HETEROCHROMATIN

Methylation

EUCHROMATIN

HISTONE

Epigenetics

Acetylation A

NUCLEOSOME

Histone Tail

Medical studies in English, 2020. Lecture # 12,

CHROMATIN

Epigenetics

Regulation of gene activity in eukaryotes

Correlation of chromatin structure with transcription

Molecular mechanisms of epigeneticsDNA methylation

- □ Histone modification "Histone code"
- RNA interference

□ Influence of epigenetics in humans

- Twins
- Barr body
- Genomic imprinting

Regulation of gene activity in eukaryotes

Regulation of gene activity in eukaryotes

□Specificity of gene regulation in eukaryotes:

- Several RNA polymerases (only one in prokaryote)
- Polymerase needs interaction with transcription factors, activators and repressors to interact with promoters
- DNA is packed into chromatin reduced accessibility of DNA for transcription
- Chromatin modification key role in gene transcription control

- Nucleosom basic structural unit of cromatin
- 146 bp of DNA wraped arround octamer histone core
- Histons 2x(H2A, H2B, H3, H4) + H1 on the outer side
- Go 80 bp "linker" DNA

Chromatin structure and transcription

- Transcription happens in interphase
- Only euchromatin is transcribed (not heterochromatin)
- Multiple mRNA chains form simoultaneously

Epigenetics

Epi (Greek) – "on top of" – additional genetic information

- Epigenetics the study of heritable changes in gene expression and phenotype, caused by mechanisms other than changes in the DNA sequence
- Studies the environmental influence on genetic structure, and transgeneration transfer of that influence
- Estimate is that 20% of genes is under influence of epigenetic modifications

Molecular mechanisms of epigenetics

- 1. DNA methylation
 - methyl group addition

- 2. Histone modification ("Histone code") addition of different molecules on histons activation or suppression
- **3. RNA interference** transcription regulation via noncoding RNA molecules

1. DNA Methylation

- General mechanism of relating chromatin structure to transcription
- Cytosines in proximity to guanines are methylated (CpG islands)
- Addition of methyl groups in promoter region causes transcription reduction

DNA methylation

- Methylated CpG is target for transcription repressors transcription repression and cromatine inactivation
- Constantly active genes do not have methylated CpG dinucleotides in promoter region
- Methylation does not interfere with replication

DNA methylation happens after replication

- Methyltransferase I active on hemimethylated DNA – maintains the methylation patter through cell divisions
- Methylation pattern is transferred to daughter cells
- Other methyltransferases can perform methylation "de novo"

2. "Histone code" – covalent histone modifications

Histones have:

Core, on which the DNA is wrapped around

Tails stick out the nucleosome and are rich with lysines (K)

- Tails can be covalently modified with different groups, which makes them active (decondensed) or inactive (condensed)
- Combination of such modification is called "Histone code" – regulation of gene expression by association with other different regulatory proteins

"Histone code" – lysine acetylation

- Lysine acetylation reduces positive charge reduces DNA binding typical for active chromatin
- Histone acetyl transferase (HAT) binds with transcription activators
- □ Histone deacetylase (HDAC) binds with transcription repressors

Other covalente histon modifications

Asside of lysine (K) acetylation, there are:
Serine (S) phosphorylation
Lysine (K) and arginine (R) methylation
Lysine (K) ubiquitilation

Gene expression depends on epigenetics

Examples of epigenetic effects

Epigenetics and cell differentiation Self-renewal Fate specification Differentiation Maturation NPCs 5mC level 5hmC level H3/4 Acetylation H3K4me2 H3K27me3 ncRNAs **Proliferation miRs** Neurogenesis miRs

DOI: 10.3389/fgene.2014.00285

Epigenetics and Induced pluripotent stem cells

	MSCs	IPSCs	iPS-MSCs
	X.	→ 888	
Gene expression profile of MSCs		_	
Patient-specific DNA methylation			
Tissue-specific DNA methylation	-		
DNA methylation of replicative senescence			
Age-related DNA methylation			
Immune function			

https://doi.org/10.1016/j.stemcr.2014.07.003

3. RNA interference

- RNA interference = posttranscription gene silencing
- Short double stranded RNA (dsRNA) cause degradation of homologue mRNA – gene silencing
- Andrew Fire/Craig Mello 2006. Nobel price
- Where does dsRNA come from?
 - Endogenous result of both strand transcription (miRNA, shRNA)
 - Exogenous viral dsRNA, synthetic (shRNA ili siRNA)

Miofilament gene unc22 in C. elegans can be knocked down by injection of double stranded complement RNA

- DICER cuts double stranded RNA into siRNA
- □ siRNA binds to RISC
- Single stranded RNA is produced
- ssRNA/RISC bind to homologous mRNA
- RISC ribonuclease cuts mRNA

RNA interference – inactivation of X chromosome and Barr body formation

- Example of transcriptional gene silencing
- Noncoding RNA from regulatory Xist gene
- Xist RNA remains on inactivated X chromosome and binds transcription repressor proteins

Inactive X chromosome (blue) coated with Xist RNA (red)

Environment and epigenetics

Three generations are influenced by the same environmental conditions at the same time (food, toxins, hormones, pollution)

Epigenetics can explain the differences in monozygotic twins

- Monozygotic twins identical genotype, very similar epigenome during the first years of life
- Older monozygotic twins substantial differences in methylation and acetylation of chromatin
- Different predisposition to diseases (twin study on 30 pairs of monozygotic twins)
- Environment: food, physical activity, smoking long term epigenetic effects

Genomic imprinting

mutant female

mutant allele imprinted no phenotype

normal one allele active one allele imprinted

normal

normal allele imprinted mutant phenotype

- "parental imprinting"- gene activity depends on the parent it came from
- Genes "remember" if they came from mother or father
- Aprox. 30 genes in human are inherited by imprinting
- Inactivation mechanism methylation and histon modifications
- Example: H19 gene (long noncoding RNA) is methylated during spermatogenesis – paternal gen is inactivated

Diseases asociated with genomic imprinting

Non-Mendelian inheritance

Disease can develop in:

deletion of gene from one parent, or

 Duplication of gene from one parent, and consequent inactivation (metilation of other parental copy (third copy) – uniparental disomy

Examples:

□Angelman (lack of functional maternal gene copy)

□ Prader Willy (lack of functional paternal gene copy)

□ Gene located on 15q12 – UBE3A – only maternal copy is active in the brain