull' for 'less nuclear attraction' DO NOT ALLOW 'less nuclear charge’ for 'less nuclear attraction' for third mark. There must be a clear comparison
			Total	13	

Question		Answer	Marks	Guidance
4	(c)	FIRST CHECK THE ANSWER ON ANSWER LINE IF answer $=72(.0)\left(\mathrm{cm}^{3}\right)$ award 3 marks amount of $\mathrm{K}=0.2346 / 39.1 \mathrm{OR}=6 .(00) \times 10^{-3} \mathbf{O R}$ $0.006(00) \mathrm{mol}$ amount of $\mathrm{H}_{2}=\left(\mathrm{mol}\right.$ of K) $/ 2 \mathrm{OR}=3 .(00) \times 10^{-3} \mathrm{OR}$ $0.003(00) \mathrm{mol}$ Volume of gas $=\left(\mathrm{mol}\right.$ of $\left.\mathrm{H}_{2}\right) \times 24000 \mathrm{OR}=72(.0)\left(\mathrm{cm}^{3}\right)^{\checkmark}$	3	If there is an alternative answer, check to see if there is any ECF credit possible using working below ALLOW mol of $\mathrm{K} \times 0.5$ correctly calculated for 2 nd mark ALLOW mol of $\mathrm{H}_{2} \times 24000$ correctly calculated for 3rd mark ALLOW $144\left(\mathrm{~cm}^{3}\right)$ from 0.006×24000 for two marks ALLOW 0.072 from 0.003×24 for two marks ALLOW calculator value or rounding to 2 significant figures or more BUT IGNORE 'trailing' zeroes, eg 0.200 allowed as 0.2
		Total	11	

Question			Answer	Marks	Guidance
5	(a)	(i)	The H^{+}OR hydrogen ions OR protons in (sulfuric) acid have been replaced by ammonium ions OR $\mathrm{NH}_{4}{ }^{+}$	1	ALLOW 'a positive ion' for 'ammonium ions' BUT IGNORE 'a positive metal ion' OR 'metal ions' for 'ammonium ions' IGNORE references to being produced by the reaction of an acid and a base DO NOT ALLOW hydrogen atoms OR ammonia ions DO NOT ALLOW 'H for H^{+}OR NH_{4} for $\mathrm{NH}_{4}{ }^{+}$
		(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE IF answer $=0.104(\mathrm{~mol})$ award 3 marks Amount of $\mathrm{H}_{2} \mathrm{SO}_{4}=0.100 \times 32.5 / 1000=3.25 \times 10^{-3} \mathrm{OR}$ 0.00325 mol Amount of $\mathrm{NH}_{3}=\left(\mathrm{mol}\right.$ of $\left.\mathrm{H}_{2} \mathrm{SO}_{4}\right) \times 2=6.50 \times 10^{-3} \mathrm{OR}$ 0.0065 mol No. of mol of $\mathrm{NH}_{3}=\left(\mathrm{mol}\right.$ of $\left.\mathrm{NH}_{3}\right) \times 400 / 25.0=0.104$ (mol) \checkmark	3	If there is an alternative answer, check to see if there is any ECF credit possible using working below ALLOW ECF for amount of $\mathrm{H}_{2} \mathrm{SO}_{4} \times 2$ ALLOW ECF for amount of $\mathrm{NH}_{3} \times 400 / 25.0$ ALLOW concentration approach for marking point 3 Conc ammonia $=6.50 \times 10^{-3} \times 1000 / 25.0=0.260 \mathrm{~mol} \mathrm{dm}^{-3}$ mol of $\mathrm{NH}_{3}=\left(\right.$ conc of $\left.\mathrm{NH}_{3}\right) \times 400 / 1000=0.104(\mathrm{~mol})$ ALLOW calculator value or rounding to 2 sig figs or more BUT IGNORE 'trailing' zeroes, eg 0.200 allowed as 0.2
	(b)		Predicted bond angle 107° Explanation There are 3 bonded pairs and 1 lone pair \checkmark Electron pairs repel \checkmark Lone pairs repel more than bonded pairs \checkmark	4	ALLOW range 106-108 ${ }^{\circ}$ ALLOW a response which is equivalent to 3 bp and 1 lp , eg 'There are four pairs of electrons. One is a lone pair' ALLOW 'bonds' for 'bonded pairs' ALLOW diagram showing N atom with 3 dot-and-cross bonds and 1 lone pair clearly drawn onto it for second mark IGNORE stick versions of bonding DO NOT ALLOW 'atoms repel' for 'electron pairs repel' IGNORE 'electrons repel' ALLOW 'bonds repel'

