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B. Computational Supplementary Materials

B.1 Numerical Accuracy of Patnaik Methodology

We now compare two slightly different Patnaik (1949) methodologies the exact probabilities

for the cases considered in Imhof (1961). While the original Patnaik approximation uses a

central χ2 distribution the modified methodology used in this paper uses a noncentral χ2.

The advantage of using noncentral χ2 distribution is that the approximation is exact in the

conditionally homoskedastic case.

Table B.1 shows that both the central and the noncentral Patnaik methodologies are highly

accurate, especially in the tails of the distributions considered. When the exact probability

is ≤ 15%, the absolute error for both methodologies is at most 0.70% for all quadratic forms

considered.

B.2 Monte-Carlo Method

We first replace W2 by the diagonal matrix of its eigenvalues and normalize the trace of W2

to 1, which leaves the critical value c(α,W2, x) unchanged. Our simulation routine takes

as inputs the maximal asymptotic size of the test α, the eigenvalues of the matrix W2, the
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Table B.1 Numerical Accuracy of Patnaik Methodology

P (Q > x) Absolute Error
Quadratic Form x Exact Central Noncentral Central Noncentral
Q1 = 0.6χ2

1 + 0.3χ2
1 + 0.1χ2

1 0.1 94.58 91.85 91.85 2.73 2.73
0.7 50.64 50.79 50.79 0.15 0.15
2 12.40 13.10 13.10 0.70 0.70

Q2 = 0.6χ2
2 + 0.3χ2

2 + 0.1χ2
2 0.2 99.36 98.68 98.68 0.68 0.68

2 39.98 40.98 40.98 1.00 1.00
6 1.61 1.45 1.45 0.16 0.16

Q3 = 0.6χ2
6 + 0.3χ2

4 + 0.1χ2
2 1 99.73 99.61 99.61 0.12 0.12

5 41.96 44.00 44.00 2.04 2.04
12 0.87 0.80 0.80 0.07 0.07

Q4 = 0.6χ2
2 + 0.3χ2

4 + 0.1χ2
6 1 96.66 95.22 95.22 1.44 1.44

3 41.96 43.30 43.30 1.34 1.34
8 0.87 0.66 0.66 0.21 0.21

Q5 = 0.7χ2
6;6 + 0.3χ2

2;2 2 99.39 99.54 99.29 0.15 0.10
10 40.87 40.46 41.09 0.41 0.22
20 2.21 2.30 2.16 0.09 0.05

Q6 = 0.7χ2
1;6 + 0.3χ2

1;2 1 95.49 97.19 94.96 1.70 0.53
6 40.76 39.48 41.12 1.28 0.36
15 2.23 2.46 2.16 0.23 0.07

1
3
Q3 + 2

3
Q4 1.5 98.91 98.42 98.42 0.49 0.49

4 34.53 35.52 35.52 0.99 0.99
7 1.54 1.31 1.31 0.23 0.23

1
2
Q5 + 1

2
Q6 3.5 95.63 96.05 95.47 0.42 0.16

8 41.52 41.01 41.71 0.51 0.19
13 4.62 4.74 4.58 0.12 0.04

1
4
(Q3 + Q4 + Q5 + Q6) 3 98.42 98.37 98.22 0.05 0.20

6 42.64 42.70 42.99 0.06 0.35
10 1.17 1.16 1.09 0.01 0.08

NOTE: P (Q > x) in percent, where Q =
∑m

r=1
qrχ

2
hr ;δ2

r

is a positive semidefinite quadratic form

in independent normal random variables. The χ2
hr ;δ2

r

are independent χ2 random variables with hr

degrees of freedom and non-centrality parameter δ2
r . The quadratic forms, thresholds x and the

exact probabilities are as in Imhof (1961). We show probabilities for the original central chi-squared
Patnaik approximation and for the noncentral chi-square Patnaik approximation. The noncentral
Patnaik approximation is used throughout the paper.
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threshold x and computes a Monte Carlo critical values cm(α,W2, x) .

Draw N independent multivariate normal random variables zv ∼ N(0, IK). For a given C

and W2 we use these normal draws to compute N draws from the distribution γ ′
2γ2/trW2,

where we set the default to N = 40, 000. We then compute F m−1
C,W2

(α) as the sample upper

α-point from these N draws.

c(α,W2, x) is defined as the supremum of F−1
C,W2

(α) over the set Λ =
{
C | C′C

tr(W2)
≤ x

}
.

We construct a finite Monte Carlo analogue Λm with 10 × L elements with a default value

of L = 50.

We draw λi, i = 1, 2, ..., L iid from a multivariate uniform distribution on [0, 1]K . Then

replace

λ1 = [0, .., 0, 1] (1)

λ2 = [1, 1, ..., 1] if K ≥ 2

λ3 = [0, ..., 0, 1, 1] if K ≥ 3

λ4 = [0, ..., 0, 1, 1, 1] if K ≥ 4

We then use Λm =
{
W

1/2
2 λi ×

√
t/
√

λ′
iW2λi, i = 1, 2, ..., L; t = x − 9, ...x − 1, x

}
.

The Monte-Carlo critical value is then given by

cm(α,W2, x) = max
{
F m−1

C,W2
(α) | C ∈ Λm

}
.

B.3. Levels and Sizes of Patnaik and Monte Carlo Critical Values

We compute Monte Carlo critical values cm(5%,W2, 10) and Patnaik critical values cP (5%,W2, 10)

for 400 randomly drawn matrices W2 of size K = 1, 2, 3, 4, 5 and compare the size distortions

of cP and cm.
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We can assume wlog that W2 is diagonal. For each of K = 1, 2, 3, 4 we draw 100 vectors

of eigenvalues eig(W2) iid from a uniform distribution on [0, 1]. We then replace the first

vector of eigenvalues by [1, 0, ..., 0], the second one by [1, 1], and the third and fourth ones

by [1, 1, 0, ..., 0] and [1, 1, 1, 0] provided K is large enough. We normalize the trace of W2 to

equal one. We denote the resulting set of diagonal matrices by W2.

We obtain cP (5%,W2, 10) and cm(5%,W2, 10) for every W2 in W2. In computing the Monte

Carlo critical values we use N = 40000 draws and L = 50 for the number of directions of C.

We conduct robustness checks with L = 1 and L = 100.

The supporting web site for Ruud (2000) provides a MATLAB transcription of Imhof (1961)’s

algorithm to compute FC,W2
(x) for a given C and W2. This allows us to compute the actual

sizes FC,W2
(cP (5%,W2, 10)) and FC,W2

(cm(5%,W2, 10)) at an accuracy level of 0.01% for

any C, W2.

We then compute the maximal sizes

maxsizem(W2) = max
C∈Λm

FC,W2
(cm(5%,W2, 10))

and

maxsizeP (W2) = max
C∈Λm

FC,W2
(cP (5%,W2, 10)).

We find that |cP (5%,W2, 10) − cm(5%,W2, 10)|/cm(5%,W2, 10) ≤ 4.4% for all W2 ∈ W2.

Moreover,

4.77% ≤ maxsizem(W2) ≤ 5.26% ∀W2 ∈ W2

5.00% ≤ maxsizeP (W2) ≤ 5.02% ∀W2 ∈ W2
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B.3.1. Robustness of Size Distortions

One might be concerned that we find artificially small size distortions because we replace

the set Λ by a finite set Λm. We therefore repeat our calculations for a much smaller set

Λm,small with L = 1 and one much larger set Λm,large with L = 100 and find that the size

distortions of both methodologies are robust. When we use Λm,small we find that

4.77% ≤ maxsizem(W2) ≤ 5.29% ∀W2 ∈ W2 and

5.00% ≤ maxsizeP (W2) ≤ 5.02% ∀W2 ∈ W2.

When we use Λm,large we find that

4.77% ≤ maxsizem(W2) ≤ 5.26% ∀W2 ∈ W2 and

5.00% ≤ maxsizeP (W2) ≤ 5.02% ∀W2 ∈ W2.

B.4. Numerical Implementation of BTSLS(W,Ω) and BLIML(W,Ω)

BTSLS(W,Ω) = supβ∈R,C0∈SK−1

∣∣∣∣
NTSLS(β,C,W,Ω)

µ−2BM(β,W)

∣∣∣∣ (2)

= supβ∈R,C0∈SK−1

∣∣∣∣
trS12√
trS2trS1

[
1 − 2

C′
0S12C0

trS12

]∣∣∣∣ (3)

Now we use that for any given β ∈ R the maximum and minimum of C′
0S12C0 are

maxeval(1
2
S12 + 1

2
S′

12) and mineval(1
2
S12 + 1

2
S′

12). Denote Ssym
12 = 1

2
S12 + 1

2
S′

12. Then

BTSLS(W,Ω) = supβ∈R

max (|trS12 − 2mineval(Ssym
12 )|, |trS12 − 2maxeval(Ssym

12 )|)√
trS2trS1

(4)

The function defined on the real line gTSLS(β) =
max(|trS12−2mineval(Ssym

12
)|,|trS12−2maxeval(Ssym

12
)|)√

trS2trS1

converges to 1 − 2mineval(W2)
trW2

as β → ±∞.

The empirical researcher can specify ǫ > 0, the desired fractional error relative to limβ→±∞ gTSLS(β),

and the number of starting points points for numerical maximization routines. The de-
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faults are set to ǫ = 0.001 and points = 10000. The program then finds βrange such that
∣∣∣ fTSLS(±βrange)
limβ→±∞ gTSLS(β)

− 1
∣∣∣ ≤ ǫ. We maximize gTSLS using the MATLAB routine fminsearch using

points equally spaced starting points in [−βrange, βrange]. We also maximize gTSLS over the

range [−βrange, βrange] using the MATLAB routine fminbnd. Since each of these methodolo-

gies might only yield local maxima, we take the maximum over the local maxima to obtain

BTSLS(W,Ω).

The numerical computation for BLIML(W,Ω) is analogous with

gLIML(β) = max

(∣∣∣∣∣
trS12 − σ12

σ2

1

trS1 − maxevalMB

√
trS1

√
trS2

∣∣∣∣∣ ,
∣∣∣∣∣
trS12 − σ12

σ2

1

trS1 − minevalMB

√
trS1

√
trS2

∣∣∣∣∣

)

(5)

where MB = 1
2
(2S12 − σ12

σ2

1

S1) + 1
2
(2S12 − σ12

σ2

1

S1)
′ and

gLIML(β) → maxevalW2

trW2
as β → ±∞ (6)

B.5 Power of Tests

We now seek to understand the rejection probabilities of the generalized and simplified test-

ing procedures. We compute each testing procedure’s rejection probability against Be/µ
2 =

supβ∈R,C0∈SK−1 (|Ne| /BM). Ideally we would like the rejection probability to approach zero

as Be/µ
2 approaches zero and one for Be/µ

2 large. Figure B.1 plots rejection probabil-

ities against Be/µ
2 = supβ∈R,C0∈SK−1 (|Ne| /BM) for W and Ω equal to their estimated

counterparts in our empirical example for the USA with the real ex post interest rate as

our endogenous regressor. For a fixed direction C0 we compute rejection probabilities from

1000 independent draws from the distribution γ ′
2γ2/tr(W2). We draw 1000 directions C0

from a uniform distribution on SK−1 and plot the rejection probability for each C0 and

µ2 = 0, 0.2, 0.4, ..., 40.

For a given Be/µ
2 we obtain a range of rejection probabilities corresponding to different
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directions C0. We see that the test is asymptotically valid and the rejection probability

is less than the size for Be/µ
2 >= 10%. For both the generalized and the simplified test,

when Be/µ
2 is large the rejection probability approaches zero and we are very unlikely to

falsely reject the null. As Be/µ
2 becomes small the rejection probability becomes large and

we are very likely to correctly reject the null. Figure B.1 also illustrates that the rejection

probability is always larger for the simplified procedure than for the generalized procedure

but both procedures behave similarly when Be/µ
2 becomes large or small.

Figure B.1: Rejection Probabilities for Generalized and Simplified Tests with τ = 10%,
α = 5%

B.6 Comparing Robust Critical Values to Stock and Yogo(05)

We now compare the critical values for our testing procedure to those in Stock and Yogo

(2005). Assume for now that the errors are conditionally homoskedastic and serially un-

correlated, so that that W = Ω ⊗ IK . We then obtain BTSLS(Ω ⊗ IK ,Ω) = 1 − 2/K
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and BLIML(Ω ⊗ IK ,Ω) = 1/K. We consider α = 5% and τ = 10%. We compare to the

Stock and Yogo (2005) critical values for the null hypothesis that the asymptotic estimator

bias exceeds 10% of the asymptotic OLS bias with size 5%.

Our generalized and simplified critical values differ from those proposed by Stock and Yogo

(2005) for the TSLS bias even when first- and second-stage errors are perfectly conditionally

homoskedastic and serially uncorrelated. We consider the Stock and Yogo (2005) 5% critical

value for testing the null hypothesis that the TSLS bias exceeds 10% of the OLS bias and

generalized and simplified critical values with a threshold of 10% and size 5%. Table B.2

shows that the TSLS critical values critical values are smaller than the Stock and Yogo

(2005) critical values for K = 3, 4 but larger than the Stock and Yogo (2005) critical values

for K ≥ 5. The difference between the TSLS and Stock and Yogo (2005) critical values is

always less than 1. The simplified critical values exceed the Stock and Yogo (2005) critical

values but the difference declines in the number of instruments K. The LIML critical values

decline more rapidly with the number of instruments than either the TSLS or simplified

critical values.

The TSLS critical values for our generalized procedure could differ from Stock and Yogo

(2005) for two reasons.

First, we use the “worst-case” benchmark instead of the OLS bias. Denote the asymptotic

OLS bias by BiasOLS = σ12/σ
2
2 . For any structural error correlation ρ ∈ (−1, 1) there exists

a structural parameter β ∈ R such that (ω12 − βω2
2)/(

√
ω2

1 − βω12 + β2ω2
2ω2) = ρ, provided

that Ω is nonsingular. In the conditionally homoskedastic serially uncorrelated model, the

Nagar bias is independent of the direction C0 ∈ SK−1 with

NTSLS(β,C,W,Ω) = BiasOLS

(
1 − 2

K

)
(7)

NLIML(β,C,W,Ω) = −BiasOLS/K (8)
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Table B.2
Comparing to Stock and Yogo (2005)

K cTSLS cLIML cSimp cSY
TSLS

1 23.11 23.11 23.11 N/A
2 3.00 12.17 19.29 N/A
3 8.53 8.53 17.67 9.08
4 10.23 6.70 16.72 10.27
5 11.06 5.61 16.08 10.83
6 11.52 4.87 15.62 11.12
7 11.80 4.35 15.26 11.29
8 11.99 3.96 14.97 11.39
9 12.11 3.65 14.73 11.46
10 12.19 3.41 14.53 11.49
11 12.25 3.21 14.36 11.51
12 12.29 3.04 14.21 11.52
13 12.32 2.90 14.08 11.52
14 12.33 2.78 13.96 11.52
15 12.35 2.67 13.86 11.51
16 12.35 2.58 13.77 11.50
17 12.35 2.50 13.68 11.49
18 12.35 2.42 13.60 11.48
19 12.35 2.36 13.53 11.46
20 12.35 2.30 13.46 11.45
21 12.34 2.25 13.40 11.44
22 12.34 2.20 13.35 11.42
23 12.33 2.15 13.29 11.41
24 12.32 2.11 13.24 11.40
25 12.31 2.07 13.20 11.38
26 12.31 2.04 13.15 11.37
27 12.30 2.01 13.11 11.36
28 12.29 1.98 13.07 11.34
29 12.28 1.95 13.04 11.33
30 12.27 1.92 13.00 11.32
NOTE: We show simplified, TSLS, and LIML criti-

cal values assuming conditional homoskedasticity, no

serial autocorrelation, and known Ω and W. The

null hypothesis is that the Nagar bias exceeds 10%

of the benchmark. Critical values have size 5% and

are computed with the Patnaik methodology. cSY
TSLS

denotes Stock and Yogo (2005) 5% critical values of

the null hypothesis that the asymptotic TSLS bias

exceeds 10% of the asymptotic OLS bias.
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and so

sup
β∈R,C0∈SK−1

(|Ne(β,C,W,Ω)|/BM(β,W)) = sup
β∈R

(|Ne(β,C,W,Ω)|/BM(β,W)) (9)

= |Ne(β,C,W,Ω)|/BiasOLS (10)

Hence our choice of benchmark is not a source of divergence of our critical values from

Stock and Yogo (2005).

Second, we define the null hypothesis in terms of the Nagar bias instead of the asymptotic

estimator bias. Therefore, the only source of divergence of our TSLS critical values from

Stock and Yogo (2005) critical values in Table B.2 is the Nagar bias approximation.

The simplified procedure also allows for the worst type of heteroskedasticity, serial correlation

and/or clustering in the second stage, in contrast to Stock and Yogo (2005). Therefore,

simplified critical values are higher than Stock and Yogo (2005) critical values, even when

the first-stage errors are estimated to be perfectly conditionally homoskedastic and serially

uncorrelated.
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C. Additional Results

C.1 Nagar Bias Approximates Asymptotic Bias

Assume that K ≥ 3. We now prove that

E[β∗
TSLS] − NTSLS = O(µ−4) (11)

Write s2 = S2

tr(S2)
and s1 = S1

tr(S1)
. Define the normalized statistic H ≡µ×β∗

TSLS/
√

tr (S1) /tr (S2)

=
(
C′

0s
1/2
1 zu + zv

′s
1/2
2 s

1/2
1 zu/µ

)(
1 + 2z′vs

1/2
2 C0/µ + z′vs2zv/µ

2
)
. Denote the numerator of H

by a and the denominator by A.

Expand H as a stochastic power series expansion in 1/µ to get

H = C′
0s

1/2
1 zu +

1

µ

[
z′vs

1/2
2 s

1/2
1 zu − 2

(
z′vs

1/2
2 C0

)(
C′

0s
1/2
1 zu

)]

+
1

µ2

[
C′

0s
1/2
1 zu

(
2z′vs

1/2
2 C0

)2

− C′
0s

1/2
1 zuz

′
vs2zv − 2z′vs

1/2
2 C0z

′
vs

1/2
2 s

1/2
1 zu

]
+ R̃

Denote the first three terms by d′. The expectation of the first three terms equals NTSLS ×

µ/
√

tr (S1) /tr (S2).

Write ∆A = A−1. Both a and µ∆A are finite polynomials in the components of z with O(1)

coefficients. A geometric series expansion gives H×[1 − (−∆A)3] = [a/(1 + ∆A)] [1 − (−∆A)3]

= a
∑2

s=0(−∆A)s. We can re-write this as H = a
∑2

s=0 (−∆A)s + (−∆A)3h. Now show

that E [(−∆A)3hµ3] = O(1) as µ → ∞. Following the proof in Sargan (1974) write the

expectation as an integral. Provided that the expectation exists, we know that

|E(−∆A)3hµ3| ≤ 1

(2π)K/2

∫

z∈RK

|(µ∆A(µ, z))3||h(µ, z)| exp

(
−1

2
z′z

)
dz

=
1

(2π)K/2

∫

z∈RK

|(µ∆A(µ, z))3a| exp

(
−1

4
z′z

)
| 1
A
| exp

(
−1

4
z′z

)
dz
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But (µ∆A(µ, z))3a is a polynomial in z with coefficients O(1) as µ → ∞. Hence ∃ constant

B∗ such that ∀z ∈ R
K |(µ∆A(µ, z))3a exp− 1

4
z′z | ≤ B∗. Then,

|E(−∆A)3hµ3| ≤ B∗ 1

(2π)K/2

∫

z∈RK

A−1 exp− 1

4
z
′
z dz

= 2K/2B∗
E

[
µ2/2

(s
1/2
2 zv + C0µ/

√
2)′(s

1/2
2 zv + C0µ/

√
2)

]
(12)

(12) can be bounded by the inverse moment of a non-central chi-square with noncentrality pa-

rameter proportional to µ2 and 3 degrees of freedom, proving existence. Let X ∼ χ2
3(y) be a

non-central chi-square random variable with non-centrality parameter y and 3 degrees of free-

dom. Bock, Judge and Yancey (1984) show that E[X−1] = (Γ(1/2)/
√

π)(y
2
)−

1

2 D
(
(y/2)

1

2

)
.

Γ is the Gamma function and D is Dawson’s integral, tabulated in Abramowitz and Stegun

(1964). D(y) = y−1

2
+ O

(
y(−3

2
)
)

as y → ∞ proving that (12) is O(1) as µ → ∞.

By the uniqueness of the Taylor expansion the O(1), O(1/µ) and O(1/µ2) terms of d′ and

a
∑2

s=0(−∆A)s must agree. Moreover, both d′ and a
∑2

s=0(−∆A)s are finite polynomials in

normal random variables and this completes the proof.

C.2 Primitive Conditions for Independent Data

We now specify a set of primitive conditions for independent (not necessarily identically dis-

tributed) data that imply Assumption HL. While Assumption HL is more general and can

allow for serially autocorrelated data, this case encompasses cross-sectional heteroskedas-

tic models with independent observations and linear panel data models with fixed effects

and independent clusters. Assumption HL is implied by standard results for independent

processes.

The main results of this section are summarized as follows. First, we show that a class of
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cross-sectional models satisfy Assumption HL and:

W ≡ lim
S→∞

(1/S)
S∑

s=1

E[VsV
′
s ⊗ ZsZ

′
s]

Ω ≡ lim
S→∞

(1/S)

S∑

s=1

E[VsV
′
s]

Ŵ ≡ (1/S)
S∑

s=1

V̂sV̂
′
s ⊗ ZsZ

′
s

where V̂s are OLS estimates of the reduced form errors of the model.

Second, we verify assumption Assumption HL in a class of linear panel data models with fixed

effects and clustered data. Suppose {Zs, v1s, v2s}S
s=1 corresponds to the within transformation

(Wooldridge (2002)) of the instrumental variables and the endogenous regressors in a linear

panel data model with additive fixed effects. Assume that the data is partitioned according

to L independent clusters and that the sample size (S ≡ L × M) grows as the number

of observations per cluster (M) stays constant and L grows to infinity. Write s ∈ Sl if

observation s is in cluster l and allow for an arbitrary correlation structure within clusters.

In this case, Assumption HL is satisfied with

W ≡ lim
L→∞

(1/L)

L∑

l=1

E

[
(1/M)

(∑

s∈Sl

(Vs ⊗ Zs)
)(∑

s∈Sl

(Vs ⊗ Zs)
)′]

Ω ≡ lim
L→∞

(1/L)
L∑

l=1

(
(1/M)

∑

s∈Sl

E[VsV
′
s]
)

Ŵ ≡ (1/L)

L∑

l=1

E

[
(1/M)

(∑

s∈Sl

(V̂s ⊗ Zs)
)(∑

s∈Sl

(V̂s ⊗ Zs)
)′]

where V̂s are the OLS estimates of the reduced form errors based of the model, and

{ys,Ys,Zs} correspond to the within transformations of the variables. This is equivalent to

estimating the reduced form errors with the fixed-effects estimator applied to the original

panel data, clustering at the Sl level.
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C.2.1 Primitive Conditions for HL.1

Let {Xs}S
s=1 be an independent R

p-valued process. Let

1. E[Xs] = 0 for i = 1 . . . S

2. WS ≡ (1/S)
∑S

s=1 E[XsX
′
s] is positive definite for S sufficiently large.

3. W ≡ limS→∞ WS < ∞

4. There exists δ > 0 such that for all λ ∈ R
p

S∑

s=1

E

∣∣∣λW
−1/2

S

(
Xs

)∣∣∣
2+δ

× S−(2+δ)/2 → 0

Theorem 3.1 in White (1980), pg. 729, imply that
∑S

s=1 Xs/
√

S
d→ Np(0,W).

HL.1 for Cross-Sectional Heteroskedastic Models: Let {Zs, v1s, v2s}S
s=1 be an indepen-

dent process. Let Xs ≡ (Vs⊗Zs) where Vs = (v1s, v2s)
′. If Xs satisfies assumptions 1-4 then

(
(Z′v1)

′/
√

S, (Z′v2)
′/
√

S
)′ d→ N2K(0,W) where W = limS→∞(1/S)

∑S
s=1 E[VsV

′
s ⊗ ZsZ

′
s]

HL.1 for Linear Panel Data Models with Fixed-Effects and Clustering: Note that:

Z′vi/
√

S =
1√
L

L∑

l=1

(
1√
M

∑

s∈Sl

Zsvis

)

Let Xl ≡ (1/
√

M)
∑

s∈Sl
(Vs ⊗ Zs). Since observations are independent across clusters,

the process {Xl} is independent. Therefore, the primitive conditions 1-4 yield the CLT
(
(Z′v1)

′/
√

S, (Z′v2)
′/
√

S
)′ d→ N2K(0,W), where the asymptotic covariance matrix W =

limL→∞(1/L)
∑L

l=1 E

[
(1/M)

(∑
s∈Sl

(Vs ⊗ Zs)
)(∑

s∈Sl
(Vs ⊗ Zs)

)′]

C.2.2 Primitive Conditions for Assumption HL.2

Let {Zs} be a sequence of independent random variables. Let
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1. µs = E[Zs] < ∞ for all s.

2. For some δ > 0, limS→∞
∑S

s=1

(
|Zs − µs|1+δ

)
/s1+δ < ∞.

3. Ω ≡ limS→∞(1/S)
∑S

s=1 µs < ∞

By Corollary 3.9 in White (2001), pg. 35, (1/S)
∑S

s=1(Zs − µs)
a.s.→ 0.

HL.2 for Cross-Sectional Heteroskedastic Models: Let {Zs, v1s, v2s}S
s=1 be an inde-

pendent process. For i, j = 1, 2, let Zijs ≡ visvjs. If {Zijs}∞s=1 satisfy 1-2 for all i, j = 1, 2,

then (1/S)
∑S

s=1 VsV
′
s

p→ Ω where Ω = limS→∞(1/S)
∑S

s=1 E[VsV
′
s]

HL.2 for for Linear Panel Data Models with Fixed-Effects and Clustering: Note

that

1

S
v′

ivj =
1

L

L∑

l=1

(
1

M

∑

s∈Sl

visvjs

)

Let Zijs =
(
(1/M)

∑
s∈Sl

visvjs

)
. Since observations are independent across clusters, it

follows that {Zijs} is an independent sequence. If the sequence satisfies 1-3, then it follows

that (1/S)
∑S

s=1 VsV
′
s

p→ Ω where Ω = limL→∞(1/L)
∑L

l=1

(
(1/M)

∑
s∈Sl

E[VsV
′
s]
)
.

C.2.3 Primitive Conditions for Assumption HL.3

Exercise 6.8, pg. 146, in White (2001) provides sufficient conditions for consistent estimation

of the asymptotic variance in a multivariate linear model. Let:

1. Ys = X ′
sβ + ǫs, s = 1, 2, . . .β ∈ R

P , Ys ∈ R
N , Xs ∈ R

P×N

2. Let {Xs, ǫs} be an independent sequence (so that φ is of size −1, with r = 1, see White

(2001) page. 146).

3. E[Xsǫs] = 0 for all s.

4. E

∣∣∣Xspnǫsn

∣∣∣
2(1+δ)

< ∆ < ∞ for some δ > 0 and all n = 1 . . . N, p = 1 . . . P and s.

5. Vn ≡ var
(
(1/S)

∑S
s=1 Xsǫs

)
is uniformly positive definite.
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6. E

∣∣∣Xsp1nXsp2n

∣∣∣
2(1+δ)

< ∆ < ∞ for some δ > 0 and all n = 1 . . .N, p1, p2 = 1 . . . P and

s.

7. E[(1/S)
∑S

s=1 XsX
′
s] has uniformly full column rank and is uniformly positive definite.

Define

Vn ≡ (1/S)
S∑

s=1

E[Xsǫsǫ
′
sX

′
s]

and

V̂n ≡ (1/S)
S∑

s=1

Xsǫ̂sǫ̂
′
sX

′
s

where ǫ̂s = Ŷs − X̂ ′
sβ̂OLS, and β̂OLS = (

∑S
s=1 XsX

′
s)

−1
∑S

s=1 XsYs. Exercise 6.8, pg. 146

(with Zs = Xs) in White (2001) implies that V̂n − Vn
p→ 0. In fact, the result holds for any

β̂ such that β̂ − β
p→ 0

HL.3 for Cross-Sectional Heteroskedastic Models: Let {Zs, v1s, v2s} be an inde-

pendent sequence. Let Ys = (y′
s,Y

′
s)

′, Xs = (I2 ⊗ Zs), β = (Γ′
1,Γ

′
2)

′, ǫs = Vs, ǫ̂s ≡

Ŷs − X ′
sβ̂OLS = V̂s. Note that β̂OLS corresponds to the reduced form OLS estimates for Γ.

If 1-7 holds then

(1/S)
S∑

s=1

[
V̂sV̂

′
s ⊗ ZsZ

′
s

]
p→ W ≡ lim

S→∞
(1/S)

S∑

s=1

E

[
VsV

′
s ⊗ ZsZ

′
s

]

HL.3 for Linear Panel Data Models with Fixed Effects and Clustering: Let

{Zs, v1s, v2s} corresponds to the within transformation of the instrumental variables and

the reduced form errors in a linear panel data model with fixed effects. Define Yl =

(yl1, . . . ylM , Yl1, . . . YlM)′, Xl = (I2 ⊗ (Zl1, . . . ZlM)), β = (Γ′
1,Γ

′
2)

′, and the innovations

ǫs = (v1l1, . . . v1lM , v2l1, . . . v2lM)′. Since clusters are independent, the sequence {Xs, ǫs} is

independent as well. In this case, β̂OLS corresponds to the fixed effects estimator for Γ in

16



the reduced form model. If 1-7 holds then:

(1/L)

L∑

l=1

[
(1/M)

(∑

s∈Sl

(V̂s ⊗ Zs)
)(∑

s∈Sl

(V̂s ⊗ Zs)
)′] p→ W

where W ≡ limL→∞(1/L)
∑L

l=1 E

[
(1/M)

(∑
s∈Sl

(Vs ⊗ Zs)
)(∑

s∈Sl
(Vs ⊗ Zs)

)′]

C.3 Uniformity

Let Γ be a parameter space. We say that a testing procedure with test statistic TS has

asymptotic size α in the uniform sense if

lim sup
S→∞

sup
γ∈Γ

Pγ(TS > c) ≤ α

Equivalently, the testing procedure T has size α (in a uniform sense) if under any sequence

of parameter values {γS} ∈ Γ:

lim sup
S→∞

PγS
(TS > c) ≤ α

See Guggenberger (2010a), Guggenberger (2010b).

C.3.1 Uniformity problems with pretests

Guggenberger (2010a) studies tests for a structural parameter β that follow a Hausman ex-

ogeneity pretest in an IV set-up. The Hausman pretest looks at a properly scaled difference

between the TSLS and OLS estimators and tests the null hypothesis that their difference is

zero.

17



Let x denote a sample of size S. Guggenberger (2010a) shows that the test T for a structural

parameter β that follows a pretest

T (x) =




Reject β = β0 if Pretest rejects and WTSLS(x) > 3.84

Reject β = β0 if Pretest does not reject and WOLS(x) > 3.84




does not have asymptotic size α in the uniform sense. The argument goes as follows: if the

correlation between the second-stage structural error and the first-stage error is very small

(local to zero), then the Hausman test will not reject the null hypothesis of exogeneity (with

high probability). Therefore, the pretest will be followed by a Wald OLS statistic to test

β = β0. The problem is that for small values of the correlation parameter, the size of the

Wald can be larger than 5%

Although it is not surprising that a pretest does not have the right size in the uniform sense

(think about finite-sample size distortion of pretests), Guggenberger (2010a) shows that the

problem with the Hausman test is very important: there is a sequence of parameter values

(local-to-zero correlations) for which the rejection probability under the null is close to 1.

C.3.2 Uniformity and Tests for Weak Instruments

It is true that a two-stage test that selects between a standard procedure (like the Wald) and

a robust procedure (like the Anderson and Rubin test) following a test for weak instruments

will in general lack uniformity. That is, a nominal α-level test for weak instruments followed

by a nominal α-level test in a second-stage need not deliver an overall α-level test under a

weak instrument sequence. However, the size distortion need not be large.

To illustrate this point consider the following just-identified model with arbitrary heteroskedas-

ticity, serial correlation and/or clustering. Suppose we test the null hypothesis:
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H0 : β = β0 vs. H0 : β 6= β0

Consider the test that follows the pretest that uses the critical value of 23:

T (
√

Sβ̂π,
√

Sπ) =




Reject β = β0 if F̂eff < 23 and Anderson-Rubin ARS(β0) > 3.84

Reject β = β0 if F̂eff > 23 and Wald WS(β0) > 3.84




We report the size of the two-stage test T in a Monte-Carlo simulation. We consider a

covariance matrix Ω with unit variance and correlation parameter ρ. We report the size of

the test T for values ρ = .2, .4, .6, .8 and uniform grids for c ∈ [−5, 5] and a β ∈ [−3, 3].

The number of Monte-Carlo draws is 5,000. The simulation shows that the test for weak

instruments has a size that is close to α, at least in the region of the parameter space under

consideration. The size only gets close to 10% in the last figure. For the parameter values

considered, uniformity problems are therefore not a first order concern.
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Figure C.3.3.1: Rejection Probabilities for the Wald and T Tests (α = 5%)
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Figure C.3.3.1: Rejection Probabilities for the Wald and T Tests (α = 5%), ctd.
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