Section A (multiple choice)

Question 1: N/A Question 2: N/A Question 3: N/A

Question	Acceptable Answers	Reject	Mark
Number			
4	С		1
Question	Acceptable Answers	Reject	Mark
Number			
5	В		1
			_
Question	Correct Answer	Reject	Mark
Number			
6(a)	D		1
(b)	С		1
(c)	Α		1
		•	
Question	Correct Answer	Reject	Mark
Number			
7	В		1
		,	,
Question	Acceptable Answers	Reject	Mark
Number		.,	
8	С		1
		1	
Question	Acceptable Answers	Reject	Mark
Number		.,	
9	В		1
	1	1	ı
Question	Acceptable Answers	Reject	Mark
Number			
10	С		1
	,	l	
Question	Acceptable Answers	Reject	Mark
Number		,	
11	D		1
	<u> </u>	I	

Question Number	Acceptable Answers	Reject	Mark
12	A		1

Question	Acceptable Answers	Reject	Mark
Number			
13(a)	D		1
(b)	В		1
(c)	A		1

TOTAL FOR SECTION = 20 MARKS

Section B

Question 14: N/A

Question Number	Acceptable Answers	Reject	Mark
15 (a)(i)	(vitamin C / ascorbic acid) oxidation / oxidized / oxidised ALLOW oxidisation	Redox / oxidation- reduction / reduction-oxidation	1

Question Number	Acceptable Answers		Reject	Mark
15 (a)(ii)	IGNORE 'just before the end-point'	(1)	Just 'yellow'	2
	blue-black to colourless (both needed) (Accept (dark) blue or black ALLOW pale yellow / straw coloured to colourless 1 1/2	. ,	Clear	

Question Number	Acceptable Answers	Reject	Mark
_	Moles $S_2O_3^{2-} = 27.85 \times 10^{-3} \times 0.0631$ (1) $(=1.757335 \times 10^{-3})$ moles of I_2 remaining = Moles $S_2O_3^{2-} \div 2$ = $27.85 \times 10^{-3} \times 0.0631 \div 2$ = $8.786675 \times 10^{-4} = 8.79 \times 10^{-4}$ (1) Moles ascorbic acid = moles I_2 at start – moles I_2 remaining = $2.00 \times 10^{-3} - 8.786675 \times 10^{-4}$ = $1.1213325 \times 10^{-3} = 1.12 \times 10^{-3}$ (1) M_r (ascorbic acid) = 176 Mass ascorbic acid in $250 \text{ cm}^3 = 10 \times M_r \times 10^{-3}$ moles ascorbic acid in $250 \times 10^{-3} \times 10^{-3}$ (1) $(=1.97355)$ Percentage ascorbic acid in tablet $100 \times 10 \times 176 \times 1.1213325 \times 10^{-3} \div 2$ = $98.67726 = 98.7\%$ (1) IGNORE SF except 1 SF Premature rounding gives 98.5% (5) Correct answer with no working scores full marks	Answers greater than 100%	5
	TE at each stage of the calculation.		

Question Number	Acceptable Answers	Reject	Mark
15(a)(iv)	EITHER Using larger mass reduces the percentage error / uncertainty (in weighing) OR Using larger amount reduces the percentage error / uncertainty in weighing OR Reverse discussion of two tablets ALLOW using four tablets gives a more representative sample	Just 'reduces the percentage error' Titration value will be larger (with four tablets) so reduces the percentage error (in volume measurement)	1

Question Number	Acceptable Answers	Reject	Mark
15 (b)(i)	HO ** *OH		2
	HO (2)		
	Mark independently		
	ALLOW any clear indication of chiral centres		

Question Number	Acceptable Answers	Reject	Mark
15 (b)(ii)	First mark Use of (plane-)polarized light (mentioned somewhere) ALLOW Use a polarimeter		2
	Second mark Pure optical isomer / enantiomer) rotates the plane of (plane-) polarized light OR racemic mixture has no effect on the plane of (plane-) polarized light (1) IGNORE optically active / inactive ALLOW rotates plane-polarized light scores 2		

Question Number	Acceptable Answers	Reject	Mark
15(b)(iii)	(Ester group / vitamin C / it) is hydrolysed ALLOW	C=0 is broken	1
	Vitamin C is oxidized Ester / vitamin C is broken down to form carboxylic acid and alcohol (groups)	Just 'oxidation'	
	IGNORE Just 'breaks down'		

Total for Q15 =14 Marks

Question Number	Acceptable Answers	Reject	Mark
16(a)(i)	The delocalization of the (π) electrons of the ring make benzene more stable (than 1,3,5-cyclohexatriene) (1) IGNORE bonding in benzene is strong Substitution retains this (stable) arrangement OR Addition removes this (stable) arrangement (1)		2

Question Number	Acceptable Answers	Reject	Mark
16(a)(ii)	H—C—CI AI—CI		4
	$ \longrightarrow H \longrightarrow C \oplus + \begin{bmatrix} Cl \\ Cl \\$		
	$\bigoplus_{H}^{H} C = 0$		
	—————————————————————————————————————		
	Formation of electrophile (curly arrow, structural formulae not required). Positive charge may be anywhere on the electrophile ALLOW HCI + CO for HCOCI ALLOW Non-displayed electrophile (1)		
	Curly arrow from benzene ring to electrophile (1)		
	Wheland structure with gap opposite tetrahedral carbon (1)		
	Curly arrow from C—H bond into ring and formation of correct organic product OR	-COH /-HCO	
	Kekulé structures (1)		
	IGNORE Use of AlCl ₄ ⁻ to pick off proton Proton product		
	First curly arrow may come from any part of the delocalisation circle Second curly arrow may come from any part of the C–H bond Positive charge on the Wheland structure may be in any part of the horseshoe	Positive charge on the tetrahedral carbon	

Question Number	Acceptable Answers	Reject	Mark
16(a)(iii)	In each step the second mark is dependent on the first		4
	Step 2 Potassium dichromate((VI)) / K ₂ Cr ₂ O ₇ / sodium dichromate((VI)) / Na ₂ Cr ₂ O ₇ ALLOW Potassium manganate ((VII)) / KMnO ₄ Sodium manganate ((VII)) / NaMnO ₄ (1)	Incorrect oxidation number	
	Stand alone mark		
	Sulfuric acid / H ₂ SO ₄ (ALLOW nitric acid) (1) Ignore 'concentrated'	Hydrochloric acid	
	ALLOW Acidified potassium (/ sodium) dichromate((VI)) OR Acid and potassium (/ sodium) dichromate((VI)) (2)		
	$Cr_2O_7^{2-}$ and H ⁺ OR acidified dichromate((VI)) (1)		
	Step 3 Lithium tetrahydridoaluminate((III)) / LiAlH₄ OR Lithium aluminium hydride (1)		
	Stand alone mark		
	(Dry) ether / ethoxyethane / (di)ethyl ether (1)	Hydrogen and	
	Sodium borohydride / NaBH ₄ in ethanol, alkali or water scores 1/2 (1)	catalyst / Tin and HCl	

Question Number	Acceptable Answers	Reject	Mark
_	Marking Point 1 Electron density of the ring increased (1) Stand alone mark Marking Point 2 Due to donation of oxygen / OH group lone pair to the ring (1) Marking Point 3 and 4 Any two from in phenol oxygen / OH group attached directly to ring Oxygen / OH group in phenylmethanol too far away / not attached directly to ring	Reject	Mark 4
	(In phenol) lone pair overlaps with the π electrons / delocalised electrons (of the ring) ALLOW p orbital for lone pair for this mark (2)		

Total for Q16 = 14 Marks

Section C

Question Number	Acceptable Answers	Reject	Mark
17(a)(i)	There is a barrier to rotation about a (C=C) bond (1) ALLOW restricted / limited / no rotation Each carbon atom (in the C=C double bond) has (two) different atoms / groups attached (1) IGNORE reference to priority groups	Just 'molecule cannot rotate'	2

Question Number	Acceptable Answers	Reject	Mark
17(a)(ii)	There is a barrier to / restricted rotation about the ring OR The ring behaves like a double bond	Reference to benzene ring Just 'molecule cannot rotate'	1

Question Number	Acceptable Answers	Reject	Mark
17(a)(iii)	Any diagram of the correct molecule showing the groups (attached to the ring) on same side of the ring OR zwitterion ALLOW Amine group in skeletal form	Omission of amine CH ₂	1

Question Number	Acceptable Answers	Reject	Mark
17(a)(iv)	Tranexamic acid exists as a zwitterion OR Diagram of zwitterion		3
	OR Description of zwitterion formation (1)		
	So the (strongest) intermolecular forces are ionic (strong)		
	ALLOW electrostatic for ionic (1)		
	IGNORE H bonding in tranexamic acid if either of the first two marks scored. Otherwise		
	Hydrogen bonding in tranexamic acid scores 1/2 max		
	Undecane has (only) (much weaker) London / dispersion / van der Waals / temporary induced dipole (-induced dipole) forces / interactions (1)		

Number			Mark
17(b)(i) Ph	Phosphorus(v) chloride / PCl ₅	HCI	1
pl pl tr	ALLOW phosphorus pentachloride / phosphorus pentachloride / phosphorus phosphorus richloride Thionyl chloride (sulfur dichloride oxide) / SOCl ₂		

Question Number	Acceptable Answers	Reject	Mark
17(b)(ii)	First mark amide linkage ALLOW CONH for amide linkage Completion of structure (brackets not required) with displayed or skeletal formula Second mark (1) Second mark dependent on first		2
	Dimer scores amide linkage mark only		

Question Number	Acceptable Answers	Reject	Mark
17(b)(iii)	Condensation / addition-elimination (polymerization)	Addition (polymerization) Elimination (polymerization) Polyamide formation	1

Question Number	Acceptable Answers	Reject	Mark
17(b)(iv)	Protein / proteins / polypeptide / polypeptides /	Nylon	1
	peptide / peptides	Polyamide	
	ALLOW Enzyme / Enzymes	amino acids	

Question Number	Acceptable Answers	Reject	Mark
17(c)(i)	Check sequence of letters. Candidates may have labelled the groups of hydrogen atoms with different letters, which is fine.		4
	First mark Unique NH (at e) (1)		
	Second mark Unique CH ₂ (at c) (1)		
	Third mark (1) CH (at d) and CH (at f) with different unique labels		
	Fourth mark (1) 2CH ₂ (at a) and 2CH ₂ (at b) with different new labels		
	d H_2C H_2C C C C C C C C C C		

Question Number	Acceptable Answers	Reject	Mark
17(c)(ii)	C=O amide (stretching vibrations are in the region) $1700-1630 \text{ cm}^{-1}$ (1)	Ketone	2
	N—H amide (stretching vibrations are in the region) $3500-3140 \text{ cm}^{-1}$ (1)	Amine (for amide)	
	Amide only needs to be mentioned once but		
	These answers without mention of amide max 1		
	Amides have peaks in these regions max 1		

Question Number	Acceptable Answers	Reject	Mark
17(c)(iii)	Any two from In the trans isomer the (amine and acid chloride) groups are too far apart to react intramolecularly / to form M OR Because the groups are on opposite sides of the (plane of the) ring OR More likely to polymerize / react with adjacent molecules. (2) Marks may also be scored by a reverse argument: In the cis isomer the (amine and acid chloride) groups are on the same side of the (plane of the) ring (1) So close enough to react intramolecularly / to form M (1)	bond	2

Total for Q17 = 20 Marks

Question Number	Correct Answer	Mark
18	В	1

Question Number	Correct Answer	Mark
19	A	1

Question	Correct Answer	Mark
Number		
20	D	1

Section B

Question Number	Acceptable Answers	Reject	Mark
21	Addition (1)	SN1	2
(a)(i)	Nucleophilic (1)	SN2	
	Either order		

Question Number	Acceptable Answers	Reject	Mark
(a)(ii)	Hydrogen cyanide / HCN (1)		2
	Potassium cyanide / KCN/ sodium cyanide/ NaCN (1)	Just CN ⁻	
	OR		
	Potassium cyanide / KCN (1) With hydrochloric acid / sulfuric acid (to	Just CN ⁻	
	generate HCN) (1)	Just acid/ H ⁺ any weak acid	
	Ignore concentration of acids Mark for HCl etc is consequential on KCN		
	OR		
	Hydrogen cyanide / HCN (1) With sodium hydroxide / other base (to make cyanide ions) (1) Mark for NaOH etc is consequential on HCN	Just OH ⁻	

Question Number	Acceptable Answers	Reject	Mark
21 (a)(iii)	Both arrows in first step of mechanism above correctly drawn (1) Correct intermediate with charge (1) Both arrows in second step with correct organic product (CN is not required) (1) Use of HCN for first step max 2 marks Allow omission of lone pair on CN and O Allow curly arrow from negative charge or elsewhere on cyanide ion Allow arrow from O in 2 nd step to H+ (no other product or only one product) or H ₂ O (with OH formed)	C=O breaking before attack by CN ⁻ Arrows from atoms when they should be from bonds and vice versa	3

Question Number	Acceptable Answers	Reject	Mark
*21 (a)(iv)	Attack (by nucleophile on the C) is from both sides (equally)/ above and below (at the planar reaction site in the aldehyde group) (1)	Attack on intermediate in reaction mechanism is from both sides Attack from both ends/two angles	2
	So a mixture of two enantiomers/(optical)isomers in equal proportions forms OR racemic mixture forms (1) First and second marks are independent	Just "both enantiomers form"	

Question Number	Acceptable Answers	Reject	Mark
(b)	Any named (aqueous) strong acid or its formula.	Water H ⁺	1
	Allow (aqueous) sodium hydroxide followed by named acid or formula Ignore references to concentration	Potassium dichromate + sulfuric acid Carboxylic acids	

Question Number	Acceptable Answers	Reject	Mark
(c)(i)	2-hydroxypropanoic acid	2- hydroxylpropanoic acid 2- hydroxopropanoic acid	1
		2-hydroxypropan- 1-oic acid	

Question Number	Acceptable Answers	Reject	Mark
21 (c)(ii)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A dimer Missing H atoms Missing bonds at ends	1

Question	Acceptable Answers	Reject	Mark
Number			
(c)(iii)	Ester (link/bond) in PLA can be hydrolysed/broken down (by enzymes) OR Ester (link/bond) in PLA can be broken down	Just "it can be hydrolysed"	1

Question Number	Acceptable Answers	Reject	Mark
(c)(iv)	Ethene is (from crude oil so) non-renewable/ milk is from a renewable source/ energy required to make ethene is high/ high temperatures needed to make ethene/ energy requirements for process from sour milk less/ process from milk doesn't use toxic chemicals / process from milk doesn't use cyanide	Milk is more readily available Greater atom economy No other chemicals needed in process from milk	1
	Allow process from ethene requires many steps so expensive/so loss of material occurs at each step /so more reagents needed Ignore references to cost, unless answer gives a reason for lower cost.	Just "process from ethene requires many steps" Just "cheaper"	

Section C

Question	Acceptable Answers	Reject	Mark
Number			
22 (a)	Alcohol; (2)-methylpropan-2-ol (1)	Formula of alcohol	2
	Catalyst: sulfuric acid OR any named strong acid Ignore concentration of acid (1) Accept formula for acid	Just acid/H ⁺ for catalyst	

Question Number	Acceptable Answers	Reject	Mark
(b)(i)	Tap funnel / separating funnel	Buchner funnel Filter funnel	1

Question Number	Acceptable Answers	Reject	Mark
(b)(ii)	To neutralize / remove/ react with (excess) acid	To purify it	1
	Allow To neutralize / remove / react with (excess) H ⁺ To remove acidic impurities To remove ethanoic acid To remove the acid (used as a) catalyst Ignore additional comments on quenching or reaction stopping	To remove excess acid and alcohol Just "to quench acid catalyst/stop reaction"	

Question Number	Acceptable Answers	Reject	Mark
(b)(iii)	Add (anhydrous) calcium chloride/ sodium sulfate/ magnesium sulfate/ Allow silica gel	Conc. sulfuric acid Anhydrous copper sulphate Just "silica"	1
	Allow formulae of drying agents		

Question Number	Acceptable Answers	Reject	Mark
(b)(iv)	Round bottomed or pear-shaped flask + still head with stopper or thermometer + heat source (1) This mark cannot be given if apparatus is completely sealed /large gaps between components Downwards sloping condenser (with correct water flow) + collection vessel (1) Thermometer in correct position with bulb opposite condenser opening (1) Ignore fractionating column if included between flask and condenser	Conical flask Flat bottomed flask	3

Question Number	Acceptable Answers	Reject	Mark
*22 (c)	First mark (Two signals so) two hydrogen environments (1) This mark may be gained by a description of the only two environments, but reference to hydrogen must be made.	Just "the peaks are due to (CH ₃) ₃ and CH ₃	4
	Second mark (Numbers of hydrogen in each environment are/ are predicted to be) in ratio 3:9 or 1:3		
	OR		
	Peak due to $(CH_3)_3$ is $3x$ higher than peak due to CH_3 (1)		
	Third mark Environments are CH ₃ COO and (CH ₃) ₃ (H may have been specified in first marking point) These may be shown on a diagram of the formula of the molecule		
	OR		
	H-C-C=O (peak at 2.1) and H-C-C (peak at 1.3) (1)		
	Fourth mark Singlets/ no splitting as no H on adjacent C		
	OR		
	Singlets as the hydrogen environments are not adjacent to other H environments Allow "only one peak" for no splitting (1)		

Question Number	Acceptable Answers	Reject	Mark
(d)(i)	CH ₃ COOCH ₂ CH(CH ₃) ₂ Or correctly displayed		1
	Allow CH ₃ COOCH ₂ CH(CH ₃) CH ₃		

Question Number	Acceptable Answers	Reject	Mark
22 (d)(ii)	The H on the CH ₃ COO Accept circle round all of first methyl group Accept a hydrogen in this environment if rest	Circle round C of first methyl group	1
	of molecule is incorrect	, 5	

Question Number	Acceptable Answers	Reject	Mark
(e)(i)	Any acid with 6C (5C + COOH) which is chiral, so will have a branched chain		5
	C ₃ H ₇ CH(CH ₃) COOH		
	OR C ₂ H ₅ CH(CH ₃) CH ₂ COOH		
	OR $(CH_3)_2$ CHCH (CH_3) COOH (1)	Infrared indicates O-H	
	Infrared indicates (O-H present in a) carboxylic acid (1)	Infrared indicates alkyl group	
	High boiling temperature due to hydrogen bonding (between atoms in OH groups so not an ester.) Hydrogen bonds must be possible for structure shown		
	Allow acids can form dimers. Allow TE from formula of straight chain molecule with explanation that London forces are higher in a linear molecule (1)		
	(Optically active so) contains chiral C/ C bonded to four different groups The formula suggested must contain a chiral carbon to score this mark		
	This may be shown by a chiral carbon being labelled in the formula (1)	Turk Ndoor not	
	Carbonyl compound/ Carbonyl group/ Aldehyde and ketone absent (as no reaction with 2,4-dinitrophenylhydrazine)/ Allow carboxylic acids do not react with 2,4-dinitrophenylhydrazine/ (1)	Just "does not contain C=O (group)"	

Question Number	Acceptable Answers	Reject	Mark
22 (e)(ii)	No because the isomers (which are carboxylic acids) contain same bonds / groups (C=O, C-O, C-H etc) (1) OR		1
	Yes because could be distinguished by infrared fingerprint (1)	Yes because spectrum is unique	