Section A (multiple choice)

Question 1: N/A
Question 2: N/A
Question 3: N/A

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{4}$	C		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{5}$	B		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
(a)	D		$\mathbf{1}$
(b)	C		$\mathbf{1}$
(c)	A		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{7}$	B		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{8}$	C		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{9}$	B		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 0}$	C		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 1}$	D		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 2}$	A		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 3 (a)}$	D		$\mathbf{1}$
(b)	B		$\mathbf{1}$
(c)	A		$\mathbf{1}$

TOTAL FOR SECTION = 20 MARKS

Section B

Question 14: N/A

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 5}$ (a)(i)	(vitamin C / ascorbic acid) oxidation / oxidized / oxidised	Redox / oxidation- reduction / reduction-oxidation ALLOW oxidisation	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 5}$	(very) pale yellow / straw coloured IGNORE 'just before the end-point' (a)(ii) blue-black to colourless (both needed) (1) Accept (dark) blue or black ALLOW pale yellow / straw coloured to colourless for $1 / 2$	Just 'yellow'	Clear

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & 15 \\ & (a)(i i i) \end{aligned}$	$\begin{align*} & \text { Moles } \mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}=27.85 \times 10^{-3} \times 0.0631 \\ & \left(=1.757335 \times 10^{-3}\right) \\ & \text { moles of } \mathrm{I}_{2} \text { remaining }=\text { Moles } \mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-} \div 2 \\ & \quad=27.85 \times 10^{-3} \times 0.0631 \div 2 \\ & \quad=8.786675 \times 10^{-4}=8.79 \times 10^{-4} \tag{1} \end{align*}$ Moles ascorbic acid $=$ moles I_{2} at start moles I_{2} remaining $\begin{align*} & =2.00 \times 10^{-3}-8.786675 \times 10^{-4} \\ & =1.1213325 \times 10^{-3}=1.12 \times 10^{-3} \tag{1} \end{align*}$ $M_{r}($ ascorbic acid $)=176$ Mass ascorbic acid in $250 \mathrm{~cm}^{3}=10 \times \mathrm{M}_{\mathrm{r}} \times$ moles ascorbic acid $\begin{align*} & =10 \times 176 \times 1.1213325 \times 10^{-3} \tag{1}\\ & (=1.97355) \end{align*}$ Percentage ascorbic acid in tablet $100 \times$ mass ascorbic acid in $250 \mathrm{~cm}^{3} \div 2$ $\begin{align*} & =100 \times 10 \times 176 \times 1.1213325 \times 10^{-3} \div 2 \\ & =98.67726=98.7 \% \tag{1} \end{align*}$ IGNORE SF except 1 SF Premature rounding gives 98.5\% (5) Correct answer with no working scores full marks TE at each stage of the calculation.	Answers greater than 100\%	5

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 5 (a) (i v)}$	EITHER Using larger mass reduces the percentage error / uncertainty (in weighing) OR Using larger amount reduces the percentage error / uncertainty in weighing OR Reverse discussion of two tablets ALLOW using four tablets gives a more representative sampleJust 'reduces the percentage error'	$\mathbf{1}$	
Titration value will be larger (with four tablets) so reduces the percentage error (in volume measurement)			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 5 (b) (i)}$	2		

Question Number	Acceptable Answers	Reject	Mark
15 (b)(ii)	First mark Use of (plane-)polarized light (mentioned (1) somewhere) ALLOW Use a polarimeter Second mark Pure optical isomer / enantiomer) rotates the plane of (plane-) polarized light OR racemic mixture has no effect on the plane of (plane-) polarized light		$\mathbf{2}$
IGNORE IGtically active / inactive			
ALLOW rotates plane-polarized light scores 2			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 5 (b) (i i i) ~}$	(Ester group / vitamin C / it) is hydrolysed ALLOW Vitamin C is oxidized Ester / vitamin C is broken down to form carboxylic acid and alcohol (groups) IGNORE Just 'breaks down' C=O is broken	1	

Total for Q15 = 14 Marks

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 6 (a) (\mathbf { i })}$	The delocalization of the (π) electrons of the ring make benzene more stable (than $1,3,5-$ cyclohexatriene)	(1)	$\mathbf{2}$
	IGNORE bonding in benzene is strong Substitution retains this (stable) arrangement OR Addition removes this (stable) arrangement $\mathbf{(1)}$		

Question Number	Acceptable Answers	Reject	Mark
16(a)(ii)	 Formation of electrophile (curly arrow, structural formulae not required). Positive charge may be anywhere on the electrophile ALLOW $\mathrm{HCl}+\mathrm{CO}$ for HCOCl ALLOW Non-displayed electrophile Curly arrow from benzene ring to electrophile Wheland structure with gap opposite tetrahedral carbon Curly arrow from $\mathrm{C}-\mathrm{H}$ bond into ring and formation of correct organic product OR Kekulé structures IGNORE Use of AlCl_{4}^{-}to pick off proton Proton product First curly arrow may come from any part of the delocalisation circle Second curly arrow may come from any part of the C-H bond Positive charge on the Wheland structure may be in any part of the horseshoe	$\begin{equation*} -\mathrm{COH} /-\mathrm{HCO} \tag{1} \end{equation*}$ Positive charge on the tetrahedral carbon	4

Question Number	Acceptable Answers	Reject	Mark
16(a)(iii)	In each step the second mark is dependent on the first Step 2 Potassium dichromate((VI)) / $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ / sodium dichromate((VI)) / $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ ALLOW Potassium manganate ((VII)) / KMnO_{4} Sodium manganate ((VII)) / NaMnO_{4} Stand alone mark Sulfuric acid / $\mathrm{H}_{2} \mathrm{SO}_{4}$ (ALLOW nitric acid) Ignore 'concentrated' ALLOW Acidified potassium (/ sodium) dichromate((VI)) OR Acid and potassium (/ sodium) dichromate((VI)) $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ and $\mathrm{H}^{+} \mathrm{OR}$ acidified dichromate((VI)) Step 3 Lithium tetrahydridoaluminate((III)) / LiAlH_{4} OR Lithium aluminium hydride Stand alone mark (Dry) ether / ethoxyethane / (di)ethyl ether (1) Sodium borohydride / NaBH_{4} in ethanol, alkali or water scores $1 / 2$	Incorrect oxidation number Hydrochloric acid Hydrogen and catalyst / Tin and HCl	4

Question Number	Acceptable Answers	Reject	Mark		
$\mathbf{1 6 (b)}$	Marking Point 1 Electron density of the ring increased (1) Stand alone mark Marking Point 2 Due to donation of oxygen / OH group lone pair to the ring Marking Point 3 and 4	4			
Any two from					
in phenol oxygen / OH group attached directly to					
ring					
Oxygen / OH group in phenylmethanol too far away					
/ not attached directly to ring					
(In phenol) lone pair overlaps with the π electrons					
/ delocalised electrons (of the ring)					
ALLOW p orbital for lone pair for this mark					
(2)				\quad	(1)
:---					

Total for Q16 = 14 Marks

Section C

Question Number	Acceptable Answers	Reject	Mark
17(a)(i)	There is a barrier to rotation about a $(\mathrm{C}=\mathrm{C})$ bond ALLOW restricted / limited / no rotation Each carbon atom (in the $\mathrm{C}=\mathrm{C}$ double bond) has (two) different atoms / groups attached IGNORE reference to priority groups	Just `molecule cannot rotate' & 2 \\ \hline Question Number & Acceptable Answers & Reject & Mark \\ \hline 17(a)(ii) & \begin{tabular}{l} There is a barrier to / restricted rotation about the ring \\ OR \\ The ring behaves like a double bond \end{tabular} & \begin{tabular}{l} Reference to benzene ring \\ Just `molecule cannot rotate'	

\hline
\end{tabular}

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (a) (i i i)}$		Omission of amine CH_{2}	$\mathbf{1}$
	Any diagram of the correct molecule showing the groups (attached to the ring) on same side of the ring OR zwitterion ALLOW Amine group in skeletal form		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (a) (i v)}$	Tranexamic acid exists as a zwitterion OR Diagram of zwitterion OR Description of zwitterion formation So the (strongest) intermolecular forces are ionic (strong) ALLOW electrostatic for ionic	$\mathbf{3}$	
	IGNORE H bonding in tranexamic acid if either of the first two marks scored. Otherwise...		
Hydrogen bonding in tranexamic acid scores 1/2 max Undecane has (only) (much weaker) London / dispersion / van der Waals / temporary induced dipole (-induced dipole) forces / interactions	$(\mathbf{1)}$		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (b) (i)}$	Phosphorus(v) chloride / PCl_{5}	HCl	$\mathbf{1}$
	ALLOW phosphorus pentachloride $/$ phosphorus(III) chloride $/ \mathrm{PCl}_{3} /$ phosphorus trichloride Thionyl chloride (sulfur dichloride oxide) $/ \mathrm{SOCl}_{2}$		

| Question |
| :--- | :--- | :--- | :--- |
| Number | Acceptable Answers \quad Reject | Mark |
| :--- |
| $\mathbf{1 7 (b) (i i)}$ |
| |
| |
| First mark
 amide linkage
 ALLOW CONH for amide linkage
 Second mark
 Completion of structure (brackets not required) with
 displayed or skeletal formula
 Second mark dependent on first
 Dimer scores amide linkage mark only |

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (b) (i i i) ~}$	Condensation / addition-elimination (polymerization)	Addition (polymerization) Elimination (polymerization) Polyamide formation	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
17(b)(iv)	Protein / proteins / polypeptide / polypeptides / peptide / peptides ALLOW Enzyme / Enzymes	Nylon Polyamide amino acids	1

Question Number	Acceptable Answers	Reject	Mark
17(c)(i)	Check sequence of letters. Candidates may have labelled the groups of hydrogen atoms with different letters, which is fine. First mark Unique NH (at e) Second mark Unique CH_{2} (at c) Third mark $\mathbf{C H}$ (at d) and $\mathbf{C H}$ (at f) with different unique labels Fourth mark $2 \mathrm{CH}_{2}$ (at a) and $2 \mathrm{CH}_{2}$ (at b) with different new labels		4

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (c) (i i)}$	$\mathrm{C}=\mathrm{O}$ amide (stretching vibrations are in the region) (1) $1700-1630 \mathrm{~cm}^{-1}$ $\mathrm{~N}-\mathrm{H}$ amide (stretching vibrations are in the region) (1) $3500-3140 \mathrm{~cm}^{-1}$ Amide only needs to be mentioned once but...	Amine (for amide)	2
	These answers without mention of amide max 1		
	Amides have peaks in these regions max 1		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (c) (i i i)}$	Any two from In the trans isomer the (amine and acid chloride) groups are too far apart to react intramolecularly / to form M OR Because the groups are on opposite sides of the (plane of the) ring OR More likely to polymerize / react with adjacent molecules. Marks may also be scored by a reverse argument: (2) In the cis isomer the (amine and acid chloride) groups are on the same side of the (plane of the) ring So close enough to react intramolecularly / to form M (1)	bond	

Question Number	Correct Answer	Mark
$\mathbf{1 8}$	B	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 9}$	A	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{2 0}$	D	$\mathbf{1}$

Section B

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1}$	Addition (1) Nucleophilic (1) Either order	SN1 SN2	$\mathbf{2}$

Question Number	Acceptable Answers	Reject	Mark
(a)(ii)	Hydrogen cyanide / HCN (1) Potassium cyanide / KCN/ sodium cyanide/ NaCN (1) OR Potassium cyanide / KCN (1) With hydrochloric acid / sulfuric acid (to generate HCN) (1) Ignore concentration of acids Mark for HCl etc is consequential on KCN OR Hydrogen cyanide / HCN (1) With sodium hydroxide / other base (to make cyanide ions) (1) Mark for NaOH etc is consequential on HCN	Just CN- Just CN ${ }^{-}$ Just acid/ H^{+} any weak acid Just OH^{-}	2

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & 21 \\ & (\mathrm{a})(\mathrm{iii}) \end{aligned}$	 (1) (1) (1) Both arrows in first step of mechanism above correctly drawn (1) Correct intermediate with charge Both arrows in second step with correct organic product (CN^{-}is not required) (1) Use of HCN for first step max 2 marks Allow omission of lone pair on CN^{-}and O^{-} Allow curly arrow from negative charge or elsewhere on cyanide ion Allow arrow from O^{-}in $2^{\text {nd }}$ step to H^{+}(no other product or only one product) or $\mathrm{H}_{2} \mathrm{O}$ (with OH^{-} formed)	$\mathrm{C}=\mathrm{O}$ breaking before attack by CN^{-} Arrows from atoms when they should be from bonds and vice versa	3

Question Number	Acceptable Answers	Reject	Mark
*21 (a)(iv)	Attack (by nucleophile on the C) is from both sides (equally)/ above and below (at the planar reaction site in the aldehyde group) (1)	Attack on intermediate in reaction mechanism is from both sides Attack from both ends/two angles	$\mathbf{2}$
	So a mixture of two enantiomers/(optical)isomers in equal proportions forms OR racemic mixture forms (1) First and second marks are independent	Just "both enantiomers form"	

Question Number	Acceptable Answers	Reject	Mark
(b)	Any named (aqueous) strong acid or its formula.	Water	$\mathbf{1}$
	Allow (aqueous) sodium hydroxide followed by named acid or formula Ignore references to concentration	Potassium dichromate + sulfuric acid Carboxylic acids	\mathbf{l}

Question Number	Acceptable Answers	Reject	Mark
(c)(i)	2-hydroxypropanoic acid	2- hydroxylpropanoic acid 2- hydroxopropanoic acid 2-hydroxypropan- 1 -oic acid	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\begin{gathered} 21 \\ (\mathrm{c})(\mathrm{ii}) \end{gathered}$	 OR All bonds in ester link must be shown More than 2 units may be shown but structure shown should be a repeat unit Ignore brackets/n	A dimer Missing H atoms Missing bonds at ends	1

Question Number	Acceptable Answers	Reject	Mark
(c)(iii)	Ester (link/bond) in PLA can be hydrolysed/broken down (by enzymes) OR Ester (link/bond) in PLA can be broken down	Just "it can be hydrolysed"	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
(c)(iv)	Ethene is (from crude oil so) non-renewable/ milk is from a renewable source/ energy required to make ethene is high/ high temperatures needed to make ethene/ energy requirements for process from sour milk less/ process from milk doesn't use toxic chemicals / process from milk doesn't use cyanide	Milk is more readily available Greater atom economy	$\mathbf{1}$
Allow other chemicals needed in process from milk process from ethene requires many steps so expensive/so loss of material occurs at each step /so more reagents needed	Just "process from ethene requires many steps"	Just "cheaper"	

Section C

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 2 (a)}$	Alcohol; (2)-methylpropan-2-ol (1)	Formula of alcohol	$\mathbf{2}$
	Catalyst: sulfuric acid OR any named strong acid Ignore concentration of acid (1) Accept formula for acid	Just acid $/ \mathrm{H}^{+}$for catalyst	

Question Number	Acceptable Answers	Reject	Mark
(b)(i)	Tap funnel / separating funnel	Buchner funnel Filter funnel	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
(b)(ii)	To neutralize / remove/ react with (excess) acid	To purify it	$\mathbf{1}$
	Allow To neutralize / remove / react with (excess) H^{+} To remove acidic impurities To remove ethanoic acid To remove the acid (used as a) catalyst Ignore additional comments on quenching or reaction stopping	To remove excess acid and alcohol Just "to quench acid catalyst/stop reaction"	

Question Number	Acceptable Answers	Reject	Mark
(b)(iii)	Add (anhydrous) calcium chloride/ sodium sulfate/ magnesium sulfate/ Allow silica gel Allow formulae of drying agents	Conc. sulfuric acid Anhydrous copper sulphate Just "silica"	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
(b)(iv)	Round bottomed or pear-shaped flask + still head with stopper or thermometer + heat source (1) This mark cannot be given if apparatus is completely sealed /large gaps between components Downwards sloping condenser (with correct water flow) + collection vessel (1) Thermometer in correct position with bulb opposite condenser opening (1)	Conical flask Flat bottomed flask	$\mathbf{3}$
Ignore fractionating column if included between flask and condenser			

Question Number	Acceptable Answers	Reject	Mark
*22 (c)	First mark (Two signals so) two hydrogen environments (1) This mark may be gained by a description of the only two environments, but reference to hydrogen must be made. Second mark (Numbers of hydrogen in each environment are/ are predicted to be) in ratio $3: 9$ or $1: 3$ OR Peak due to $\left(\mathrm{CH}_{3}\right)_{3}$ is $3 x$ higher than peak due to CH_{3} (1) Third mark Environments are $\mathrm{CH}_{3} \mathrm{COO}$ and $\left(\mathrm{CH}_{3}\right)_{3}$ (H may have been specified in first marking point) These may be shown on a diagram of the formula of the molecule OR $\mathrm{H}-\mathrm{C}-\mathrm{C}=\mathrm{O}$ (peak at 2.1) and $\mathrm{H}-\mathrm{C}-\mathrm{C}$ (peak at 1.3) (1) Fourth mark Singlets/ no splitting as no H on adjacent C OR Singlets as the hydrogen environments are not adjacent to other H environments Allow "only one peak" for no splitting (1)	Just "the peaks are due to $\left(\mathrm{CH}_{3}\right)_{3}$ and CH_{3}	4
Question Number	Acceptable Answers	Reject	Mark
(d)(i)	$\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ Or correctly displayed Allow $\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{3}$		1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 2}$ (d)(ii)	The H on the $\mathrm{CH}_{3} \mathrm{COO}$ Accept circle round all of first methyl group of molecule is incorrect	Circle round C of first methyl group	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
(e)(i)	Any acid with $6 \mathrm{C}(5 \mathrm{C}+\mathrm{COOH})$ which is	Infrared indicates O-H Infrared indicates alkyl group	5
	chiral, so will have a branched chain		
	$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{COOH}$		
	OR		
	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{COOH}$		
	$\begin{align*} & \mathrm{OR} \\ & \left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}\left(\mathrm{CH}_{3}\right) \mathrm{COOH} \tag{1} \end{align*}$		
	Infrared indicates ($\mathrm{O}-\mathrm{H}$ present in a) carboxylic acid (1)		
	High boiling temperature due to hydrogen bonding (between atoms in OH groups so not an ester.) Hydrogen bonds must be possible for structure shown		
	Allow acids can form dimers.		
	Allow TE from formula of straight chain molecule with explanation that London forces are higher in a linear molecule (1)		
	(Optically active so) contains chiral C/ C bonded to four different groups The formula suggested must contain a chiral carbon to score this mark		
	This may be shown by a chiral carbon being labelled in the formula (1)		
	Carbonyl compound/ Carbonyl group/ Aldehyde and ketone absent (as no reaction with 2,4-dinitrophenylhydrazine)/ Allow carboxylic acids do not react with 2,4dinitrophenylhydrazine/ (1)		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 2}$	No because the isomers (which are (earboxylic acids) contain same bonds / groups (C=O, C-O, C-H etc) (1)	(1) OR Yes because could be distinguished by infrared fingerprint (1)	Yes because spectrum is unique

