wjec cbac

GCE A LEVEL MARKING SCHEME

SUMMER 2017

A LEVEL (NEW) CHEMISTRY - UNIT 5 1410U50-1

© WJEC CBAC Ltd.

INTRODUCTION

This marking scheme was used by WJEC for the 2017 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

A2 UNIT 5: PRACTICAL EXAMINATION

EXPERIMENTAL TASK

MARK SCHEME

GENERAL INSTRUCTIONS

Recording of marks

Examiners must mark in red ink.

The mark total should be entered onto the grid on the front cover.

Marking rules

All work should be seen to have been marked.

Crossed out responses not replaced should be marked.

Marking abbreviations

The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.

cao = correct answer only ecf = error carried forward bod = benefit of doubt

A2 UNIT 5: PRACTICAL EXAMINATION

EXPERIMENTAL TASK

MARK SCHEME Test 1

	0kill	Marking dataila			Marks a	vailable		
	Skill	Marking details	AO1	AO2	AO3	Total	Maths	Prac
Parts A & B	Teacher-awarded marks	working safely (1)						
		efficient use of time (1)						
		dilution (1)	3			3		3
Part A	Titration data – table	appropriate tables drawn including units (1)						
		all three titles (1)		2		2		2
	Titration data – recording	correct mass and titres (1)						
		all readings recorded to 0.05 cm^3 (1)		2		2		2
	Titration data – mean titre	concordant titres selected (1)			1			
		mean value for titre calculated (1)		1		2		2

	Skill	Marking dataila			Marks a	vailable		
	SKIII	Marking details	AO1	AO2	AO3	Total	Maths	Prac
Part A	Titration data – accuracy	comparison with teacher's results						
		$\pm 0.2 \text{ cm}^3$ 5 marks $\pm 0.4 \text{ cm}^3$ 4 marks $\pm 0.6 \text{ cm}^3$ 3 marks $\pm 0.8 \text{ cm}^3$ 2 marks $\pm 1.0 \text{ cm}^3$ 1 mark		5		5		5
Part B	Observations	sodium hydroxide						
Part B		 solution X – green precipitate (turning brown at surface) solution Y – blue precipitate solution Z – white precipitate; dissolves in excess 		1 1 1				
		 potassium iodide solution X – no visible change solution Y – brown solution & white precipitate solution Z – no visible change 		1				
		 barium chloride solution X – white precipitate solution Y – white precipitate solution Z – white precipitate 		1		6		6

Skill	Question	Marking dataila			Marks a	available		
SKIII	Question	Marking details	AO1	AO2	AO3	Total	Maths	Prac
Part A Analysis of	(i)	number of moles of MnO ₄ ⁻ ions		1		1	1	1
results		$=\frac{c \times \text{mean titre}}{c \times \text{mean titre}}$						
	(ii)	$MnO_4^- + 5Fe^{2+} + 8H^+ \rightarrow Mn^{2+} + 5Fe^{2+} 4H_2O$		1		1	1	1
	(iii)	number of moles of iron(II) ions in 25cm^3 5 × value from part (i) (1)						
		allow ecf based on candidate's equation						
					2	2	2	2
		number of molec of iron(II) ions in 250 cm ³						
		number of moles of iron(II) ions in 250 cm^3 50 × value from part (i) (1)						
	(iv)	mass of iron(II) sulfate present in original sample			1	1	1	1
		151.9 × final answer from part (iii)						
	(V)	percentage of iron(II) sulfate in "Moss Killer"			1	1	1	1
		$=\frac{\text{value from part (iii)}}{\text{mass}} \times 1000$						
		must make reference to comment on the container						

Part B Analysis of results	(vi)	 solution X Fe²⁺ – green precipitate with OH⁻(aq) (turning brown at surface) (1) solution Y 			1			
		 Cu²⁺ – blue precipitate with OH⁻(aq) / brown solution & white precipitate with I⁻(aq) (1) 			1			
		 solution Z Zn²⁺ – white precipitate with OH⁻(aq) (dissolves in excess OH⁻(aq)) accept colourless solution linked to full <i>d</i>-shell (1) See alternative version when marking Test 2 			1	3		3
	(vii)	$Ba^{2+}(aq) + SO_4^{2-}(aq) \rightarrow BaSO_4(s)$		1		1		1
	Total		3	19	8	30	6	30

Mark Scheme Amendments for Test 2

Part B	Observations	sodium hydroxide			
		 solution X – blue precipitate 			
		 solution Y – white precipitate; dissolves in 	1		
		excess	1		
		 solution Z – green precipitate (turning brown at 	1		
		surface)			
		potassium iodide			
		 solution X – brown solution & white precipitate 			
		 solution Y – no visible change 			
		 solution Z – no visible change 	1		
			1		
		barium chloride			
		 solution X – white precipitate 			
		 solution Y – white precipitate 			
		 solution Z – white precipitate 	1	6	6
			•	J	
Part B	(vi)	solution X			
Analvsis	• •	• Cu^{2+} – blue precipitate with $OH^{-}(ag) /$			

Analysis of results	(VI)	 Cu²⁺ – blue precipitate with OH⁻(aq) / brown solution & white precipitate with I⁻(aq) (1) 		1			
		 solution Y Zn²⁺ – white precipitate with OH⁻(aq) (dissolves in excess OH⁻(aq)) accept colourless solution linked to full <i>d</i>-shell (1) 		1			
		 solution Z Fe²⁺ – green precipitate with OH⁻(aq) (turning brown at surface) (1) 		1	3	3	

PRACTICAL METHODS AND ANALYSIS TASK

MARK SCHEME

	0		Merking detaile			Marks a	available	!	
	Ques	stion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
1.	(a)		$n = \frac{PV}{RT} = \frac{(1.01 \times 10^5) \times (93 \times 10^{-6})}{8.31 \times 295} = 0.00383 \text{ mol} (O_2 \text{ gas}) (1)$	1				1	
			$n(H_2O_2) = 2 \times 0.00383 = 0.00766 \text{ mol}$ (1)		1				
			$v = \frac{n}{c} = \frac{0.00766}{0.306} = 0.0250 \text{ dm}^3 / 25.0 \text{ cm}^3$ (1)		1		3	1	
			unit must correspond to volume for final mark						
			ecf possible throughout						
	(b)	(i)	suitable scale on <i>x</i> -axis and <i>y</i> -axis (1) points plotted (± 1 square) (1) curve of best fit drawn through origin (1)		1			1	
			initial rate of reaction from tangent drawn at t = 0 47 (cm ³ min ⁻¹) accept range 44-50 (1)			1 1		1 1	
			conversion to units of dm ³ s ⁻¹ $\frac{47}{1000 \times 60} = 7.83 \times 10^{-4}$ must be in standard form						
			accept range 7.33×10^{-4} to 8.33×10^{-4} (1)	1			5	1	5
			ecf possible throughout						Ŭ

Ques	otion	Marking dataila			Marks a	vailable		
Que	suon	Marking details	AO1	AO2	AO3	Total	Maths	Prac
	(ii)	rate = 2 × initial rate of oxygen formation e.g. $1.57 \times 10^{-3} \text{ dm}^3 \text{ s}^{-1} / 94 \text{ cm}^3 \text{ min}^{-1}$ (1)			1			
		allow ecf on rate calculated from b(i); unit not needed rate is double because the ratio of moles of $H_2O_2(aq) : O_2(g)$ is 2 : 1 (1)			1	2		
(c)		 award (1) for each of following points fair test using same volume of H₂O₂(aq) each time / same temperature (of 22°C if using data given in the stem of the question) / (same mass of catalyst / same surface area of catalyst) comparison of rate at two or more different concentrations of H₂O₂(aq) e.g. 0.306 mol dm⁻³ and 0.153 mol dm⁻³ rate at 0.153 mol dm⁻³ would be half the rate at 0.306 mol dm⁻³ / rate is directly proportional to [H₂O₂] 			3	3		3
(d)		 any one of the following methods <u>and</u> sensible reasoning follow loss in mass over time because O₂(g) is evolved follow pressure over time because O₂(g) is evolved sample at regular time intervals, quench and titrate (against MnO₄⁻/H⁺) to find H₂O₂ concentration at those times 	1			1		1
		Question 1 total	3	4	7	14	7	9

Mauking dataila			Marks a	vailable		
Marking details	A01	AO2	AO3	Total	Maths	Prac
Method 1						
green solution suggests $Cr^{3+}(aq)$ (1) confirmed by $Cr^{3+}(aq) + 3OH^{-}(aq) \rightarrow Cr(OH)_{3}(s)$ ignore state symbols (1)	1	1				1
dissolves in excess NaOH(aq) $Cr(OH)_3(s) + 3OH^-(aq) \rightarrow [Cr(OH)_6]^{3-}(aq)$ ignore state symbols (1)		1				1
accept $[Cr(H_2O)_6]^{3+}$ ion and corresponding equations						
Method 2						
$Ag^{+}(aq) + Cl^{-}(aq) \rightarrow AgCl(s)$ ignore state symbols (1)		1				1
13.33 g of $\mathbf{W} = \frac{13.33}{266.6} = 0.05 \text{ mol}$						
7.18 g of AgCl = $\frac{7.18}{143.5}$ = 0.05 mol (1)		1			1	
1 mol of W contains 1 mol of Cl^- ions not co-ordinately bonded to Cr^{3^+} (1)			1			
therefore compound W is isomer III / $[CrCl_2(H_2O)_4]Cl.2H_2O$ (1)			1			
b	bonded to Cr^{3+} (1) 1	bonded to Cr^{3+} (1) 1	bonded to Cr^{3+} (1) 1			

	Queet	tion	Marking dataila			Marks a	vailable		
	Quest	lion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
2.			octahedral complex drawn e.g. (1) H_2O (1) H_2O (1) must show the 3D arrangement			1	8		
			Question 2 total	1	4	3	8	1	3

	Questien		Marking details				Marks available						
	Question			Marking	details	AO1	AO2	AO3	Total	Maths	Prac		
3.			Pair	Reagent(s)	Observation								
					no reaction								
			1	2,4-DNPH	yellow/orange/red solid								
			•		fizzing / effervescence								
			2	Na ₂ CO ₃ (s)	no reaction								
			•		white / off-white precipitate								
			3	Br ₂ (aq)	no reaction								
			4	l ₂ (aq) / NaOH(aq)	no reaction								
			4	or KI(aq) / NaClO(aq)	pale yellow solid formed	4	4		8		8		
		awaro awaro awaro accep	d (1) fo d (1) fo d (0) if pt other	-									
		Ques	stion 3	total		4	4	0	8	0	8		

A2 UNIT 5: PRACTICAL EXAMINATION

SUMMARY OF ASSESSMENT OBJECTIVES

	Question	A01	AO2	AO3	TOTAL MARK	MATHS	PRAC
Experimental Task	Total	3	19	8	30	6	30
Dus stissl	1.	3	4	7	14	7	9
Practical Methods and Analysis Task	2.	1	4	3	8	1	3
Allalysis Task	3.	4	4	0	8	0	8
		11	31	18	60	14	50

WJEC GCE A Level Chemistry Unit 5 MS Summer 2017/ED