edexcel

Mark Scheme (Results)

Summer 2014

Pearson Edexcel GCE in Core Mathematics 2R (6664_01R)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

General Marking Guidance

- \quad All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- \quad All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATI CS

General Instructions for Marking

1. The total number of marks for the paper is 75
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- d... or dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or AG - answer given
- \square or d... The second mark is dependent on gaining the first mark
- aliter - alternative method
- aef - any equivalent form

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6.
7. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

8. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$\left(x^{2}+b x+c\right)=(x+p)(x+q)$, where $|p q|=|c|$, leading to $x=\ldots$
$\left(a x^{2}+b x+c\right)=(m x+p)(n x+q)$, where $|p q|=|c|$ and $|m n|=|a|$, leading to $\mathrm{x}=\ldots$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving $x^{2}+b x+c=0:\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c=0, \quad q \neq 0$, leading to $x=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $\left(x^{n} \rightarrow x^{n-1}\right)$

2. I ntegration

Power of at least one term increased by 1. $\left(x^{n} \rightarrow x^{n+1}\right)$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

Method mark for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Question Number	Scheme		Marks
2. (a)	$\mathrm{S}_{\infty}=6 a$		
	$\frac{a}{1-r}=6 a$	Either $\frac{a}{1-r}=6 a$ or $\frac{6 a}{1-r}=a$ or $\frac{6}{1-r}=1$	M1
	$\{\Rightarrow 1=6(1-r) \Rightarrow\} r=\frac{5}{6} *$	cso	A1*
	Allow verification e.g. $\frac{a}{1-r}=6 a \Rightarrow \frac{a}{1-\frac{5}{6}}=6 a \Rightarrow \frac{a}{\frac{1}{6}}=6 a \Rightarrow 6 a=6 a$		
			[2]
(b)	$\left\{\mathrm{T}_{4}=a r^{3}=62.5 \Rightarrow\right\} a\left(\frac{5}{6}\right)^{3}=62.5$	$a\left(\frac{5}{6}\right)^{3}=62.5$ (Correct statement using the $4^{\text {th }}$ term. Do not accept $a\left(\frac{5}{6}\right)^{4}=62.5$)	M1
	$\Rightarrow a=108$	108	A1
			[2]
(c)	$\mathrm{S}_{\infty}=6$ (their a) or $\frac{\text { their } a}{1-\frac{5}{6}}\{=648\}$	Correct method to find S_{∞}	M1
	$\left\{S_{30}=\right\} \frac{108\left(1-\left(\frac{5}{6}\right)^{30}\right)}{1-\frac{5}{6}}\{=645.2701573 \ldots\}$	$\mathrm{M} 1: \mathrm{S}_{30}=\frac{(\text { their } a)\left(1-\left(\frac{5}{6}\right)^{30}\right)}{1-\left(\frac{5}{6}\right)}$ (Condone invisible brackets around 5/6) A1ft: Correct follow through expression (follow through their a). Do not condone invisible brackets around 5/6 unless their evaluation or final answer implies they were intended.	M1 A1ft
	$\left\{\mathrm{S}_{\infty}-\mathrm{S}_{30}\right\}=2.72984 . .$.	awrt 2.73	A1
			[4]
			Total 8
(c)	Alternative: $\text { Difference }=\frac{a r^{30}}{1-r}=\frac{108\left(\frac{5}{6}\right)^{30}}{1-\frac{5}{6}}=2.72984$ M1M1: For an attempt to apply $\frac{a r^{30}}{1-r}$. A1ft: $\frac{(\text { their } a) \times r^{30}}{1-r}$ with their $\mathrm{ft} a$. A1: awrt 2.73		

Question Number	Scheme		Marks
3. (a)	$\sqrt{7}$ and $\sqrt{15}$	Both $\sqrt{7}$ and $\sqrt{15}$. Allow awrt 2.65 and 3.87	B1
			[1]
(b)	Area $(R) \approx \frac{1}{2} \times 2 ; \times\{\sqrt{3}+2(\sqrt{7}+\sqrt{11}+\sqrt{15})+\sqrt{19}\}$	Outside brackets $\frac{1}{2} \times 2$ or 1 (may be implied)	B1;
		For structure of $\{\ldots$.	M1
	$\begin{gathered} \text { Note decimal values are } \\ \frac{1}{2} \times 2 ; \times\{\sqrt{3}+\sqrt{19}+2(\sqrt{7}+\sqrt{11}+\sqrt{15})\}=\frac{1}{2} \times 2 ; \times\{6.0909 . .+19.6707 \ldots\} \end{gathered}$		
	M1 requires the correct structure for the y values. It needs to contain first y value plus last y value and the second bracket to be multiplied by 2 and to be the summation of the remaining y values in the table with no additional values. If the only mistake is a copying error or is to omit one value from 2(.....) bracket this may be regarded as a slip and the M mark can be allowed (nb: an extra repeated term, however, forfeits the M mark). M0 if any values used are x values instead of y values. Bracketing mistakes: e.g. $\begin{aligned} & \left(\frac{1}{2} \times 2\right) \times(\sqrt{3}+\sqrt{19})+2(\sqrt{7}+\sqrt{11}+\sqrt{15}) \\ & \left(\frac{1}{2} \times 2\right) \times \sqrt{3}+\sqrt{19}+2(\sqrt{7}+\sqrt{11}+\sqrt{15}) \end{aligned}$ Both score B1 M1 Alternative: Separate trapezia may be used, and this can be marked equivalently. $\left[\frac{1}{2} \times 2(\sqrt{3}+\sqrt{7})+\frac{1}{2} \times 2(\sqrt{7}+\sqrt{11})+\frac{1}{2} \times 2(\sqrt{11}+\sqrt{15})+\frac{1}{2} \times 2(\sqrt{15}+\sqrt{19})\right]$ B1 for $\frac{1}{2} \times 2$, M1 for correct structure		
	$=1 \times 25.76166865 . . .=25.76166 . . .=\underline{25.76}(2 \mathrm{dp})$	$\underline{25.76}$	A1 cao
			[3]
(c)	underestimate	Accept 'under', 'less than' etc.	B1
			[1]
			Total 5

Question Number	Scheme		Marks
5(a)	Length $D E A=7(2.1)=14.7$	M1: 7×2.1 only	M1A1
		1: 14.7	
			[2]
(b)	Angle $C B D=\pi-2.1$	May be seen on the diagram (allow awrt 1.0 and allow 180 120). Could score for sight of Angle CBD = awrt 60 degrees.	M1
	Both $7 \cos (\pi-2.1)$ and $7 \sin (\pi-2.1)$ or Both $7 \cos (\pi-2.1)$ and $\sqrt{7^{2}-(7 \cos (\pi-2.1))^{2}}$ or Both $7 \sin (\pi-2.1)$ and $\sqrt{7^{2}-(7 \sin (\pi-2.1))^{2}}$ Or equivalents to these	A correct attempt to find BC and BD. You can ignore how the candidate assigns $B C$ and $C D$. $7 \cos (\pi-2.1)$ can be implied by awrt 3.5 and $7 \sin (\pi-2.1)$ can be implied by awrt 6 . Note if the sin rule is used, do not allow mixing of degrees and radians unless their answer implies a correct interpretation. Dependent on the previous method mark.	dM1
	Note that 2.1 radians is $\mathbf{1 2 0}$ degrees (to 3sf) which if used gives angle CBD as $\mathbf{6 0}$ degrees. If used this gives a correct perimeter of 31.3 and could score full marks.		
	$\mathrm{P}=7 \cos (\pi-2.1)+7 \sin (\pi-2.1)+7+14.7$	their BC + their CD + $7+$ their DEA Dependent on both previous method marks	ddM1
	= 31.2764...	Awrt 31.3	A1
			[4]
			Total 6

Question Number	Scheme		Marks
6.	$\int\left(\frac{1}{8} x^{3}+\frac{3}{4} x^{2}\right) \mathrm{d} x=\frac{x^{4}}{32}+\frac{x^{3}}{4}\{+c\}$	M1: $x^{n} \rightarrow x^{n+1}$ on either term A1: $\frac{x^{4}}{32}+\frac{x^{3}}{4}$. Any correct simplified or un-simplified form. (+ c not required)	M1A1
	$\begin{gathered} {\left[\frac{x^{4}}{32}+\frac{x^{3}}{4}\right]_{-4}^{2}=\left(\frac{16}{32}+\frac{8}{4}\right)-\left(\frac{256}{32}+\frac{(-64)}{4}\right)} \\ {\left[\frac{x^{4}}{32}+\frac{x^{3}}{4}\right]_{-4}^{0}=(0)-\left(\frac{(-4)^{4}}{32}+\frac{(-4)^{3}}{4}\right) \text { added to }\left[\frac{x^{4}}{32}+\frac{x^{3}}{4}\right]_{0}^{2}=\left(\frac{(2)^{4}}{32}+\frac{(2)^{3}}{4}\right)-(0)} \end{gathered}$		dM1
	Substitutes limits of 2 and -4 into an "integrated function" and subtracts either way round. Or substitutes limits of 0 and -4 and 2 and 0 into an "integrated function" and subtracts either way round and adds the two results.		
	$=\frac{21}{2}$	$\frac{21}{2}$ or 10.5	A1
	$\{$ At $x=-4, y=-8+12=4$ or at $x=2, y=1+3=4\}$		
	Area of Rectangle $=6 \times 4=24$ or Area of Rectangles $=4 \times 4=16$ and $2 \times 4=8$		M1
	Evidence of $(4--2) \times$ their y_{-4} or $(4--2) \times$ their y_{2} or Evidence of $4 \times$ their y_{-4} and $2 \times$ their y_{2}		
	$\left.\begin{array}{l\|l}\text { So, area(R) }=24-\frac{21}{2}=\frac{27}{2} & \begin{array}{l}\text { dddM1: Area rectangle }- \\ \text { integrated answer. Dependent }\end{array} \\ \text { on all previous method marks } \\ \text { and requires: } \\ \text { Rectangle }>\text { integration }>0\end{array}\right]$		dddM1A1
			[7]
			Total 7

	Alternative:		
	$\pm \int$ "their4" $-\left(\frac{1}{8} x^{3}+\frac{3}{4} x^{2}\right) \mathrm{d} x$	Line - curve. Condone missing brackets and allow either way round.	$4^{\text {th }}$ M1
		M1: $x^{n} \rightarrow x^{n+1}$ on either curve term	
	$=4 x-\frac{x^{4}}{32}-\frac{x^{3}}{4}\{+c\}$	A1ft: "- $\frac{x^{4}}{32}-\frac{x^{3}}{4}$. . Any correct simplified or un-simplified form of their curve terms, follow through sign errors. (+ c not required)	$\begin{aligned} & 1^{\text {st }} \mathrm{M} 1,1^{\text {st }} \\ & \text { A1ft } \end{aligned}$
		$2^{\text {nd }}$ M1 Substitutes limits of 2 and -4 into an "integrated curve" and subtracts either way round.	
	$[]_{-4}^{2}=\left(8-\frac{16}{32}-\frac{8}{4}\right)-\left(-16-\frac{256}{32}-\frac{(-64)}{4}\right)$	$3^{\text {rd }}$ M1 for \pm (" 8 "-"-16") Substitutes limits into the 'line part' and subtracts either way round.	$\begin{aligned} & 2^{\mathrm{nd}} \mathrm{M} 1,3^{\mathrm{rd}} \\ & \mathrm{M} 1 \\ & 2^{\mathrm{nd}} \text { A1 } \end{aligned}$
		$2^{\text {nd }}$ A1 for correct \pm (underlined expression). Now needs to be correct but allow \pm the correct expression.	
	$=\frac{27}{2}$	A1: $\frac{27}{2}$ or 13.5	$3{ }^{\text {rd }}$ A1
	If the final answer is $\mathbf{- 1 3 . 5}$ you can withhold the final A1 If $\mathbf{- 1 3 . 5}$ then "becomes" $+\mathbf{1 3 . 5}$ allow the A1		

Question Number	Scheme		Marks
7.(i)	$\frac{\sin 2 \theta}{(4 \sin 2 \theta-1)}=1 ; \quad 0 \leqslant \theta<180^{\circ}$		
	$\sin 2 \theta=\frac{1}{3}$	$\sin 2 \theta=k \text { where }-1<k<1$ Must be $2 \boldsymbol{\theta}$ and not $\boldsymbol{\theta}$.	M1
	$\{2 \theta=\{19.4712 . . ., 160.5288 . .\}$.		
	$\theta=\{9.7356 \ldots, 80.2644 \ldots\}$	A1: Either awrt 9.7 or awrt 80.3	A1 A1
		A1: Both awrt 9.7 and awrt 80.3	
	Do not penalise poor accuracy more than once e.g. 9.8 and 80.2 from correct work could score M1A1A0		
	If both answers are correct in radians award A1A0 otherwise A0A0 Correct answers are 0.2 and 1.4		
	Extra solutions in range in an otherwise fully correct solution deduct the lastA1		
			[3]
(ii)	$5 \sin ^{2} x-2 \cos x-5=0,0 \leq x<2 \pi$.		
	$5\left(1-\cos ^{2} x\right)-2 \cos x-5=0$	Applies $\sin ^{2} x=1-\cos ^{2} x$	M1
	$\begin{gathered} 5 \cos ^{2} x+2 \cos x=0 \\ \cos x(5 \cos x+2)=0 \\ \Rightarrow \cos x=\ldots . \end{gathered}$	Cancelling out $\cos x$ or a valid attempt at solving the quadratic in $\cos x$ and giving $\cos x=\ldots$ Dependent on the previous method mark.	dM1
	awrt 1.98 or awrt 4.3(0)	Degrees: 113.58, 246.42	A1
	Both 1.98 and 4.3(0)	or their α and their $2 \pi-\alpha$, where $\alpha \neq \frac{\pi}{2} .$ If working in degrees allow 360 - their α	A1ft
	$\begin{gathered} \text { awrt } 1.57 \text { or } \frac{\pi}{2} \text { and } 4.71 \text { or } \frac{3 \pi}{2} \\ \text { or } \\ 90^{\circ} \text { and } 270^{\circ} \end{gathered}$	These answers only but ignore other answers outside the range	B1
			[5]
	$\text { NB: } x=\operatorname{awrt}\left\{1.98,4.3(0), 1.57 \text { or } \frac{\pi}{2}, 4.71 \text { or } \frac{3 \pi}{2}\right\}$		8
	Answers in degrees: 113.58, 246.42, 90, 270 Could score M1M1A0A1ftB1 (4/5)		

Question Number	Scheme		Marks
8. (i)	$5^{y}=8$		
	$y \log 5=\log 8$	$y \log 5=\log 8$ or $y=\log _{5} 8$	M1
	$\left\{y=\frac{\log 8}{\log 5}\right\}=1.2920 \ldots$	awrt 1.29	A1
	Allow correct answer only		
			[2]
	$\log _{2}(x+15)-4=\frac{1}{2} \log _{2} x$		
(ii)	$\log _{2}(x+15)-4=\log _{2} x^{\frac{1}{2}}$	Applies the power law of logarithms seen at any point in their working	M1
	$\log _{2}\left(\frac{x+15}{x^{\frac{1}{2}}}\right)=4$	Applies the subtraction or addition law of logarithms at any point in their working	M1
	$\left(\frac{x+15}{x^{\frac{1}{2}}}\right)=2^{4}$	Obtains a correct expression with logs removed and no errors	M1
	$\begin{gathered} x-16 x^{\frac{1}{2}}+15=0 \\ \text { or e.g. } \\ x^{2}+225=226 x \end{gathered}$	Correct three term quadratic in any form	A1
	$(\sqrt{x}-1)(\sqrt{x}-15)=0 \Rightarrow \sqrt{x}=\ldots$	A valid attempt to factorise or solve their three term quadratic to obtain $\sqrt{x}=\ldots$ or $x=\ldots$ Dependent on all previous method marks.	dddM1
	$\{\sqrt{x}=1,15\}$		
	$x=1,225$	Both $x=1$ and $x=225$ (If both are seen, ignore any other values of $x \leq 0$ from an otherwise correct solution)	A1
			[6]
			Total 8
	Alternative:		
	$2 \log _{2}(x+15)-8=\log _{2} x$		
	$\log _{2}(x+15)^{2}-8=\log _{2} x$	Applies the power law of logarithms	M1
	$\log _{2}\left(\frac{(x+15)^{2}}{x}\right)=8$	Applies the subtraction law of logarithms	M1
	$\frac{(x+15)^{2}}{x}=2^{8}$	Obtains a correct expression with logs removed	M1
	$x^{2}+30 x+225=256 x$		
	$x^{2}-226 x+225=0$	Correct three term quadratic in any form	A1
	$(x-1)(x-225)=0 \Rightarrow x=\ldots$	A valid attempt to factorise or solve their 3TQ to obtain $x=\ldots$ Dependent on all previous method marks.	dddM1
	$x=1,225$	Both $x=1$ and $x=225$ (If both are seen, ignore any other values of $x \leq 0$ from an otherwise correct solution)	A1

Question Number	Scheme		Marks
9. (a)	$\{A=\} x y+\frac{\pi}{2}\left(\frac{x}{2}\right)^{2}+\frac{1}{2} x^{2} \sin 60^{\circ}$	M1: An attempt to find 3 areas of the form: A1: Correct expression for A (terms must be added)	M1A1
	$\begin{gathered} 50=x y+\frac{\pi x^{2}}{8}+\frac{\sqrt{3} x^{2}}{4} \Rightarrow y=\frac{50}{x}-\frac{\pi x}{8}-\frac{\sqrt{3} x}{4} \Rightarrow y=\frac{50}{x}-\frac{x}{8}(\pi+2 \sqrt{3}) * \\ \text { Correct proof with no errors seen } \end{gathered}$		A1 *
			[3]
(b)	$\{P=\} \frac{\pi x}{2}+2 x+2 y$	Correct expression for P in terms of x and y	B1
	$P=\frac{\pi x}{2}+2 x+2\left(\frac{50}{x}-\frac{x}{8}(\pi+2 \sqrt{ } 3)\right)$	Substitutes the given expression for y into an expression for P where P is at least of the form $\alpha x+\beta y$	M1
	$P=\frac{\pi x}{2}+2 x+\frac{100}{x}-\frac{\pi x}{4}-\frac{\sqrt{3}}{2} x \Rightarrow P=\frac{100}{x}+\frac{\pi x}{4}+2 x-\frac{\sqrt{3}}{2} x$		
	$\Rightarrow{ }^{P=\frac{100}{x}+\frac{x}{4}(\pi+8-2 \sqrt{3})}$	Correct proof with no errors seen	A1 *
			[3]
	(Note $\frac{\pi+8-2 \sqrt{3}}{4}=1.919 \ldots \ldots$.)		
(c) and (d) can be marked together	$\frac{\mathrm{d} P}{\mathrm{~d} x}=-100 x^{-2}+\frac{\pi+8-2 \sqrt{3}}{4}$	M1: Either $\mu x \rightarrow \mu$ or $\frac{100}{x} \rightarrow \frac{ \pm \lambda}{x^{2}}$ A1: Correct differentiation (need not be simplified). Allow $-100 x^{-2}+($ awrt1.92 $)$	M1A1
	$-100 x^{-2}+\frac{\pi+8-2 \sqrt{3}}{4}=0 \Rightarrow x=\ldots$	Their $P^{\prime}=0$ and attempt to solve as far as $x=\ldots$. (ignore poor manipulation)	M1
	$\Rightarrow x=\sqrt{\frac{400}{\pi+8-2 \sqrt{3}}}=7.2180574 \ldots$	$\sqrt{\frac{400}{\pi+8-2 \sqrt{3}}}$ or awrt 7.2 and no other values	A1
	$\{x=7.218 \ldots,\} \Rightarrow P=27.708 \ldots$ (m)	awrt 27.7	A1
			[5]
	$\frac{\mathrm{d}^{2} P}{\mathrm{~d} x^{2}}=\frac{200}{x^{3}}>0 \Rightarrow \text { Minimum }$	M1: Finds $P^{\prime \prime}\left(x^{n} \rightarrow x^{n-1}\right.$ allow for constant $\rightarrow 0$) and considers sign	M1A1ft
		A1ft: $\frac{200}{x^{3}}$ (need not be simplified) and >0 and conclusion. Only follow through on a correct $P^{\prime \prime}$ and a single positive value of x found earlier.	
			[2]
			Total 13

Question Number	Scheme		Marks
10(a)	$A\left(\frac{-9+15}{2}, \frac{8-10}{2}\right)=A(3,-1)$	M1: A correct attempt to find the midpoint between P and Q. Can be implied by one of x or y-coordinates correctly evaluated.	M1A1
		A1: $(3,-1)$	
			[2]
(b)	$\begin{aligned} & (-9-3)^{2}+(8+1)^{2} \text { or } \sqrt{(-9-3)^{2}+(8+1)^{2}} \\ & \text { or }(15-3)^{2}+(-10+1)^{2} \text { or } \sqrt{(15-3)^{2}+(-10+1)^{2}} \end{aligned}$ Uses Pythagoras correctly in order to find the radius. Must clearly be identified as the radius and may be implied by their circle equation. Or $(15+9)^{2}+(-10-8)^{2} \text { or } \sqrt{(15+9)^{2}+(-10-8)^{2}}$ Uses Pythagoras correctly in order to find the diameter. Must clearly be identified as the diameter and may be implied by their circle equation. This mark can be implied by just 30 clearly seen as the diameter or 15 clearly seen as the radius (may be seen or implied in their circle equation) Allow this mark if there is a correct statement involving the radius or the diameter but must be seen in (b)		M1
	$(x-3)^{2}+(y+1)^{2}=225\left(\right.$ or $\left.(15)^{2}\right)$	$(x \pm \alpha)^{2}+(y \pm \beta)^{2}=k^{2} \text { where } A(\alpha, \beta)$ and k is their radius.	M1
	$(x-3)^{2}+(y+1)^{2}=225$	Allow $(x-3)^{2}+(y+1)^{2}=15^{2}$	A1
	Accept correct answer only		
			[3]
	Alternative using $x^{2}+2 a x+y^{2}+2 b y+c=0$		
	$\begin{gathered} \text { Uses } A(\pm \alpha, \pm \beta) \text { and } x^{2}+2 a x+y^{2}+2 b y+c=0 \\ \text { e.g. } x^{2}+2(-3) x+y^{2}+2(1) y+c=0 \end{gathered}$		M1
	Uses P or Q and $x^{2}+2 a x+y^{2}+2 b y+c=0$ e.g. $(-9)^{2}+2(-3)(-9)+(8)^{2}+2(1)(8)+c=0 \Rightarrow c=-215$		M1
	$x^{2}-6 x+y^{2}+2 y-215=0$		A1
(c)	Distance $=\sqrt{15^{2}-10^{2}}$	$=\sqrt{(\text { their } r)^{2}-10^{2}}$ or a correct method for the distance e.g. their $r \times \cos \left[\sin ^{-1}\left(\frac{10}{\text { their }}\right)\right]$	M1
	$\{=\sqrt{125}\}=5 \sqrt{5}$	$5 \sqrt{5}$	A1
			[2]

Question Number	Scheme		Marks
(d)	$\begin{aligned} & \sin (A \hat{R} Q)=\frac{20}{30} \text { or } \\ & A \widehat{R} Q=90-\cos ^{-1}\left(\frac{10}{15}\right) \end{aligned}$	$\begin{aligned} & \sin (A \hat{R} Q)=\frac{20}{(2 \times \text { their } r)} \text { or } \frac{10}{\text { their } r} \\ & \text { or } A \widehat{R} Q=90-\cos ^{-1}\left(\frac{10}{\text { their } r}\right) \\ & \text { or } A \widehat{R} Q=\cos ^{-1}\left(\frac{\text { Part }(c)}{\text { their } r}\right) \\ & \text { or } A \hat{R} Q=90-\sin ^{-1}\left(\frac{\text { Part }(c)}{\text { their } r}\right) \end{aligned}$ $\text { or } 20^{2}=15^{2}+15^{2}-2 \times 15 \times 15 \cos (2 A R Q)$ or $15^{2}=15^{2}+(10 \sqrt{5})^{2}-2 \times 15 \times 10 \sqrt{5} \cos (A R Q)$ A fully correct method to find $A \widehat{R} Q$, where their $r>10$. Must be a correct statement involving angle $A R Q$	M1
	$A \widehat{R} Q=41.8103 .$.	awrt 41.8	A1
			[2]
			Total 9

