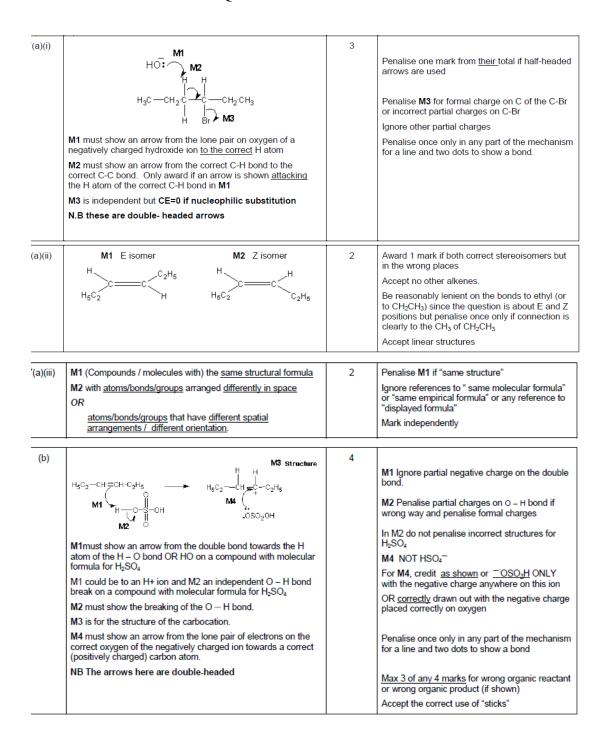
| 1)        |                                                                                                                                                                                                                                                                                                                                                                 |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (u)(ii)   | CH <sub>3</sub> OH + 1½O <sub>2</sub> → CO <sub>2</sub> + <b>2</b> H <sub>2</sub> O                                                                                                                                                                                                                                                                             | 1 | Ignore state symbols Accept multiples                                                                                                                                                                                                                                                                                                                                                                                                             |
| !(a)(iii) | $3H_2 + 1\frac{1}{2}O_2 \longrightarrow 3H_2O$ OR $2H_2 + O_2 \longrightarrow 2H_2O$                                                                                                                                                                                                                                                                            | 1 | Ignore state symbols Accept multiples Extra species must be crossed through                                                                                                                                                                                                                                                                                                                                                                       |
| (b)       | <ul> <li>M1 q = m c ΔT</li> <li>OR q = 140 x 4.18 x 7.5</li> <li>M2 = 4389 (J) OR 4.389 (kJ) OR 4.39 (kJ) OR 4.4 (kJ) (also scores M1)</li> <li>M3 Using 0.0110 mol therefore ΔH = <u>-399</u> (kJmol<sup>-1</sup>) OR <u>-400</u></li> <li>+399 or +400 gains 2 marks</li> </ul>                                                                               | 3 | Award full marks for <u>correct answer</u> Ignore the case for each letter Penalise <b>M3</b> ONLY if correct numerical answer but sign is incorrect; <b>+399 gains 2 marks</b> Penalise <b>M2</b> for arithmetic error and mark on In <b>M1</b> , do not penalise incorrect cases in the formula  If $\Delta T = 280.5$ ; score q = m c $\Delta T$ only If c = 4.81 (leads to 5050.5) penalise <b>M2</b> ONLY and mark on for <b>M3</b> = $-459$ |
| 2)        |                                                                                                                                                                                                                                                                                                                                                                 |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (a)       | 2Ca <sub>5</sub> F(PO <sub>4</sub> ) <sub>3</sub> + 9SiO <sub>2</sub> + <b>15</b> C<br>9CaSiO <sub>3</sub> + CaF <sub>2</sub> + <b>15</b> CO + <b>6</b> P                                                                                                                                                                                                       | 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (b)       | M1 (P <sub>4</sub> =) 0<br>M2 (H <sub>3</sub> PO <sub>4</sub> =) (+) 5                                                                                                                                                                                                                                                                                          | 2 | Accept Roman numeral V for <b>M2</b>                                                                                                                                                                                                                                                                                                                                                                                                              |
| \$(c)     | $\begin{array}{l} H_2 SO_4 \\ M_r &= 2(1.00794) + 32.06550 + 4(15.99491) \\ &= 98.06102 \text{ or } 98.0610 \text{ or } 98.061 \text{ or } 98.06 \\ \text{ or } 98.1 \\ \hline \\ \text{and} \\ H_3 PO_4 \\ M_r &= 3(1.00794) + 30.97376 + 4(15.99491) \\ &= 97.97722 \text{ or } 97.9772 \text{ or } 97.977 \text{ or } 97.98 \\ \text{ or } 98.0 \end{array}$ | 1 | Both numbers required  Calculations not required                                                                                                                                                                                                                                                                                                                                                                                                  |
| d)(i)     | A substance that <u>speeds up</u> a reaction OR <u>alters / increases the rate</u> of a reaction <b>AND</b> is <u>chemically unchanged at the end / not used up</u> .                                                                                                                                                                                           | 1 | Both ideas needed Ignore reference to activation energy or alternative route.                                                                                                                                                                                                                                                                                                                                                                     |
| d)(ii)    | The <u>addition of water</u> (QoL ) to a molecule / compound                                                                                                                                                                                                                                                                                                    | 1 | QoL- for the underlined words                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3(d)(iii) | M1 CH <sub>3</sub> CH=CH <sub>2</sub> + H <sub>2</sub> O → CH <sub>3</sub> CH(OH)CH <sub>3</sub><br>(C <sub>3</sub> H <sub>6</sub> )<br>M2 propan-2-ol                                                                                                                                                                                                          | 2 | For $M1$ insist on correct structure for the alcohol but credit correct equations using either $C_3H_6$ or double bond not given.                                                                                                                                                                                                                                                                                                                 |


| 3)      |          |                                                                                                                                                               |   |                                                                                                                                                                                |
|---------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (a)(i)  | Ba       | + <b>2</b> H <sub>2</sub> O → Ba(OH) <sub>2</sub> + H <sub>2</sub>                                                                                            | 1 | Ignore state symbols Credit multiples and correct ionic equations                                                                                                              |
| (a)(ii) |          | ctivity with water) increase(s) / increasing / increased (down iroup / from Mg to Ba)                                                                         | 1 | Accept "greater" or "gets more" or similar words to that effect.  Ignore reference to "increase in solubility / gets more soluble"                                             |
| (b)     | Mg(O     | H) <sub>2</sub>                                                                                                                                               | 1 | Accept Mg <sup>2+</sup> (OH <sup>-</sup> ) <sub>2</sub> / Mg(HO) <sub>2</sub><br>Insist on brackets and correct case                                                           |
| (c)     | M1<br>M2 | Barium meal / barium swallow / barium enema or (internal) X-ray or to block X-rays  BaSO <sub>4</sub> / barium sulfate is insoluble (and therefore not toxic) | 2 | Accept a correct reference to M1 written in the explanation in M2, unless contradictory  For M2NOT barium ions  NOT barium  NOT barium meal and NOT "It"  Ignore radio-tracing |

4)

| (a)(i)  M1 Initiation Cl₂ → 2Cl⋅  M2 First propagation Cl⋅ + CH₂Cl₂ → •CHCl₂ + HCl  M3 Second propagation Cl₂ + •CHCl₂ → •CHCl₂ + Cl⋅  M3 Second propagation Cl₂ + •CHCl₂ → •CHCl₃ + Cl⋅  M3 Second propagation Cl₂ + •CHCl₂ → CHCl₃ + Cl⋅  M3 Nark independently  (a)(ii)  M1 Condition Ultra-violet / uv / sun light  OR high temperature OR 400°C ≤ T ≤ 900 °C  M2 Type of mechanism (free-) radical substitution (mechanism)  (b)(i)  CHCl₃ + Cl₂ → CCl₄ + HCl  1 Allow X as alternative to CCl₄ only if X is identified as CCl₄  (b)(iii)  M1 Trichloromethane / CHCl₃ has a C—H bond OR X / CCl₄ / it has no C-H bond  M2 The infrared spectrum shows (absorption / peak for C—H in range) 2850 to 3300 ( cm⁻¹) is missing  M1 a statement about bond breakage / formation of Cl⁺ C-Cl / carbon-chlorine bond breakage occurs OR Cl⁺ / chlorine (free) radical forms OR correct equation CHClF₂ → Cl⁺ * *CHF₂  Cl ← *CHF₂ formation or C-C / carbon-chlorine bond breakage occurs OR Cl⁺ / chlorine (free) radical forms OR correct equation CHClF₂ → Cl⁺ * *CHF₂  Cl ← *CHF₂ formation or C-C / carbon-chlorine bond breakage occurs OR Cl⁺ / chlorine (free) radical forms OR correct equation us and to companion or C-C / carbon-chlorine bond breakage occurs OR Cl⁺ / chlorine (free) radical forms OR correct equation us companion or C-C / carbon-chlorine bond breakage occurs OR Cl⁺ / chlorine (free) radical forms OR correct equation us companion or C-C / carbon-chlorine bond breakage occurs OR Cl⁺ / carbon-chlorine bond breakage occurs OR Cl⁺ / chlorine (free) radical forms OR correct equation us carbon chlorine bond breakage occurs OR Cl⁺ / carbon-chlorine bond breakage occurs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | on the<br>nly<br>ts to |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| M2 First propagation CL+ CH <sub>2</sub> CL <sub>2</sub> → CHCL <sub>2</sub> + HCL  M3 Second propagation CL <sub>2</sub> + CHCL <sub>3</sub> → CHCL <sub>3</sub> + CL  M3 Second propagation CL <sub>2</sub> + CHCL <sub>3</sub> → CHCL <sub>3</sub> + CL  M3 Second propagation CL <sub>2</sub> + CHCL <sub>3</sub> → CHCL <sub>3</sub> + CL  (a)(ii) M1 Condition ultra-violet / uv / sun light OR high temperature OR 400°C ≤ T ≤ 900 °C  M2 Type of mechanism (free-) radical substitution (mechanism)  (b)(i) CHCL <sub>3</sub> + CL <sub>2</sub> → CCL <sub>4</sub> + HCL  1 Allow X as alternative to CCL <sub>4</sub> only if X is identified as CCL <sub>4</sub> (b)(iii) M1 Trichloromethane / CHCL <sub>3</sub> has a C-H bond OR  X / CCL <sub>4</sub> / it has no C-H bond  M2 The infrared spectrum shows (absorption / peak for C-H in range) 2850 to 3300 ( cm <sup>-1</sup> ) is missing  M1 a statement about bond breakage / formation of Cl- C-CL / carbon-chlorine bond breakage occurs OR Cc - Ct / chlorine (free) radical forms OR correct equation CHClCl <sub>2</sub> → CL+ + CLF <sub>2</sub> CC+ + CHC <sub>2</sub> Penalise once only for double headed c arrows Mark independently  Allow X as alternative to CCL <sub>4</sub> only if X is identified as CCL <sub>4</sub> M1 must refer to presence or absence of C-H bond in a compound  M2 answer must refer to / imply the spe Allow the words "dip" OR "spike" OR "bit transmittance" as alternatives for absorptions.  CC-L / carbon-chlorine bond breakage occurs OR Ct- / chlorine (free) radical forms OR correct equation CHClCl <sub>2</sub> → Ct- + CHCl <sub>2</sub> On the carbon chlorine bond formation of Ct- or carbon-chlorine bond formation of Ct- or carbon-                                                                                                                                                         | on the<br>nly<br>ts to |
| M2   First propagation   Cl- + CH <sub>2</sub> Cl <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | on the<br>nly<br>ts to |
| M3 Second propagation  Cl₂ + ·CHCl₂ → CHCl₃ + Cl·  Penalise once only for a line and two de show a bond.  Penalise once only for double headed of arrows Mark independently  M1 Condition  ultra-violet / uv / sun light  OR high temperature  OR 400°C ≤ T ≤ 900 °C  M2 Type of mechanism  (free-) radical substitution (mechanism)  (b)(i) CHCl₃ + Cl₂ → CCl₄ + HCl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |
| Penalise once only for double headed carrows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | urly                   |
| (a)(ii) M1 Condition     ultra-violet / uv / sun light  OR high temperature OR 400°C ≤ T ≤ 900 °C  M2 Type of mechanism     (free-) radical substitution (mechanism)  (b)(ii) CHCl <sub>3</sub> + Cl <sub>2</sub> → CCl <sub>4</sub> + HCl  1 Allow X as alternative to CCl <sub>4</sub> only if X is identified as CCl <sub>4</sub> (b)(iii) M1 Trichloromethane / CHCl <sub>3</sub> has a C-H bond OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |
| ultra-violet / uv / sun light  OR high temperature OR 400°C ≤ T ≤ 900 °C  M2 Type of mechanism  (free-) radical substitution (mechanism)  (b)(ii) CHCl₃ + Cl₂ → CCl₄ + HCl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |
| OR high temperature OR 400°C ≤ T ≤ 900 °C  M2 Type of mechanism (free-) radical substitution (mechanism)  (b)(i) CHCl <sub>3</sub> + Cl <sub>2</sub> → CCl <sub>4</sub> + HCl  1 Allow X as alternative to CCl <sub>4</sub> only if X is identified as CCl <sub>4</sub> (b)(ii) M1 Trichloromethane / CHCl <sub>3</sub> has a C-H bond OR X / CCl <sub>4</sub> / it has no C-H bond  M2 The infrared spectrum shows (absorption / peak for C-H in range) 2850 to 3300 ( cm <sup>-1</sup> ) is missing  M2 answer must refer to / imply the spectrum shows allow the words "dip" OR "spike" OR "lot transmittance" as alternatives for absorptions.  Di(c) M1 a statement about bond breakage / formation of Cl• C-Cl / carbon-chlorine bond breakage occurs OR Cl• / chlorine (free) radical forms OR correct equation CHClF <sub>2</sub> → Cl• + •CHF <sub>2</sub> Cl• + •CHF <sub>2</sub> OR correct equation CHClF <sub>2</sub> → Cl• + •CHF <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |
| OR 400°C ≤ T ≤ 900 °C  M2 Type of mechanism (free-) radical substitution (mechanism)  (b)(i) CHCl <sub>3</sub> + Cl <sub>2</sub> → CCl <sub>4</sub> + HCl  1 Allow X as alternative to CCl <sub>4</sub> only if X is identified as CCl <sub>4</sub> (b)(ii) M1 Trichloromethane / CHCl <sub>3</sub> has a C-H bond OR  X / CCl <sub>4</sub> / it has no C-H bond  M2 The infrared spectrum shows (absorption / peak for C-H in range) 2850 to 3300 ( cm <sup>-1</sup> ) is missing  M3 answer must refer to / imply the spectrum shows alternative for absorptions.  M4 answer must refer to / imply the spectrum shows alternative for absorptions.  M5 answer must refer to / imply the spectrum shows alternative for absorptions.  M6 answer must refer to / imply the spectrum shows alternative for absorptions.  M8 answer must refer to / imply the spectrum shows alternative for absorption and its missing and its missing and its formation of Cloton and its formation and i                                                                                                                                                                                                                                                                                                                                                    |                        |
| M2 Type of mechanism (free-) radical substitution (mechanism)  (b)(ii) CHCl <sub>3</sub> + Cl <sub>2</sub> → CCl <sub>4</sub> + HCl  1 Allow X as alternative to CCl <sub>4</sub> only if X is identified as CCl <sub>4</sub> (b)(iii) M1 Trichloromethane / CHCl <sub>3</sub> has a C-H bond OR  X / CCl <sub>4</sub> / it has no C-H bond  M2 The infrared spectrum shows (absorption / peak for C-H in range) 2850 to 3300 ( cm <sup>-1</sup> ) is missing  M3 answer must refer to / imply the spectransmittance" as alternatives for absorptions.  M4 answer must refer to / imply the spectransmittance" as alternatives for absorptions.  M5 Penalise M1, if Cl <sup>-</sup> is formed from Cl <sub>2</sub> as reaction or an additional reaction or ChClF <sub>2</sub> if correct reference is made to ChClF <sub>2</sub> if correct reference is made |                        |
| (b)(i) CHCl <sub>3</sub> + Cl <sub>2</sub> → CCl <sub>4</sub> + HCl  1 Allow X as alternative to CCl <sub>4</sub> only if X is identified as CCl <sub>4</sub> (b)(ii) M1 Trichloromethane / CHCl <sub>3</sub> has a C-H bond  OR  X/CCl <sub>4</sub> /it has no C-H bond  M2 The infrared spectrum shows (absorption / peak for C-H in range) 2850 to 3300 ( cm <sup>-1</sup> ) is missing  M3 asswer must refer to / imply the spectrum shows (absorption / peak for C-H in range) 2850 to 3300 ( cm <sup>-1</sup> ) is missing  M4 answer must refer to / imply the spectrum shows alternatives for absorptions.  i(c) M1 a statement about bond breakage / formation of Cl•  C-Cl / carbon-chlorine bond breakage occurs OR Cl• / chlorine (free) radical forms OR correct equation CHClF <sub>2</sub> → Cl• + •CHF <sub>2</sub> Cl• + •CHF <sub>2</sub> Allow X as alternative to CCl <sub>4</sub> only if X is identified as CCl <sub>4</sub> Panalise M2 answer must refer to / imply the spectrum shows alternatives for absorptions.  Allow the words "dip" OR "spike" OR "lot transmittance" as alternatives for absorptions.  Allow the words "dip" OR "spike" OR "lot transmittance" as alternatives for absorptions.  C-Cl / carbon-chlorine bond breakage occurs OR cl• / chlorine (free) radical forms OR correct equation CHClF <sub>2</sub> → Cl• + •CHF <sub>2</sub> Cl• + •CHF <sub>2</sub> Cl• - • CHClF <sub>2</sub> if correct reference is made to Cormation or C-Cl / carbon-chlorine bond formation or C-Cl / carbon-chlorine bond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |
| (b)(i) CHCl <sub>3</sub> + Cl <sub>2</sub> → CCl <sub>4</sub> + HCl  1 Allow X as alternative to CCl <sub>4</sub> only if X is identified as CCl <sub>4</sub> (b)(ii) M1 Trichloromethane / CHCl <sub>3</sub> has a C-H bond  OR  X/CCl <sub>4</sub> /it has no C-H bond  M2 The infrared spectrum shows (absorption / peak for C-H in range) 2850 to 3300 ( cm <sup>-1</sup> ) is missing  M3 asswer must refer to / imply the spectrum shows (absorption / peak for C-H in range) 2850 to 3300 ( cm <sup>-1</sup> ) is missing  M4 answer must refer to / imply the spectrum shows alternatives for absorptions.  i(c) M1 a statement about bond breakage / formation of Cl•  C-Cl / carbon-chlorine bond breakage occurs OR Cl• / chlorine (free) radical forms OR correct equation CHClF <sub>2</sub> → Cl• + •CHF <sub>2</sub> Cl• + •CHF <sub>2</sub> Allow X as alternative to CCl <sub>4</sub> only if X is identified as CCl <sub>4</sub> Panalise M2 answer must refer to / imply the spectrum shows alternatives for absorptions.  Allow the words "dip" OR "spike" OR "lot transmittance" as alternatives for absorptions.  Allow the words "dip" OR "spike" OR "lot transmittance" as alternatives for absorptions.  C-Cl / carbon-chlorine bond breakage occurs OR cl• / chlorine (free) radical forms OR correct equation CHClF <sub>2</sub> → Cl• + •CHF <sub>2</sub> Cl• + •CHF <sub>2</sub> Cl• - • CHClF <sub>2</sub> if correct reference is made to Cormation or C-Cl / carbon-chlorine bond formation or C-Cl / carbon-chlorine bond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |
| (b)(ii)  M1 Trichloromethane / CHCl <sub>3</sub> has a C-H bond  OR  X / CCl <sub>4</sub> / it has no C-H bond  M2 The infrared spectrum shows (absorption / peak for C-H in range) 2850 to 3300 ( cm <sup>-1</sup> ) is missing  M2 answer must refer to / imply the spectrum shows Allow the words "dip" OR "spike" OR "lot transmittance" as alternatives for absorptions.  (c)  M1 a statement about bond breakage / formation of Cl-  C-Cl / carbon-chlorine bond breakage occurs OR Cl- / chlorine (free) radical forms OR correct equation CHClF <sub>2</sub> Cl- + •CHF <sub>2</sub> Cl- + •CHF <sub>2</sub> M1 must refer to presence or absence of C-H bond in a compound  M2 answer must refer to / imply the spectrum shows alternatives for absorptions.  M3 answer must refer to / imply the spectrum shows alternatives for absorptions.  M4 penalise M1, if Cl- is formed from Cl <sub>2</sub> as reaction or an additional reaction Do not penalise an incorrect equation us CHClF <sub>2</sub> if correct reference is made to C formation or C-Cl / carbon-chlorine bond formation or C-Cl / carbon-chlorine bond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |
| OR  X / CCl <sub>4</sub> / it has no C-H bond  M2 The infrared spectrum shows (absorption / peak for C-H in range) 2850 to 3300 ( cm <sup>-1</sup> ) is missing  M2 answer must refer to / imply the spectrum shows Allow the words "dip" OR "spike" OR "lot transmittance" as alternatives for absorptions.  Dignore references to other absorptions.  M1 a statement about bond breakage / formation of Cl*  C-Cl / carbon-chlorine bond breakage occurs OR Cl* / chlorine (free) radical forms OR correct equation CHClF <sub>2</sub> Cl* + *CHF <sub>2</sub> C-H bond in a compound  M2 answer must refer to / imply the spectrum shows Allow the words "dip" OR "spike" OR "lot transmittance" as alternatives for absorptions.  Penalise M1, if Cl* is formed from Cl <sub>2</sub> as reaction or an additional reaction Do not penalise an incorrect equation us CHClF <sub>2</sub> if correct reference is made to C formation or C-Cl / carbon-chlorine bond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | clearly                |
| OR  X / CCl <sub>4</sub> / it has no C-H bond  M2 The infrared spectrum shows (absorption / peak for C-H in range) 2850 to 3300 ( cm <sup>-1</sup> ) is missing  M2 answer must refer to / imply the spectrum shows Allow the words "dip" OR "spike" OR "lot transmittance" as alternatives for absorptions.  Dignore references to other absorptions.  M1 a statement about bond breakage / formation of Cl*  C-Cl / carbon-chlorine bond breakage occurs OR Cl* / chlorine (free) radical forms OR correct equation CHClF <sub>2</sub> Cl* + *CHF <sub>2</sub> C-H bond in a compound  M2 answer must refer to / imply the spectrum shows Allow the words "dip" OR "spike" OR "lot transmittance" as alternatives for absorptions.  Penalise M1, if Cl* is formed from Cl <sub>2</sub> as reaction or an additional reaction Do not penalise an incorrect equation us CHClF <sub>2</sub> if correct reference is made to C formation or C-Cl / carbon-chlorine bond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |
| M2 The infrared spectrum shows (absorption / peak for C–H in range) 2850 to 3300 ( cm <sup>-1</sup> ) is missing  M2 answer must refer to / imply the spectrum shows Allow the words "dip" OR "spike" OR "lot transmittance" as alternatives for absorptions.  B(c)  M1 a statement about bond breakage / formation of Cl  C-Cl / carbon-chlorine bond breakage occurs OR Cl* / chlorine (free) radical forms OR correct equation CHClF <sub>2</sub> Cl* + *CHF <sub>2</sub> Cl* + *CHF <sub>2</sub> M2 answer must refer to / imply the spectrum shows Allow the words "dip" OR "spike" OR "lot transmittance" as alternatives for absorptions.  Penalise M1, if Cl* is formed from Cl <sub>2</sub> as reaction or an additional reaction Do not penalise an incorrect equation us CHClF <sub>2</sub> if correct reference is made to C formation or C-Cl / carbon-chlorine bond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | if the                 |
| Allow the words "dip" OR "spike" OR "lot transmittance" as alternatives for absorptions.    Allow the words "dip" OR "spike" OR "lot transmittance" as alternatives for absorptions.    Allow the words "dip" OR "spike" OR "lot transmittance" as alternatives for absorptions.    Internation of the properties of the properties of transmittance of the properties of transmittance of t                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |
| transmittance" as alternatives for absorptions.    Interpretation of Classing   Interpretation of Classing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ctrum                  |
| Ignore references to other absorptions.    Ignore references to other absorptions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |
| C-Cl / carbon-chlorine bond breakage occurs  OR Cl• / chlorine (free) radical forms  OR correct equation CHClF₂ → Cl• + •CHF₂  reaction or an additional reaction  Do not penalise an incorrect equation us CHClF₂ if correct reference is made to C formation or C-Cl / carbon-chlorine bond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MOH.                   |
| C-Cl / carbon-chlorine bond breakage occurs  OR Cl• / chlorine (free) radical forms  OR correct equation CHClF₂ → Cl• + •CHF₂  reaction or an additional reaction  Do not penalise an incorrect equation us CHClF₂ if correct reference is made to C formation or C-Cl / carbon-chlorine bond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |
| OR Cl• / chlorine (free) radical forms  OR correct equation CHClF₂ → Cl• + •CHF₂  Do not penalise an incorrect equation us CHClF₂ if correct reference is made to C formation or C-Cl / carbon-chlorine bond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | the only               |
| OR correct equation CHClF₂ → Cl• + •CHF₂ formation or C-Cl / carbon-chlorine bond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |
| M2 Cl $\cdot$ + O <sub>3</sub> — ClO $\cdot$ + O <sub>2</sub> M2 and M3 either order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |
| Papalise absence of detance only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |
| CHClF <sub>2</sub> / chlorine-containing compounds/ CFCs damage /  Accept dot anywhere on ClO radical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |
| react with / decrease the ozone layer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . FU                   |
| OR this overall decomposition occurs; 2O <sub>3</sub> → 3O <sub>2</sub> Award M4 for the general idea behind th justification for banning the use of CFCs refrigerants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |
| OR  without an ozone layer or with a decreased ozone layer, uv  Penalise M4 if overall ozone decomposit equation is incorrect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ion                    |
| radiation is not being "filtered" / prevented from passing through the atmosphere or there is a concern about an increase in skin cancer etc.  Ignore "greenhouse effect", "global warm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |
| OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ing" etc.              |
| CI• catalyses the decomposition of ozone / a single CI• causes (chain) reaction / decomposition of many ozone molecules / ozone layer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ing" etc.              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ing" etc.              |

| (d)(i)  | H F C C C F H F F                                                                                        | 1 | All bonds must be drawn out |
|---------|----------------------------------------------------------------------------------------------------------|---|-----------------------------|
| (d)(ii) | 2,3,3,3-tetrafluoropropene / it does not contain chlorine (atoms) / C-Cl (bonds)                         | 1 | Ignore "chlorine molecules" |
|         | OR                                                                                                       |   |                             |
|         | It does not produce Cl• / does not produce chlorine (free) radical(s)                                    |   |                             |
|         | OR                                                                                                       |   |                             |
|         | chlorodifluoromethane does contain chlorine / does produce Cl• / does produce chlorine (free) radical(s) |   |                             |
|         | OR                                                                                                       |   |                             |
|         | C-F is too strong and does not break / create radicals                                                   |   |                             |
|         | OR                                                                                                       |   |                             |
|         | C-F is stronger than C-Cl                                                                                |   |                             |

5)



| 6)                    |                                                                                                                                                                                                |   |                                                                                                                                                                                 |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\stackrel{\cdot}{-}$ | M4 Safety (in Process 4)                                                                                                                                                                       | 2 |                                                                                                                                                                                 |
| 3(a)                  | M1 Safety (in Process 1)  Sodium hydroxide / alkali is corrosive / harmful / caustic or sodium hydroxide is alkali(ne)  OR                                                                     | 2 | Ignore references to chromium compounds                                                                                                                                         |
|                       | Bromine compounds are toxic / poisonous                                                                                                                                                        |   | "Carbon-neutral" alone is insufficient for M2                                                                                                                                   |
|                       | M2 Environmental Process 2 could be used as a <u>carbon sink / for carbon capture</u>                                                                                                          |   | Ignore references to greenhouse gases                                                                                                                                           |
|                       | OR <u>uses waste / recycled CO<sub>2</sub> / CO<sub>2</sub> from the factory / CO<sub>2</sub> from the bioethanol</u> (or biofuel) production  OR                                              |   |                                                                                                                                                                                 |
|                       | reduces or limits the amount of CO <sub>2</sub> released / given out (into the atmosphere)  OR                                                                                                 |   |                                                                                                                                                                                 |
|                       | Process 2 uses <u>renewable</u> glucose / <u>renewable</u> resource(s)                                                                                                                         |   |                                                                                                                                                                                 |
| 3(b)(i)               | M1 nucleophilic substitution                                                                                                                                                                   | 3 | For M1, both words required                                                                                                                                                     |
|                       | Br-CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH-Br Br-CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> -CH-OH + Br                                                                        |   | Penalise M2 if covalent NaOH / KOH is used Penalise one mark from M2 or M3 if half-headed arrows are used                                                                       |
|                       | M2 must show an arrow from the lone pair of electrons on the<br>oxygen atom of the negatively charged hydroxide ion to the C<br>atom.                                                          |   | Penalise M3 for formal charge on C of the C-Br or incorrect partial charges on C-Br                                                                                             |
|                       | M3 must show the movement of a pair of electrons from the C—Br bond to the Br atom. Mark M3 independently provided it is from the original molecule                                            |   | Penalise once only for a line and two dots to show a bond.  For M2 and M3, maximum 1 of 2 marks for the mechanism if wrong reactant is used.                                    |
|                       | For M2 and M3 award full marks for an S <sub>N</sub> 1 mechanism                                                                                                                               |   | Penalise M3 if an extra arrow is drawn from the Br of the C-Br bond to, for example, K <sup>+</sup>                                                                             |
|                       | NB The arrows here are double-headed                                                                                                                                                           |   | Accept the correct use of "sticks                                                                                                                                               |
| 3(b)(ii)              | M1 B<br>M2 C<br>M3 A                                                                                                                                                                           | 3 |                                                                                                                                                                                 |
|                       |                                                                                                                                                                                                |   |                                                                                                                                                                                 |
|                       | M1 <u>fermentation</u> Three conditions <u>in any order</u> for M2 to M4 M2 (enzymes from) yeast or zymase                                                                                     | 4 | Mark M2 to M4 independently  Penalise "bacteria" and "phosphoric acid" using the list principle                                                                                 |
|                       | M3 25°C ≤T≤42°C OR 298 K≤T≤315 K M4 anaerobic / no oxygen / no air OR neutral pH                                                                                                               |   | Ignore reference to "aqueous" or "water", "closed container", "pressure, "lack of oxygen", "concentration of ethanol" and "batch process" (i.e. not part of the list principle) |
| (d)                   | M1 primary OR 1º (alcohol)                                                                                                                                                                     | 3 | Mark independently                                                                                                                                                              |
|                       | M2 acidified potassium or sodium dichromate                                                                                                                                                    |   | For M2, it must be a whole reagent and/or correct formulae                                                                                                                      |
|                       | OR H <sub>2</sub> SO <sub>4</sub> / K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> OR H <sup>+</sup> / K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> OR correct combination of formula and name |   | Do not penalise incorrect attempt at formula if<br>name is correct or <i>vice versa</i> Accept phonetic spelling                                                                |
|                       | M3                                                                                                                                                                                             |   | If oxidation state given in name, it must be correct.                                                                                                                           |
|                       | $HOCH_2CH_2CH_2CH_2OH + 4[O] \longrightarrow$<br>$HOOCCH_2CH_2COOH + 2H_2O$                                                                                                                    |   | For M2 accept acidified potassium manganate(VII)                                                                                                                                |
|                       |                                                                                                                                                                                                |   | For M3 structures must be correct and not molecular formula                                                                                                                     |

| 7)        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |                                                                                                                                                                                                                                                                                    |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (a)(i)    | M1 iodine $OR I_2 OR I_3^-$ M2 $CI_2 + 2I^- \longrightarrow 2CI^- + I_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3 | Ignore state symbols Credit M1 for "iodine solution"                                                                                                                                                                                                                               |
|           | OR<br>½ Cl₂ + I ¯ Cl ¯ + ½ l₂                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   | Penalise multiples in M2 except those shown  M2 accept correct use of I <sub>a</sub>                                                                                                                                                                                               |
|           | M3 redox or reduction-oxidation or displacement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |                                                                                                                                                                                                                                                                                    |
| (a)(ii)   | M1 (the white precipitate is) silver chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3 | M1 <u>must be named</u> and for <u>this mark</u> ignore incorrect formula                                                                                                                                                                                                          |
|           | M2 Ag <sup>+</sup> + Cl <sup>-</sup> → AgCl  M3 (white) precipitate / it dissolves  OR colourless solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | For M2 ignore state symbols Penalise multiples Ignore references to "clear" alone                                                                                                                                                                                                  |
| (b)(i)    | M1 $H_2SO_4$ + $2Cl^ \longrightarrow$ $2HCl$ + $SO_4^{2-}$ $OR$ $H_2SO_4$ + $Cl^ \longrightarrow$ $HCl$ + $HSO_4^ OR$ $H+$ + $Cl^ \longrightarrow$ $HCl$ $OR$ hydrochloric acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 | For M1 ignore state symbols Penalise multiples for equations and apply the list principle                                                                                                                                                                                          |
| (b)(ii)   | M1 and M2 in either order  M1 $2l^- \longrightarrow l_2 + 2e^ OR$ $8l^- \longrightarrow 4l_2 + 8e^-$ M2 $H_2SO_4 + 8H^+ + 8e^- \longrightarrow H_2S + 4H_2O$ OR $SO_4^{2-} + 10H^+ + 8e^- \longrightarrow H_2S + 4H_2O$ M3 oxidising agent / oxidises the iodide (ions)  OR electron acceptor  M4 sulfur $OR S OR S_2 OR S_6 OR$ sulphur                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4 | For M1 and M2, ignore state symbols and credit multiples Do not penalise absence of charge on the electron Credit electrons shown correctly on the other side of each equation  Additional equations should not contradict                                                         |
| y(b)(iii) | M1 The NaOH / OHT / (sodium) hydroxide reacts with / neutralises the H* / acid / HBr (lowering its concentration)  OR a correct neutralisation equation for H* or HBr with NaOH or with hydroxide ion  M2 Requires a correct statement for M1  The (position of) equilibrium moves / shifts (from L to R)  • to replace the H* / acid / HBr that has been removed / lost  • OR to increase the H* / acid / HBr / product(s)  • OR to make more H* / acid / HBr / product(s)  • OR to oppose the loss of H* / loss of product(s)  • OR to oppose the decrease in concentration of product(s)  M3 The (health) benefit outweighs the risk or wtte  OR  a clear statement that once it has done its job, little of it remains  OR  used in (very) dilute concentrations / small amounts / low doses | 3 | Ignore reference to NaOH reacting with bromide ions Ignore reference to NaOH reacting with HBrO alone In M2, answers must refer to the (position of) equilibrium shifts / moves and is not enough to state simply that it / the system / the reaction shifts to oppose the change. |