Chapter 35 - Density

1. WOOD

Density =
$$\frac{Mass}{Volume}$$
 = $\frac{Density}{Volume}$ = $\frac{g/cm^3}{150}$

Wass = $\frac{112.2}{150}$ = $\frac{117.2}{150}$ = $\frac{0.75}{9/cm^3}$

Idea are multiplied)

(3 Sides are multiplied)

2. Density of a Stone

3. Tap Water, Sea-water and Oil

Procedure (Steps),

- 1. Measure out 10cm³ of the liquid being tested (e.g. Tap Water)
- 2. Place an empty beaker on an electronic balance and re-zero.
- 3. Pour the 10 cm³ of the liquid into the beaker and record the mass (weight) in grams.
- 4. Do the following calculation,

5. Repeat for Seawater and oil.

Conclusions

- 1. The volume of the regularly shaped **wood** was easy to measure with a ruler. The density was **less** than 1, which means it is less dense than water and will **float**.
- 2. The volume of the irregularly shaped **stone** was hard to measure with a ruler. We used an **overflow can** to measure its volume instead. The density was **greater** than 1, which means it is more dense than water and will **sink**.
- 3. The volume of the **liquids** was easy to measure with a **graduated cylinder**. The density was **less** than 1 for **oil**, **greater** than 1 for **saltwater** and exactly 1 for tapwater.

Flotation

The less dense objects float higher than the more dense objects.

e.g. Block A is less dense than Block F

Speed

$$= 10m = 5m/s$$

A girl runs 200m in 1 minute. Calculate her speed...

Speed =
$$\frac{200}{700}$$
Speed =
$$\frac{200}{3.3} \text{ m/s} \text{ (ms)}$$

Graphs

Speed = <u>Distance</u> Time

Velocity = Speed and Direction

The velocity of an object is its speed in a certain direction.

Acceleration

