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Abstract

On p-adic zeta functions and their derivatives at s = 0.

By Keith J. McDonald

Thesis director: Professor Robert Sczech

We study the p-adic interpolation of the special values (suitably regularized)

of the Shintani cone zeta functions - the building blocks of standard zeta and

L-functions - associated to a real quadratic number field F . Our main result

is a polynomial time algorithm to calculate the derivative of these functions of

the p-adic variable s at s = 0 to high p-adic accuracy. These derivatives are

of great interest in view of the classical conjectures of Gross and Stark which

express these derivatives at s = 0 in terms of certain units in abelian extensions

of F .
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1 Introduction

1.1 Riemann Zeta Function

The Riemann Zeta function ζ(s) of the complex variable s is defined in the half plane

Re(s) > 1 by the absolutely convergent Dirichlet series

ζ(s) =
∞∑
n=1

1

ns
, Re(s) > 1.

This function had been studied by Euler, but Riemann was the first to prove that

ζ(s) admits an analytic continuation for all complex s except for a simple pole at

s = 1. For the special values at non-positive integers s = 1− k, k = 1, 2, 3, . . . , there

is the classical formula of Euler,

ζ(1− k) = (−1)k+1Bk

k
, (1.1)

in terms of the Bernoulli numbers B0 = 1, B1 = −1
2
, B2 = 1

6
, etc, defined by the

generating power series

t

et − 1
=
∞∑
k=0

Bk
tk

k!
, |t| < 2π.

The rational numbers Bk have many important properties. To give an example, due

to Kummer, we fix a prime number p and consider the ”p-regularized” zeta function

ζ∗(s) = (1− p−s)ζ(s) =
∞∑
n=1
p-n

1

ns
, Re(s) > 1.

According to Kummer, the rational numbers

ζ∗(1− k) = (pk−1 − 1)
Bk

k
, k = 0, 1, 2, . . . ,
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are p-adic integers if (p− 1) - k. The so-called ”Kummer congruences” for Bernoulli

numbers are equivalent to

ζ∗(1− k) ≡ ζ∗(1− k′)(mod pN+1)

for any pair of positive integers k, k′, such that k ≡ k′(mod (p − 1)pN), (p − 1) - k.

In other words, if 1 − k and 1 − k′ are close p-adically, then so are ζ∗(1 − k) and

ζ∗(1 − k′). This p-adic interpretation of the Kummer congruences naturally leads

to the question, (which in general we will call the ”interpolation problem”), as to

whether there is a function ζp(s), called the p-adic zeta function, of a p-adic variable

s, which is regular outside s 6= 1 and which interpolates the special values ζ∗(1− k),

that is,

ζp(1− k) = ζ∗(1− k)

if k > 0, (p−1) - k. That question was raised and answered affirmatively by Kubota-

Leopoldt, [42], who established an explicit formula for ζp(s) as a p-adic power series

in s− 1. If the interpolation problem is restricted to those values of s = 1− k which

are divisible by p − 1, then Stark [65] has shown that ζp(s) admits a representation

as a p-adic Dirichlet series

ζp(s) = lim
l→∞

pl−1∑
n=1
p-n

n−s, s ∈ Zp.

Here, if s is not a positive integer, the power n−s is defined as the p-adic limit of the

sequence (nt) where t runs through a sequence of positive integers in (p− 1)Z in such

a way that t→ −s p-adically and t→∞.
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1.2 Hurwitz Zeta Function

Besides the Riemann zeta function, one can also consider the Hurwitz zeta function

ζ(s, x) =
∞∑
n=0

(n+ x)−s, Re(s) > 1,

where x is a positive rational number. As for the Riemann zeta function ζ(s) = ζ(s, 1),

the Hurwitz zeta function admits an analytic continuation to the whole complex plane

except for a simple pole at s = 1. At s = 1− k, we have,

ζ(1− k, x) = −Bk(x)

k
, k = 1, 2, 3, . . . , (1.2)

where the Bernoulli polynomials Bk(x) are defined by the generating series

tetx

et − 1
=
∞∑
k=0

Bk(x)
tk

k!
.

There is a similar formula for the special values ζ∗(1−k, x) of the regularized Hurwitz

zeta function

ζ∗(s, x) =
∞∑
n=0

p-(n+x)

(n+ x)−s, Re(s) > 1.

Here we assume that x is p-integral and the condition p - (n+ x) means n+ x ∈ Z∗p.

The p-adic zeta function ζp(s, x) interpolating the special values ζ∗(1 − k, x), for

k ≡ 0(mod p− 1), k = 1, 2, 3, . . ., is given explicitly in [65] by

ζp(s, x) = lim
N−→

p
−x

N−1∑
n=0

p-(n+x)

(n+ x)−s, s ∈ Zp,

where the sequence of positive integers N tends to infinity in such a way that N

approaches −x p-adically.
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1.3 Zeta functions of number fields

More generally, let F be a number field and E/F be a finite Galois extension of F

with abelian Galois group G. By Artin’s reciprocity law, each σ ∈ G corresponds

to an ideal class C modulo a conductor f = fE/F which is a product of finite and

infinite primes of F completely determined by E/F . For any finite set S of places

of F which contain at least all places of F ramified in E, the partial Dedekind zeta

function attached to this data is defined as

ζS(σ, s) = ζS(C, s) =
∑
a∈C

(a,S)=1

N(a)−s, Re(s) > 1.

The sum runs over all integral ideals a in C which are relatively prime to S. Accord-

ing to Hecke, this zeta function continues analytically to all complex s except s = 1.

In particular, the special values ζS(C, 1 − k), k = 1, 2, 3, . . ., are well-defined. Due

to Klingen [39] and Siegel [59] we have the result that the numbers ζS(C, 1 − k) are

all rational. Moreover, they vanish identically unless F is a totally real number field.

For such F , Shintani [56] established an explicit formula for ζS(C, 1− k) in terms of

generalized Bernoulli polynomials. The existence of p-adic zeta functions, ζS,p(C, s)

that solve the interpolation problem for ζS(C, 1− k) was established by Deligne and

Ribet [18] and Cassou-Noguès [11] (assuming S contains all primes lying above p).

It is worth emphasizing that the p-adic zeta function ζS,p(C, s) vanishes unless the

number field F is totally real.

The study of the special values of the partial zeta function ζS(C, s) has gained

further interest since the arrival of the Stark conjectures ([61], [62], [63], [64])) during

the 1970’s. In the simplest and most interesting case, ζS(C, s) vanishes at s = 0 to the

first order. In that case, the conjecture predicts the existence of an algebraic integer
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ε ∈ E such that the derivative at s = 0 is given by

ζ ′S(σ, 0) = − 1

w
log |σ(ε)|

where w denotes the number of roots of unity in E and the absolute value inside

the logarithm is a fixed archimedean place of E lying above an infinite place of F

that splits totally in E/F . That conjecture can be viewed as a partial solution to

Hilbert’s 12-th problem, since it provides a formula for an algebraic number in an

abelian extension of the number field F .

In two important papers, [27], [28], Gross proposed an analogue of Stark’s conjec-

ture for the p-adic zeta function ζS,p(C, s) in the form

ζ ′S,p(σ, 0) = −logpNormFp/Qp(u
σ). (1.3)

Here S contains all the infinite primes of F , all the places ramified in E and all places

of F lying above p. The fundamental assumption is that there exists a prime p in F

dividing p which splits completely in E. Under this condition, E embeds into Fp and

the conjecture predicts the existence of a p-unit u in E such that (1.3) holds for all

σ in the Galois group G = Gal(E/F ). Precise statements of the conjectures of Stark

and Gross are given in the Appendix.

The conjecture of Gross raises the question how to calculate the numbers ζ ′S,p(σ, 0)

to a high level of p-adic accuracy. Our thesis is devoted to the study of that problem.



6

1.4 Approach and Results

The perspective we take on the Gross conjecture is to find a formula for calculating

the left side of Equation (1.3) to many p-adic digits. One could then, for particular

field extensions E/F as described, consider a (finite) number of likely candidates for

the element u on the right side of the equation and potentially verify the conjecture

is true in this particular case. By the work of Shintani, reviewed below, partial

Dedekind zeta functions can be reformulated entirely in terms of numbers rather

than ideals. Accordingly, the problem is to construct parallel p-adic zeta functions

which interpolate the values of regularized zeta functions constructed from complex

zeta functions of the form (due to Shintani)

ζ(s, x;A) =
∞∑

m1=0

. . .
∞∑

mr=0

n∏
j=1

(
r∑
i=1

(mi + xi)ai,j)
−s, Re(s) >

r

n
(1.4)

where A = (ai,j) and x = (x1, . . . , xr). These zeta functions have r summation vari-

ables and n linear forms. We could, for example, refer to the case of F a quadratic

field as the r = 2, n = 2 case. By the work of Cassou-Noguès [11] we know the related

p-adic zeta functions exist. The problem is to construct them in such a way that we

can calculate their derivatives at s = 0 to as many p-adic digits as we wish. Con-

structing them is, of course, the same as solving the particular interpolation problem.

In [65], Stark took a direct approach to the definition of ζp(s, x;A) in the case

r = 1, n = 1. He showed it solved the interpolation problem and he showed how to

calculate its derivative at s = 0 in terms of a p-adic gamma function. Here the base

field is F = Q and the question whether p splits or is inert in F does not arise. In [66],

Stark completed the case of one linear form and one summation variable by giving

an elementary formula for the p-adic expansion of ζ ′p(0, x;A) to as many p-adic digits
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as we wish. His work, and particularly the talk he gave at the Baltimore conference

[66], are the motivation for this thesis.

In this thesis we extend the work of Stark to the definition of p-adic zeta func-

tions for the case of two summation variables and both one and two linear forms (the

r = 2, n = 1 and r = 2, n = 2 cases). We show they solve the interpolation problem,

and we show how to calculate their derivatives at s = 0 to many p-adic digits (the

main theorems). These results cover the case of F a quadratic number field where

the chosen prime p splits in F .

The organization of this thesis is as follows. In Section (2) we review the work

of Shintani in expressing the partial Dedekind zeta functions in the form of numbers

rather than ideals. We also review the direct approach of Stark to the r = 1, n = 1

case. In Section (3) we define the general zeta functions of the form (1.4) and extend

the known results given by equations (1.1) and (1.2) to all r > 1, including defining

generalized Bernoulli polynomials for use in calculating the special values and show-

ing how, in turn, to calculate these generalized Bernoulli polynomials for given values

of their variables. In Section (4) we use the direct approach to construct p-adic zeta

functions in the two cases, r = 2, n = 1 and r = 2, n = 2. We then show how to find

their derivatives at s = 0 to many p-adic digits. All our results are for the case where

the chosen prime p splits in the given number field F .

Throughout this thesis, our p-adic functions will be for odd primes p only. As

is usually the case in p-adic analysis, the case p = 2 requires (sometimes lengthy)

modifications.
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2 Basic concepts and results

2.1 Results of Shintani

The result due to Shintani [56] in expressing the partial Dedekind zeta functions in

terms of numbers rather than ideals is as follows. Let F be a totally real algebraic

number field of degree n over Q. Let f be an integral ideal of F , that is, an ideal in

the ring of integers ZF of F . Two integral ideals a and b of F are called equivalent

modulo f, that is, a ≡ b(mod f), if and only if,

(1) a and b are relatively prime to f,

(2) ab−1 is a principal ideal, that is, ab−1 = (α), α ∈ F ,

(3) the generator α is chosen such that α ≡ 1(fb−1)⇔ α− 1 ∈ fb−1,

(4) α � 0 or α is totally positive, that is, for every embedding σj of F into R,

σj(α) > 0.

The equivalence classes are ideal classes forming the narrow ray class group modulo

f, denoted ClF (f).

The Dedekind zeta function is defined by the absolutely convergent Dirichlet series,

ζF (s) =
∑
a⊆ ZF
a6= 0

N(a)−s, Re(s) > 1. (2.1)

Let E be an abelian extension of F with G = Gal(E/F ) and let f be the conductor

of E/F . Let σ ∈ G. The restriction of the summation in (2.1) to those ideals a

prime to f such that σa = σ where σa is the element of G associated with a by Artin
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reciprocity, defines the partial zeta function,

ζF (σ, s) =
∑

a⊆ ZF , (a,f)=1

σa=σ, a6=0

N(a)−s. (2.2)

Then, with C = {a ⊆ ZF | (a, f) = 1, σa = σ} we have, by the Artin Reciprocity

Law, the equivalent definition

ζ(C, s) = ζE/F (C, s) =
∑
a∈C

N(a)−s =
∑
a⊆ ZF

a∈C, a6=0

N(a)−s, Re(s) > 1. (2.3)

Now, let us fix a particular congruence class C and choose a representative integral

ideal b of C. Then, for these mutually prime ideals b and f of F , we can set

ζ(C, s) = ζ(b, f, s) =
∑
a∈C

Na−s,

where the summation is over all integral ideals a of F which are in the same narrow

ray class group modulo f (denoted by C) as b. Then we can write

ζ(C, s) =
∑
a∈C

Na−s = Nb−s
∑
(α)

α∈1+fb−1

α>>0

N((α))−s = Nb−s
∑
(α)

α∈1+fb−1

α>>0

N(α)−s

since α is totally positive.

Now, (α) = (β) ⇔ α = βε where ε is a unit in F , so summation over ideals can

be replaced by summation over numbers modulo the units as follows. Let U(f)+ be

the group of totally positive units of F that are congruent to 1 mod f. Then U(f)+ is
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a subgroup of finite index of the group U+ of totally positive units of F . Then

ζ(C, s) = Nb−s
∑

α∈1+fb−1

α mod U(f)+
α>>0

N(α)−s (2.4)

Let D be a fundamental domain for the action of U(f)+ on Rn
>0. Following Shintani

[56] we choose D to be a disjoint union of open simplicial cones, D =
⊔
k∈T Ck, where

T is a finite set of indices and Ck = Ck(a1,k, . . . , ar(k),k), k ∈ T , with generators

a1,k, . . . , ar(k),k which we can choose to be in fb−1 ⊂ F . Then,

ζ(C, s) = Nb−s
∑
k∈T

∑
α∈(1+fb−1)∩Cj

N(α)−s

But the aj,k are algebraic numbers in F . Hence they form a Q -basis of F . So every

α ∈ F has a unique representation in terms of the aj,k, namely,

α =

r(k)∑
i=1

ai
bi
ai,k, ai, bi ∈ Z, bi 6= 0.

So we can write,

α =

r(k)∑
i=1

(mi + xi)ai,k

with m1, . . . ,mr(k) ∈ Z+ and x1, . . . , xr(k) ∈ Q, x1, . . . , xr(k) ∈ [0, 1). Then,

ζ(C, s) = Nb−s
∑
k∈T

∞∑
m1=0

. . .

∞∑
mr(k)=0

N(

r(k)∑
i=1

(mi + xi)ai,k)
−s. (2.5)

To begin, if for example, we take k = 1 in the first sum of Equation (2.5) and put
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r = r(1), we can simply consider

∞∑
m1=0

. . .

∞∑
mr=0

N(
r∑
i=1

(mi + xi)ai,1)−s =
∞∑

m1=0

. . .
∞∑

mr=0

n∏
j=1

( r∑
i=1

(mi + xi)ai,j
)
,

where ai,j is the j-th embedding of ai,1 in C.

We note the columns of the r × n matrix A =


a1,1 . . . a1,j . . . a1,n

. . . . . . . . . . . . . . .

ar,1 . . . ar,j . . . ar,n


are the n embeddings of a1,1, . . . , ar,1 in C. So we define,

ζ(s, x;A) =
∞∑

m1=0

. . .
∞∑

mr=0

n∏
j=1

( r∑
i=1

(mi + xi)ai,j
)−s

, Re(s) >
r

n
. (2.6)

We can then write

ζ(C, s) = Nb−s
∑
k∈T

ζ(s, x(k);A(k)) (2.7)

for x = x(k) and A = A(k). Shintani [56] and [57] has given explicit formulas for

ζ(s, x;A) at s = 1−m, m = 1, 2, . . . and, in the r = 2, n = 2 case, for ζ ′(0, x, A).

We may therefore refer to zeta functions of the type given by (2.6) as Shintani cone

zeta functions.

2.2 Stark’s direct approach to p-adic interpolation

The usual (indirect) approach to p-adic interpolation of zeta functions ζ(s) defined

for s ∈ C, with Re(s) > r for some positive integer r, is to delete the terms divisible

by p to give the regularized function ζ∗(s), show analytic continuation to all values

s ∈ C apart from the finite number of poles, find the (special) values at non-positive

integers k, determine the p-adic function ζp(−k) which agrees with all of these val-
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ues, or at least on a set of non-negative integers which is a dense subset of Zp, and

conclude ζp(s) is the unique p-adic function that interpolates these special values of

ζ(s). The existence of this unique p-adic function is due to the work of Kubota and

Leopoldt [42], also Iwasawa [36]. Stark’s (direct) approach, in the r = 1, n = 1 case,

was to simply define a p-adic Dirichlet series and then show it satisfies the required

conditions.

In [65] and [66], Stark argues as follows. The standard Riemann zeta-function and

the related L-function are given by

ζ(s) =
∞∑
n=1

n−s, L(s, χ) =
∞∑
n=1

χ(n)n−s

for s ∈ C, Re(s) > 1, χ a Dirichlet character mod m, m ≥ 2. Both have analytic

continuation to all of s ∈ C apart from a simple pole at s = 1.

In [65], Stark defines for S = {∞, p}, p a prime, s ∈ C, the zeta and related

L-functions,

ζ(s, S) =
∞∑
n=1

(n,p)=1

n−s, L(s, χ, S) =
∞∑
n=1

(n,p)=1

χ(n)n−s.

We have,

L(s, χ, S) = L(s, χ)(1− χ(p)−1p−s). (2.8)

We also have for f a positive rational integer and χ a Dirichlet character mod f ,

L(s, χ, S) =

f−1∑
a=1

χ(a)f−sζ(s,
a

f
, S),
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where we introduce the partial zeta-function,

ζ(s,
a

f
, S) = f s

∑
n≡a(mod f)

(n,p)=1

n−s =
∞∑
n=0

(nf+a,p)=1

(n+
a

f
)−s.

By Equation (2.8), the partial zeta function satisfies:

ζ(s,
a

f
, S) = ζ(s,

a

f
)− p−sζ(s,

b

f
), for b such that bp ≡ a(mod f), 0 < b < f.

The Hurwitz zeta function is defined by,

ζ(s, x) =
∞∑
n=0

(n+ x)−s, x > 0, Re(s) > 1.

By Corollary (11), this function has analytic continuation to all of s ∈ C apart from

a pole at s = 1 with residue 1, and at non-negative integers k, ζ(−k, x) = −Bk+1(x)

k+1
,

which gives,

ζ(−k, a
f
, S) = −

Bk+1( a
f
)

k + 1
+ pk

Bk+1( b
f
)

k + 1
, for bp ≡ a(mod f), 0 < b < f. (2.9)

In [65], Stark took a different approach to the p-adic interpolation of these zeta-

functions. He first took the usual definition of n−s for s ∈ Zp, namely

n−s = lim
k→−s

nk

where k runs through a sequence of integers congruent to 0(mod p − 1) and tending

to −s p-adically. Then he simply defined the p-adic zeta-function,

ζp(s, x, S) = lim
N−→

p
−x

∑
0≤n<N
n+x∈Z+

p

(n+ x)−s,
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and then proved it is defined and continuous for all s and x ∈ Z+
p and that

ζp(−k,
a

f
, S) = −

Bk+1( a
f
)−Bk+1(0)

k + 1
+ pk

(
Bk+1( b

f
)−Bk+1(0)

k + 1

)
(2.10)

where b is such that bp ≡ a(mod f), 0 < b < f . Since Bk+1(0) = 0 for even k, the

equality of the right hand sides of Equations (2.9) and (2.10) on a dense set k ∈ Zp

allows us to conclude that ζp(s,
a
f
, S) is the unique p-adic function which p-adically

interpolates the values of ζ(s, a
f
, S) for s a non-positive integer. We then have,

ζp(0,
a

f
, S) = −B1(

a

f
) +B1(

b

f
) =

b

f
− a

f
, for bp ≡ a(mod f), 0 < b < f. (2.11)

Stark further defined a p-adic gamma function,

Γp(x)−1 = lim
N−→

p
−x

(−1)pN
∏
n<N

(n+x)p=1

(n+ x).

He showed his gamma function is equivalent to the Morita p-adic gamma function

definition,

Γp(x) = lim
M−→

p
x
(−1)pM

∏
n<M

(n,p)=1

(n+ x),

and easily proved the key relationship,

ζ ′p(0, x, S) = logp Γp(x). (2.12)

The same proofs can be used to show the rescaled Hurwitz p-adic zeta and p-adic

gamma functions introduced in [66], namely,

ζp(s, x, f) = lim
N−→

p
−x
f

∑
0≤n<N
(n,p)=1

(nf + x)−s, and, (2.13)
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Γp(x, f)−1 = lim
N−→

p
−x
f

(−1)pN
∏
n<N

p-(nf+x)

(nf + x) (2.14)

satisfy the same key relationship,

ζ ′p(0, x, f) = logp Γp(x, f). (2.15)

In [66], Stark showed how to calculate ζ ′p(0, x, f) to many p-adic digits. Accord-

ingly, we used the algorithm in GP-Pari to calculate logpΓp(x, f) and Stark’s result

to calculate ζ ′p(0, x, f) and we were able to verify agreement to many p-adic digits

(e.g., to p50 for small values of p) for many different values of p, f and x.

Unfortunately, the simplicity of this r = 1, n = 1 case does not extend to zeta

functions with more that one summation variable (r > 1) and therefore not to zeta

functions with more than one linear form (n > 1).
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3 Complex zeta functions

We begin with a general definition for the complex zeta functions with which we will

be concerned. We prove analytic continuation for these zeta functions to the whole

complex plane, except for a finite number of poles, and we obtain their (special) values

at negative integers in terms of a combination of generalized Bernoulli polynomials.

3.1 Definition

Let A = (ai,j) be an r × n matrix with the ai,j positive real numbers. We denote by

Ai,jk,l the following sub-matrix of A,

Ai,jk,l =


ai,j . . . ai,l

. . . . . . . . .

ak,j . . . ak,l

 .

In particular, A = A1,1
r,n. We put Z0 = {0, 1, . . .}. We denote by Lj, j = 1, . . . , n,

the linear form in r variables given by Lj(t1, . . . , tr) =
∑r

i=1 ai,jti. Then, we define

a generalized complex ζ-function with r summation variables and n linear forms as

follows.

Definition 1. For a vector x = (x1, . . . , xi, . . . , xr), xi ∈ R+ ∪ {0}, x 6= 0, let

ζ(s, x;A) =
∑
m∈Zr0

n∏
j=1

Lj(m+ x)−s, Re(s) >
r

n
. (3.1)

For x = 0 we define,

ζ(s, 0;A) =
∑
m∈Zr0
m6=0

n∏
j=1

Lj(m)−s, Re(s) >
r

n
. (3.2)
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The convergence of this Dirichlet series is well-known.

We will also use the notation w = xA = (w1, . . . , wj, . . . , wn), wj =
∑r

i=1 ai,jxi,

to express our zeta function for x 6= 0 in either of the three ways:

ζ(s, x;A) =
∑
m∈Zr0

n∏
j=1

Lj(m+ x)−s

=
∑
m∈Zr0

n∏
j=1

(
r∑
i=1

(mi + xi)ai,j)

)−s

=
∑
m∈Zr0

n∏
j=1

(
wj +

r∑
i=1

miai,j

)−s
.

In the latter case, we may also use the notation ζ(s, wj;Aj) rather than ζ(s, x;Aj).

This will occur later when we want to use the results below that the special values of

the analytically continued zeta functions may be viewed either as polynomials in the

components of w or as polynomials in the components of x.

3.2 Complex zeta functions with one linear form

Let us first consider a zeta function with one linear form and r summation parameters.

To simplify notation, we let Aj = (a1,j, . . . , ar,j)
t be the j-th column of A. Then we

have

ζ(s, x;Aj) = ζ(s, x;A1,j
r,j ) =

∞∑
m1=0

. . .

∞∑
mr=0

Lj(m+ x)−s

=
∞∑

m1=0

. . .
∞∑

mr=0

(
r∑
i=1

(mi + xi)ai,j

)−s

=
∞∑

m1=0

. . .
∞∑

mr=0

(
wj +

r∑
i=1

miai,j

)−s
,
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where wj = xAj =
∑r

i=1 xiai,j.

3.2.1 Analytic continuation, values at negative integers

We generalize results given by several authors including Ahlfors [1], page 214, and

Apostol [2], page 251, which use the Riemann ”loop or keyhole integral” (see Riemann

[51] translated and published in the appendix of Edwards [20]). After first showing

ζ(s, x;Aj) has a meromorphic continuation to the whole complex plane, our particular

interest is in the special values of ζ(−k, x;Aj), where k = 0, 1, 2, . . . . These special

values may be presented in different ways. The following theorem first presents the

special values in the general case of r summation variables and one linear form, in

a notationally compact manner which is useful in certain investigations (e.g., Stark

[66]). The corollary following the theorem presents the special value at k = 0 in the

case of two summation variables and one linear form (r=2, n = 1) in a form which is

notationally less compact but more useful in other investigations (e.g., Shintani [56]).

Theorem 2. The Dirichlet series ζ(s, x;Aj) converges for s > r and analytically

continues to the whole complex plane except for simple poles at s = 1, . . . , r with

residue at s = r given by,

Ress=rζ(s, x;Aj) =
1

(r − 1)!

1∏r
i=1 ai,j

. (3.3)

Moreover, the special values at s = −k, k a non-negative integer, are given by

ζ(−k, x;Aj) = (−1)k
k!

(k + r)!
Bk+r(w̄j;Aj) = (−1)r

k!

(k + r)!
Bk+r(wj;Aj), (3.4)

where w̄j =
∑r

i=1(1 − xi)ai,j and the generalized Bernoulli polynomial Bj(y;Aj) is
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defined by the generating function

treyt∏r
l=1(eal,jt − 1)

=
∞∑
j=0

Bj(y;Aj)

j!
tj,

Proof. We first prove the analytic continuation statement.

Let wj = xAj =
∑r

l=1 al,jxl and w̄j =
∑r

l=1(1− xl)al,j. The Euler gamma function is

defined by,

Γ(s) =

∫ ∞
0

ys−1e−y dy, Re(s) > 0.

Substituting y = (wj +
∑r

l=1mlal,j) t, we have,

Γ(s) =

(
wj +

r∑
l=1

mlal,j

)s ∫ ∞
0

e−(wj+
∑r
l=1 mlal,j)tts−1dt, so that,

Γ(s)ζ(s, x;Aj) =

∫ ∞
0

e−wjt
∞∑

m1=0

. . .
∞∑

mr=0

e−
∑r
l=1mlal,jt ts−1 dt

=

∫ ∞
0

e−wjt∏r
l=1(1− e−al,jt)

ts−1 dt

=

∫ ∞
0

ew̄jt∏r
l=1(eal,jt − 1)

ts−1 dt.

Since ew̄jt∏r
l=1(e

al,jt−1)
= O(t−r) at t = 0 and Γ(s) converges for Re(s) > 1, the Dirichlet

series converges absolutely for s > r.

Consider

I(s, x;Aj) =

∫
C

zs−1ew̄jz∏r
l=1(eal,jz − 1)

dz

where the path C is the sum of the three paths in C:

C1: the interval [∞, ρ]

C2: the counterclockwise circle of radius ρ around the origin

C3: the interval [ρ,∞].
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We can write

I(s, x;Aj) = I1(s, x;Aj) + I2(s, x;Aj) + I3(s, x;Aj)

where Ik(s, x;Aj) =
∫
Ck

ew̄jz∏r
l=1(e

al,jz−1)
zs−1 dz for k= 1, 2, 3.

Now, with s = σ + it, on C2, |zs−1| = |zσ−1+it| ≤ |z|σ−1 = ρσ−1, to give,

|I2(s, x;Aj)| =
∣∣∣∣∫
|z|=ρ

zs−1ew̄jz∏r
l=1(eal,jz − 1)

dz

∣∣∣∣ ≤ ρσ−r−1 sup
|z|=ρ

∣∣∣∣ zrew̄jz∏r
l=1(eal,jz − 1)

∣∣∣∣ 2πρ.
But,

ew̄jz∏r
l=1(eal,jz − 1)

is analytic in |z| < 2π except for a pole of order r at z = 0,

so
zrew̄jz∏r

l=1(e−al,jz − 1)
is analytic, and

∣∣∣∣ zrew̄jz∏r
l=1(e−al,jz − 1)

∣∣∣∣ ≤ B for some constant B.

Hence, |I2(s, x;Aj)| → 0 as ρ→ 0 for σ > r. Now, (using t for the real axis variable)

since zs−1 = ts−1 on C1 and zs−1 = e2πi(s−1)ts−1 on C3, then, as ρ→ 0,

I(s, x;Aj) =

∫ 0

∞

ts−1ew̄jt∏r
l=1(eal,jt − 1)

dt+

∫ ∞
0

e2πi(s−1)ts−1ew̄jt∏r
l=1(eal,jt − 1)

dt

= (e2πi(s−1) − 1)

∫ ∞
0

ts−1ew̄jt∏r
l=1(eal,jt − 1)

dt

= (e2πis − 1)Γ(s)ζ(s, x;Aj).

Now,

Γ(s)Γ(1− s) =
π

sinπs
=

2πi

eπis − e−πis
=

2πi eπis

e2πis − 1
.

Then,

I(s, x;Aj) =
2πi eπis

Γ(1− s)
ζ(s, x;Aj) and,
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ζ(s, x;Aj) =
Γ(1− s) eπis

2πi
I(s, x;Aj)

=
Γ(1− s) eπis

2πi

∫
C

zs−1ew̄jz∏r
l=1(eal,jz − 1)

dz, Re(s) > r. (3.5)

The integral I(s, x;Aj) is obviously convergent, so the right side of Equation (3.5) is

defined and meromorphic for all values of s. Therefore, Equation (3.5) provides the

analytic continuation of ζ(s, x;Aj) to the whole s-plane. As shown above, ζ(s, x;Aj)

is regular at s > r and therefore at s = r + 1, r + 2, . . . , and we know Γ(1 − s) is

an analytic function for Re(s) < 1, so the only possible singularities are the poles at

s = 1, 2, . . . , r.

We first find a general formula for the residues of the zeta-function at these poles

and then the particular formula for the residue at s = r. Let,

J(s, x;Aj) =
1

2πi
I(s, x;Aj) =

1

2πi

∫
C

zs−1ew̄jz∏r
l=1(eal,jz − 1)

dz

for the path C defined earlier. Then,
∫
C1
. . . = −

∫
C3
. . . for s = k, k = 1, 2, ..., and

J(k, x;Aj) = Resz=0
zk−1ew̄jz∏r

l=1(eal,jz − 1)
.

We now evaluate the residue at k = r. We have,

J(r, x;Aj) = lim
z→0

zr∏r
l=1(al,jz +O(z2))

=
1∏r

l=1 al,j
.

Using,

Γ(r− s) = Γ(r− 1− s+ 1) = (r− s− 1)Γ(r− 1− s) = (r− s− 1) . . . (1− s)Γ(1− s),
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we obtain,

lim
s→r

(r − s)Γ(1− s) = lim
s→r

Γ(r − s+ 1)

(r − s− 1) . . . (1− s)

=
1

(−1)(−2) . . . (1− r)

= (−1)r−1 1

(r − 1)!
.

Then,

Ress→rζ(s, x;Aj) = lim
s→r

(s− r)Γ(1− s) e2πisJ(r, x;Aj)

= (−1)1+r−1+r 1

(r − 1)!

1∏r
l=1 al,j

,

giving,

Ress→rζ(s, x;Aj) =
1

(r − 1)!

1∏r
l=1 al,j

. (3.6)

Using Equation (3.5), we now calculate the special values of the zeta-function at

non-positive integral values of s = −k, k = 0, 1, 2, ..... We obtain,

ζ(−k, x;Aj) = (−1)k
Γ(k + 1)

2πi

∫
C

z−k−1ew̄jz∏r
l=1(eal,jz − 1)

dz

= (−1)k k! Resz=0 z−k−r−1

(
zrew̄jz∏r

l=1(eal,jz − 1)

)
= (−1)k k! Resz=0 z−k−r−1

∞∑
n=0

Bn(w̄j;Aj)
zl

n!
,

so that,

ζ(−k, x;Aj) = (−1)k
k!

(k + r)!
Bk+r(w̄j;Aj), (3.7)
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where Bn(w̄j;Aj) is defined by the generating series:

trew̄jt∏r
l=1(eal,jt − 1)

=
∞∑
n=0

Bn(w̄j;Aj)

n!
tn.

We also have,

ζ(s, x;Aj) =
Γ(1− s) eπis

2πi

∫
C

zs−1ew̄jz∏r
l=1(eal,jz − 1)

dz,

=
Γ(1− s) eπis

2πi

∫
C

zs−1e−wjz∏r
l=1(1− e−al,jz)

dz.

Then,

ζ(−k, x;Aj) = (−1)k−k−1+r k! Resz=0 (−z)−k−r−1

(
(−z)re−wjz∏r
l=1(e−al,jz − 1)

)
= (−1)r+1 k! Resz=0 (−z)−k−r−1

∞∑
n=0

Bn(wj;Aj)
(−z)n

n!
,

giving,

ζ(−k, x;Aj) = (−1)r
k!

(k + r)!
Bk+r(wj;Aj). (3.8)

Remark 3. The final result of this theorem allows us to generalize the well-known

result Bk(1− x) = (−1)kBk(x) to obtain

Bk(xAj;Aj) = (−1)kBk((1− x)Aj;Aj) (3.9)

where 1 = ( 1, . . . , 1︸ ︷︷ ︸
r

).

Remark 4. The results obtained above show the special values of the zeta function

are polynomials in wj. This is the approach used by Stark. Shintani [56] on the

other hand, obtained results which overtly show the special values are polynomials in
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the components xi of the vector x. Such results can also be obtained here as follows.

From Equation (??) we have,

ζ(−k, x;Aj) = (−1)k k! Resz=0 z−k−r−1

(
zrew̄jz∏r

l=1(eal,jz − 1)

)

We can write the final bracketed term on the right side as

(
ze(1−x1)a1,jz

ea1,jz − 1

)
. . .

(
ze(1−xr)ar,jz

ear,jz − 1

)
=

( ∞∑
n1=0

Bn1(1− x1)

n1!
(a1,jz)n1

)
. . .

( ∞∑
nr=0

Bnr(1− x1)

nr!
(ar,jz)n1

)
. (3.10)

It is then easy to see ζ(−k, x;Aj) is a polynomial in each xi. In order to write the

actual polynomial we need to separate the product of the infinite sums into the sum

of r2 products thus:

∞∑
n1=0

. . .
∞∑

nr=0

= (n1 = 0 +
∞∑

n1=1

) . . . (nr = 0 +
∞∑

nr=1

).

To satisfy the requirement Resz=0 (−z)−k−r−1, the product
∑∞

n1=1 . . .
∑∞

n1=1 is easily

written as ∑
n+1+...+nr=k+r

r∏
i=1

Bni(1− xi)
ni!

ai, jni .

The writing of the other r2− 1 terms requires the more complicated notation given by

Shintani [56], although again, it is easy to see each term is a polynomial in xi. As an

example, and for future use, the full expression for the r = 2, n = 1 case is given in

the following Corollary.

Corollary 5. For A = A1,1
2,1, the value of ζ(s, x;A1) at s = −m, m = 0, 1, 2, . . ., is

given by

ζ(−m,x;A1) = (−1)mm!(R1 +R2 +R3) (3.11)
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where,

R1 =
Bm+2(x2)

(m+ 2)!

am2,j
a1,j

,

R2 =
Bm+2(x1)

(m+ 2)!

am1,j
a2,j

,

R3 =
∑

k+l=m+2
k,l≥1

Bk(x1)

k!

Bl(x2)

l!
ak−1

1,j al−1
2,j .

(Here, Bj(y) is the usual Bernoulli polynomial defined by the generating function

teut

et−1
=
∑∞

k=0
Bk(u)
k!

tk.)

Proof. Putting r = 2 and s = −m, in Equation (3.5), we arrive at

ζ(−m,x;A1) = (−1)m
Γ(m+ 1)

2πi

∫
C

z−m−1ew̄jz∏2
l=1(eal,jz − 1)

dz

= (−1)m
Γ(m+ 1)

2πi

∫
C

z−m−1

2∏
l=1

e(1−xl)a1,lz

(eal,jz − 1)
dz

= coefficient of zm in the Laurent expansion at the origin of

(−1)mm!× e(1−x1)a1,jz

ea1,jz − 1
× e(1−x2)a2,jz

ea2,jz − 1
.

Now, using the generating function, teut

et−1
=
∑∞

k=0
Bk(u)
k!

tk,, we have,

e(1−x1)a1,jz

ea1,jz − 1
× e(1−x2)a2,jz

ea2,jz − 1
=
∞∑
k=0

Bk(1− x1)

k!
(za1,j)

k−1 ×
∞∑
l=0

Bl(1− x2)

l!
(za2,j)

l−1

(splitting
∞∑
k=0

∞∑
l=0

into
(
k = 0 +

∞∑
k=1

)(
l = 0 +

∞∑
l=1

)
)

= R1 +R2 +R3 +R4,

where,

R1 =
B0(1− x1)

(za1,j)
×
∞∑
l=1

Bl(1− x2)

l!
((za2,j))

l−1
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for which the coefficient of zm (requiring l = m+ 2) is

B0(1− x1)
Bm+2(1− x2)

(m+ 2)!
a−1

1,j a
m
2,j.

Similarly, the coefficient of zm−1 in R2 is

B0(1− x2)
Bm+2(1− x1)

(m+ 2)!
a−1

2,j a
m
1,j,

and the coefficient of zm−1 in R3 is

∑
k+l=m+2
k,l≥1

Bk(1− x1)

k!

Bl(1− x2)

l!
ak−1

1,j al−1
2,j .

Finally, R4, with k = l = 0, cannot have a term in zm.

Remark 6. Since Bk(1 − xj) = (−1)kBk(xj), ζ(−m,x;A1) is a polynomial in each

xj of degree m+ 2.

For future use we note the following corollary.

Corollary 7. In the r = 2 case, at m = 0, we have the results:

2∑
j=1

ζ(0, x;Aj) =
B2(x2)

2

[a2,1

a1,1

+
a2,2

a1,2

]
+ 2B1(x1)B1(x2) +

B2(x1)

2

[a1,1

a2,1

+
a1,2

a2,2

]
. (3.12)

2∑
j=1

ζ(0, 0;Aj) =
1

12

[a1,1

a2,1

+
a2,1

a1,1

+
a1,2

a2,2

+
a2,2

a1,2

]
+

1

2
.

(3.13)
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3.2.2 Generalized Bernoulli functions

Our next goal is to express the generalized Bernoulli functions Bn(wj;Aj) in terms

of the first order, or usual, rescaled Bernoulli polynomials Bn(x; f) with generating

function text

eft−1
=
∑∞

n=0
Bn(x;f)

n!
tn, and then as polynomials with coefficients containing

Bernoulli numbers. Both the generalized and first order Bernoulli functions have

been introduced because they will be the functions we require for the p-adic analysis

we wish to perform. In particular, we show that for fixed Aj, the special values

ζ(−k, x;Aj), k = 0, 1, 2, . . ., are simply polynomials in each element xi of the vector

x = (x1, . . . , xr). We first note that the first order, rescaled Bernoulli polynomials

may be expressed in terms of the usual Bernoulli polynomials.

Lemma 8. We have:

Bn(x; a) = an−1Bn(
x

a
). (3.14)

Proof.
∞∑
n=0

Bn(x; a)

n!
tn =

text

eat − 1
=

1

a

(at)e(x
a

)(ft)

eat − 1
=

1

a

∞∑
n=0

Bn(x
a
)

n!
(at)n

We now show the generalized Bernoulli polynomials, Bn(wj;Aj) are polynomials

in wj, and therefore in each component of x, of degree n.

Lemma 9. Bn(wj;Aj) is the following polynomial in wj:

Bn(wj;Aj) = n!
n∑
t=0

(
n

t

)
wn−tj

∑
n1+...+nr=n

r∏
i=1

(
Bni

ni!
ani−1
i,j

)
(3.15)

where the ni are positive integers less than n or 0.
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Proof. Bn(wj;Aj) is generated by:

yrewjy∏r
i=1(eai,jy − 1)

=
∞∑
n=0

Bn(wj;Aj)

n!
yn

and Bn(0;Aj) is generated by:

yr∏r
i=1(eai,jy − 1)

=
∞∑
n=0

Bn(0;Aj)

n!
yn.

Then,

∞∑
n=0

Bn(wj;Aj)

n!
yn = ewjy

∞∑
n=0

Bn(0;Aj)

n!
yn =

∞∑
k=0

(wjy)k

k!

∞∑
n=0

Bn(0;Aj)

n!
yn

=⇒ Bn(wj;Aj)

n!
=

wnj
n! 0!

B0(0;Aj) +
wn−1
j

(n− 1)!n!
Bn(0;Aj)) + . . .+

w0
j

0!n!
Bn(0;Aj)),

=
n∑
t=0

(
n

t

)
Bt(0;Aj)w

n−t
j .

Now,

∞∑
n=0

Bn(0;Aj)

n!
yn =

yr∏r
i=1(eai,jy − 1)

=
y

ea1,jy − 1

y

ea2,jy − 1
. . .

y

ear,jy − 1

=
r∏
i=1

∞∑
k=0

Bk(0; ai,j)

k!
yk

=⇒ Bn(0;Aj) = n!
∑

n1+...+nr=n

Bn1(0; a1,j)

n1!

Bn2(0; a2,j)

n2!
. . .

Bnr(0; ar,j)

nr!

We conclude:

Bn(wj;Aj) = n!
n∑
t=0

(
n

t

)
wn−tj

∑
n1+...+nr=t

Bn1(0; a1,j)

t1!

Bn2(0; a2,j)

n2!
. . .

Bnr(0; ar,j)

nr!
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= n!
n∑
t=0

(
n

t

)
wn−tj

∑
n1+...+nr=n

r∏
i=1

(
Bni

ni!
ani−1
i,j

)

Remark 10. We now recall the Von Staudt-Clausen theorem ([69], page 55):

Let n be even and positive and Bn be the n-th Bernoulli number. Then

Bn +
∑

(p−1)|n

1

p
∈ Z

where the sum is over all primes p such that p − 1 divides n. Consequently, pBn is

p-integral for all n and all p.

We note that, due to the relations between the Bernoulli polynomials and Bernoulli

numbers given by Lemma (9), this theorem implies pnBn(wj;Aj) has p-integral coef-

ficients.

3.2.3 Corollaries

We have the following corollaries to Theorem (2).

Corollary 11. In the r = 1, n = 1 case we have for the re-scaled Hurwitz zeta

function:

ζ(s, x;A) =
∞∑
n=0

(na1,1 + x1a1,1)−s =
∞∑
n=0

(na1,1 + wj)
−s

that ζ(s, x;A) analytically continues to the whole complex s-plane, except for a first

order pole at s = 1 of residue 1
a1,1

. We have the values at s = −k, k a non-negative
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integer,

ζ(−k, x;A) = −Bk+1(a1,1x1; a1,1)

k + 1
= (−1)k

Bk+1((1− x1)a1,1; a1,1)

k + 1
(3.16)

where Bk+1(a; f) is a rescaled Bernoulli polynomial with generating function

teat

eft − 1
=
∞∑
j=0

Bj(a; f)

j!
tj,

and, we can express Bk(a; f) in terms of the usual Bernoulli polynomials and then in

terms of Bernoulli numbers:

Bk(a; f) = fk−1Bk(
a

f
) = fk−1

k∑
j=0

(
k

j

)
Bj (

a

f
)k−j

where Bj(x) is the j-th Bernoulli polynomial and Bj is the j-th binomial number.

Corollary 12. In the case of two summation variables (r = 2) and one linear form

(n = 1), we have the Barnes [3] double ζ-function:

ζ(s, x;Aj) =
∞∑

m1=0

∞∑
m2=0

(m1a1,j +m2a2,j + x1a1,j + x2a2,j)
−s, Re(s) > 2

=
∞∑

m1=0

∞∑
m2=0

(m1a1,j +m2a2,j + wj)
−s

where x = (x1, x2), Aj = (a1,j, a2,j)
t and wj = xA1,j

2,j.

Then, ζ(s, x;Aj) analytically continues to the whole complex s-plane, except for first

order poles at s = 1 and s = 2, the latter with residue 1
a1,ja2,j

.
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The special values at s = −k, k a non-negative integer, are given by:

ζ(−k, x;Aj) =
1

(k + 1)(k + 2)
Bk+2(wj;Aj), (3.17)

where Bk(wj;Aj) is a polynomial of degree k with generating function

t2ewjt

(ea1,jt − 1)(ea2,jt − 1)
=
∞∑
j=0

Bk(wj;Aj)

k!
tk,

and, we can express Bk(wj;Aj) in terms of the usual (rescaled) Bernoulli polynomials:

Bk(wj;Aj) =
k∑
l=0

(
k

l

)
l!

∑
l1+l2=l

Bl1(0, a1,j)

l1!

Bl2(0, a2,j)

l2!
wk−lj

=
k∑
l=0

(
k

l

) l∑
r=0

(
l

r

)
Br(0, a1,j) Bl−r(0, a2,j) wk−lj .

Remark 13. Equation (3.17) corrects a mistake on page 180 of [66].

3.3 Complex Zeta functions with n linear forms

We return to the definition of a generalized ζ-function with r summation variables

and n linear forms as given by Definition (1) in Section (3.1).

ζ(s, x;A) = ζ(s, x;A1,1
r,n =

∑
m∈Zr0

n∏
j=1

Lj(m+ x)−s

=
∞∑

m1=0

. . .

∞∑
mr=0

n∏
j=1

(
r∑
i=1

(mi + xi)ai,j)

)−s

=
∞∑

m1=0

. . .
∞∑

mr=0

n∏
j=1

(
wj +

r∑
i=1

miai,j

)−s
.

We again want to show these functions have analytic continuation and to find their

values at non-positive integers. We can no longer simply apply the method of Theorem
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(2), but require the innovations due to Shintani.

3.3.1 Analytic continuation and values at negative integers

Theorem 14. (Shintani [56]) ζ(s, x;A) is absolutely convergent if Re(s) > r
n

and

has an analytic continuation to a meromorphic function in the whole complex plane.

Moreover, if we put 1− x = (1− x1, . . . , 1− xr) the value at s = 1−m, m = 1, 2, . . .

is

ζ(1−m,x;A) = (−1)(n−1)(m−1)((m− 1)!)n
n∑
k=1

Bm(1− x,A)(k)

n
(3.18)

where Bm(1− x,A)(k) is the coefficient of un(m−1)
(∏

l 6=k yl
)m−1

in the Laurent expan-

sion at the origin of
r∏
i=1

eu(1−xi)
∑n
j=1 ai,jyj

eu
∑n
j=1 ai,jyj − 1

∣∣∣∣
yk=1

.

Proof. With Γ(s) =
∫∞

0
e−tts−1dt, if Re(s) > r

n
, consider,

Γ(s)n
n∏
j=1

[ r∑
i=1

(miai,j + xiai,j)
]−s

=

∫ ∞
0

e−t1
[ r∑
i=1

(miai,1 + xiai,1)
]−s

ts−1
1 dt1 . . .

∫ ∞
0

e−tn
[ r∑
i=1

(miai,n + xiai,n)
]−s

ts−1
n dtn

(Put, tj 7→
r∑
i=1

(miai,j + xiai,j)tj)

=

∫ ∞
0

e−
∑r
i=1(miai,1+xiai,1)t1ts−1

1 dt1 . . . . . .

∫ ∞
0

e−
∑r
i=1(miai,n+xiai,n)tnts−1

n dtn.

Then, Γ(s)nζ(s, x, ;A)

=

∫ ∞
0

. . .

∫ ∞
0

r∏
i=1

e−mi
∑n
j=1 ai,jtj

r∏
i=1

e−xi
∑n
j=1 ai,jtj(t1 . . . tn)s−1dt1 . . . dtn

=

∫ ∞
0

. . .

∫ ∞
0

r∏
i=1

e(1−xi)
∑n
j=1 ai,jtj

e
∑n
j=1 ai,jtj − 1

(t1 . . . tn)s−1dt1 . . . dtn.
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Define Dk ⊆ R, k = 1, 2, . . . , n by,

Dk = {t ∈ Rn|0 ≤ tl ≤ tk, l = 1, . . . , k − 1, k + 1, . . . , n}

and let,

g(t) =
r∏
i=1

e(1−xi)
∑n
j=1 ai,jtj

e
∑n
j=1 ai,jtj − 1

.

Then

ζ(s, x;A) = Γ(s)−n
∫ ∞

0

. . .

∫ ∞
0

g(t)(t1 . . . tn)s−1dt1 . . . dtn

= Γ(s)−n
n∑
k=1

∫
Dk

g(t)(t1 . . . tn)s−1dt1 . . . dtn.

In Dk we make the change of variables t = u(y) = u(y1, . . . , yn) where 0 < u, 0 ≤

yl ≤ 1 for l 6= k and yk = 1. The determinant of the Jacobian for this transformation

is un−1. Let,

ζ(k)(s, x;A) = Γ(s)−n
∫
Dk

g(t)(t1 . . . tn)s−1dt1 . . . dtn

= Γ(s)−n
∫ ∞

0

du

∫ 1

0

. . .

∫ 1

0

g(u(y))uns−1
(∏
l 6=k

yl
)s−1(∏

l 6=k

dyl
)

For a positive number ρ, denote by Iρ(1) and Iρ(∞) the integral paths in C consisting

of the intervals [1, ρ] and [∞, ρ], counterclockwise around a circle of radius ρ and the

intervals [ρ, 1] and [ρ,∞] respectively. We have z = t on [1, ρ] and [∞, ρ] and z = te2πi
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on [ρ, 1] and [ρ,∞].. Given the n linear forms have positive coefficients, we evaluate

∫
Iρ(∞)

dw

∫
Iρ(1)

g(w(z))wns−1
(∏
l 6=k

zl
)s−1(∏

l 6=k

dzl
)
.

as ρ→ 0, obtaining, as in Theorem (2), a factor of (e2πis − 1) from each of the n− 1

inner integrals due to the terms zs−1
l , but then a factor of (e2nπis − 1) due to the

term wns−1.

We then have:

ζ(k)(s, x;A)

=
Γ(s)−n

(e2nπis − 1)(e2πis − 1)n−1

∫
Iρ(∞)

du

∫
Iρ(1)

g(u(y))uns−1
(∏
l 6=k

yl
)s−1(∏

l 6=k

dyl
)
.

As a function of s, this integral is meromorphic in C. Moreover,

Γ(s)Γ(1− s) =
π

sin πs
=

2πi

eπis − e−πis
=

2πi eπis

e2πis − 1

=⇒ Γ(s)−n

(e2nπis − 1)(e2πis − 1)n−1
= (2πi)−nΓ(1− s)nenπis e

2πis − 1

e2nπis − 1
.

Now, at s = 1−m, m = 1, 2, . . . , enπis = (−1)n(m−1) and e2πis−1
e2nπis−1

= 1
n
, so,

ζ(k)(1−m,x;A)

= (−1)n(m−1)(2πi)−n
Γ(m)n

n

∫
Iρ(∞)

du

∫
Iρ(1)

g(u(y))un(1−m)−1
(∏
l 6=k

yl
)−m(∏

l 6=k

dyl
)

= (−1)n(m−1)(2πi)−n
Γ(m)n

n
(2πi)n × coefficient of un(m−1)

(∏
l 6=k

yl
)m−1
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in the Laurent expansion at the origin of,

g(uy1, uy2, . . . , uyk−1, uyk+1, . . . , uyn) =
r∏
i=1

eu(1−xi)
∑n
j=1 ai,jyj

eu
∑n
j=1 ai,jyj − 1

∣∣∣∣
yk=1

.

Then,

ζ(1−m,x;A) = (−1)n(m−1)((m− 1)!)n
n∑
k=1

Bm(1− x,A)(k)

n

where Bm(1−x,A)(k) is the coefficient of un(m−1)
(∏

l 6=k yl
)m−1

in the Laurent expan-

sion at the origin of
∏r

i=1
e
u(1−xi)

∑n
j=1 ai,jyj

e
u
∑n
j=1

ai,jyj−1

∣∣∣∣
yk=1

.

Corollary 15. (Shintani[1]) The value of the Dirichlet series ζ(s, x;A1,1
r,n)

at s = 1−m, (m = 1, 2, . . .) is equal to (−1)rm−nBm(x,A1,1
r,n) where

Bm(x,A1,1
r,n)

(m!)n

=
∑
p

Bp1(x1) . . . Bpr(xr)

p1!p2! . . . pr!
C(A1,1

r,n, p) +
1

n

∑
S

∑
q

(∏
j∈S

Bq(j)(xj)

q(j)!

) n∑
k=1

c(S, q, A1,1
r,n)(k)

and,

(1) Bk(t) is the usual k-th Bernoulli polynomial,

(2) the summation with respect to p is taken over all r-tuples of positive integers

p = (p1, p2, . . . , pr) which satisfy p1 + p2 + . . .+ pr = n(m− 1) + r,

(3) C(A1,1
r,n, p) is the coefficient of (t1 . . . tn)m−1 in the polynomial

∏r
j=1(

∑n
k=1 aj,ktk)

pj−1,

(4) the summation with respect to S is taken over all the proper and non-empty sub-

sets of indices 1, 2, . . . , n for each S,

(5) the summation with respect to q is over all the mappings from S to the set of

positive integers which satisfy
∑

j∈S q(j) = n(m− 1) + r,

(6) c(S, q, A1,1
r,n) is the coefficient of (t1 . . . tk−1tk+1 . . . tn)m−1 in the Taylor expansion

at the origin of the function
∏
j∈S(

∑n
k=1 aj,ktk)qj−1∏

j 6∈S(
∑n
k=1 aj,ktk)

∣∣∣∣
tk=1

at the origin.
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Remark 16. In the case of two linear forms and two summation variables, (n = 2,

r = 2), if we begin the proof of Theorem (14) with (using the changed notation from

x to w),

ζ(s, w;A) =
∑
m∈Zr0

n∏
j=1

(
wj +

r∑
i=1

miai,j

)−s
,

we arrive at:

ζ(1)(1−m,w;A) equals the coefficient of u2(m−1)ym−1
2 in the Laurent expansion at

the origin of

Γ(m)2

2
e−(w1+w2y2)u e(a1,1+a1,2y2)u

e(a1,1+a1,2y2)u − 1

e(a2,1+a2,2y2)u

e(a2,1+a2,2y2)u − 1
,

with a similar result for ζ(2)(1−m,w;A). This makes it explicit that ζ(s, w;A) is a

polynomial in w1 and w2.

The results we require for the case where the base field is a quadratic number field

are as follows.

Corollary 17. For A = A1,1
2,2, the value of ζ(s, x;A) at s = 1 −m, m = 1, 2, . . ., is

given by

ζ(1−m,x;A) =
((m− 1)!)2

2
(R1 +R2 +R3 +R′1 +R′2 +R′3) (3.19)

where,

R1 =
B2m(x2)

(2m)!

∑
k+j=m−1
k,j≥0

(−1)k
(

2m− 1

j

)
a−k−1

1,1 ak1,2 a
2m−j−1
2,1 aj2,2

R2 =
B2m(x1)

(2m)!

∑
k+j=m−1
k,j≥0

(−1)k
(

2m− 1

j

)
a−k−1

2,1 ak2,2 a
2m−j−1
1,1 aj1,2

R3 =
∑

k+l=2m
k,l≥1

Bk(x1)

k!

Bl(x2)

l!

∑
i+j=m−1
i,j≥0

(
k − 1

j

)(
l − 1

i

)
ak−j−1

1,1 aj1,2 a
l−i−1
2,1 ai2,2
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and, for k = 1, 2, 3, we obtain R′k from Rk by interchanging a1,j with a2,j for j = 1, 2.

(Here, Bj(y) is the usual Bernoulli polynomial defined by the generating function

teut

et−1
=
∑∞

k=0
Bk(u)
k!

tk.)

Proof. We have

ζ(1−m,x;A) = ζ(1−m,x;A1,1
2,2) = ((m− 1)!)2

2∑
k=1

Bm(1− x,A)(k)

2

where Bm(1−x,A)(k) is the coefficient of u2m−2ym−1
2 in the Laurent expansion at the

origin of
2∏
i=1

eu(1−xi)
∑2
j=1 ai,jyj

eu
∑2
j=1 ai,jyj − 1

∣∣∣∣
yk=1

.

Write

ζ(1−m,x;A) = ζ(1)(1−m,x;A) + ζ(2)(1−m,x;A), where,

ζ(1)(1−m,x;A) = coefficient of u2m−2ym−1
2 in the Laurent expansion at the origin of

((m− 1)!)2)

2
× e(1−x1)(a1,1+a1,2y2)u

e(a1,1+a1,2y2)u − 1
× e(1−x2)(a2,1+a2,2y2)u

e(a2,1+a2,2y2)u − 1
,

ζ(2)(1−m,x;A) = coefficient of u2m−2ym−1
1 in the Laurent expansion at the origin of

((m− 1)!)2

2
× e(1−x1)(a1,1y1+a1,2)u

e(a1,1y1+a1,2)u − 1
× e(1−x2)(a2,1y1+a2,2)u

e(a2,1y1+a2,2)u − 1
.

We need only consider ζ(1)(1−m,x;A) since the expression for ζ(2)(1−m,x;A) can

be obtained from that result by simply interchanging a1,1 with a1,2 and a2,1 with a2,2.

Now, using the generating function teyt

et−1
=
∑∞

k=0
Bk(y)
k!

tk, we have,
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e(1−x1)(a1,1+a1,2y2)u

e(a1,1+a1,2y2)u − 1
× e(1−x2)(a2,1+a2,2y2)u

e(a2,1+a2,2y2)u − 1

=
∞∑
k=0

Bk(1− x1)

k!
(u(a1,1 + a1,2y2))k−1 ×

∞∑
l=0

Bl(1− x2)

l!
(u(a2,1 + a2,2y2))l−1

(splitting
∞∑
k=0

∞∑
l=0

into
(
k = 0 +

∞∑
k=1

)(
l = 0 +

∞∑
l=1

)
)

= T1 + T2 + T3 + T4.

where

T1 =
B0(1− x1)

u(a1,1 + a1,2y2)
×
∞∑
l=1

Bl(1− x2)

l!
(u(a2,1 + a2,2y2))l−1,

for which the coefficient of u2m−2ym−1
2 (requiring l = 2m) is,

B0(1− x1)
B2m(1− x2)

(2m)!
× coefficient of ym−1

2 in (a1,1 + a1,2y2)−1(a2,1 + a2,2y2)2m−1

=
B2m(x2)

(2m)!

∑
k+j=m−1
k,j≥0

(−1)k
(

2m− 1

j

)
a−k−1

1,1 ak1,2 a
2m−j−1
2,1 aj2,2.

Similarly, the coefficient of u2m−2ym−1
2 in T2 is,

B2m(x1)

(2m)!

∑
k+j=m−1
k,j≥0

(−1)k
(

2m− 1

j

)
a−k−1

2,1 ak2,2 a
2m−j−1
1,1 aj1,2,

and the coefficient of u2m−2ym−1
2 in T3 is,

∑
k+l=2m
k,l≥1

Bk(x1)

k!

Bl(x2)

l!

∑
i+j=m−1
i,j≥0

(
k − 1

j

)(
l − 1

i

)
ak−j−1

1,1 aj1,2 a
l−i−1
2,1 ai2,2.

Finally, R4, with k = l = 0, cannot have a term in u2mym2 .
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Corollary 18. For the r = 2, n = 2 case with A = A1,1
2,2, we have the results at

m = 1,

ζ(0, x;A) =
B2(x2)

2

[a2,1

a1,1

+
a2,2

a1,2

]
+ 2B1(x1)B1(x2) +

B2(x1)

2

[a1,2

a2,2

+
a1,1

a2,1

]
. (3.20)

ζ(0, 0;A) =
1

24

[a1,1

a2,1

+
a2,1

a1,1

+
a1,2

a2,2

+
a2,2

a1,2

]
+

1

4
. (3.21)

Using Corollary (7) we then have,

ζ(0, x;A) =
1

2

[
ζ(0, x;A1) + ζ(0, x;A2)

]
,

ζ(0, 0;A) =
1

2

[
ζ(0, 0;A1) + ζ(0, 0;A2)

]
,

and, in particular,

ζ(0, x;A)− ζ(0, 0;A) =
1

2

2∑
j=1

[
ζ(0, x;Aj)− ζ(0, 0;Aj)

]
. (3.22)
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4 p-adic zeta functions

4.1 The Interpolation Problem

In Section (3), we generalized results in classical analysis for zeta functions due to

Riemann, Barnes and others. We want to perform p-adic analysis on the related

p-adic zeta functions, ζp(s, x;A). The p-adic zeta functions can be constructed from

the modified complex zeta functions by a process known as p-adic interpolation. We

say a function on the positive integers or any other dense subset of Zp can be p-

adically interpolated if it first has a (uniformly) continuous extension to all of Zp. We

note that“continuous” means, as in the real case, that whenever a sequence of p-adic

integers xn approaches x p-adically, f(xn) approaches f(x) p-adically. Second, the

modified complex function and the continuous p-adic function must agree on a set

of negative integers that is dense in Zp. Such a continuous p-adic extension is then

unique, because two continuous functions that agree on a dense subset are identical.

The explicit construction of a p-adic (zeta) function which satisfies these two condi-

tions is what is meant by“solving the interpolation problem”.

To prove p-adic uniform continuity for such functions f(x), we will show that,

Given any real number ε > 0, there is a real number δ > 0 such that for any x,y ∈ Zp,

|x− y|p < δ =⇒ |f(x)− f(y)|p < ε.

We will use this in the form: There is a positive integer N such that,

|x− y|p ≤
1

pN
=⇒ |f(x)− f(y)|p ≤

1

pN+1
.

Let us first consider the case of complex zeta functions with two summation vari-
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ables and one linear form. They are related to quadratic number fields. In the

notation of Definition (1), let Aj = (a1,j, a2,j)
t, x = (x1, x2) and wj = xAj, where we

assume the ai,j’s and xi’s are positive numbers. For j = 1, 2, by Corollary (12), we

know the complex zeta function

ζ(s, x;Aj) =
∞∑

m1=0

∞∑
m2=0

(m1a1,j +m2a2,j + wj)
−s, Re(s) > 2

has an analytic continuation to the whole complex plane apart from simple poles at

s = 1 and s = 2. We can evaluate the analytically continued function at non-positive

integers as polynomials in the components of x or as polynomials in wj. We suppose

the ai,j’s and xi’s are integers in a totally real quadratic number field F and that the

chosen rational prime p splits in F . We first want to embed the elements of F into a

p-adic field Qp.

4.2 Embedding Number Fields in Qp

In the case of a quadratic number field F = Q(
√
d), we have the following known

result:

Lemma 19. The following are equivalent:

(1) A prime p splits (completely) in a quadratic number field F = Q(
√
d)

(2) The Legendre symbol
(
d
p

)
= +1

(3) F ↪→ Qp, that is, there is an embedding of F into Qp.

Proof. (1)⇒(2): Assume p splits in F . Let,

(p) = (p, a+ b
√
d)(p, a− b

√
d) = (p2, p(a+ b

√
d), p(a− b

√
d), a2 − b2d).

Then we have: a2−b2d ≡ 0(mod p)⇒ d ≡ a2

b2
(mod p)⇒

(d
p

)
= +1.
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(2)⇒(1): Assume d ≡ a2 (mod p). Then p 6 |a but p|a2 − d. Consider,

(p, a+
√
d)(p, a−

√
d) = (p2, p(a+

√
d), p(a− b

√
d), a2 − d)

= (p)(p, a+
√
d, a−

√
d,
a2 − d
p

)

= (p)(p, 2a,
a2 − d
p

)

= (p) or p splits in F ,

since p 6 |a⇒ (p, 2a) = 1⇒ 1 ∈ (p, 2a,
a2 − d
p

).

(2)⇒ (3): This is a well-known result (see, for example, Katok [38], page 37) obtained

by applying Hensel’s lemma. Let f(x) be a polynomial whose coefficients are in Zp.

If there is an α1 ∈ Zp such that f(α1) ≡ 0(mod p) but f ′(α1) 6≡ 0(mod p) then there

is a unique α ∈ Zp such that α ≡ α1(mod p) and f(α) = 0.

Let f(x) = x2 − d. Then f ′(x) = 2x. If d is a quadratic residue, then d ≡ d2
0(mod p)

for some d0 ∈ 1, 2, . . . , p− 1. Hence f(d0) ≡ 0(mod p). But f ′(d0) = 2d0 6≡ 0(mod p)

since (d0, p) = 1, so the solution in Zp exists by Hensel’s lemma.

(3)⇒ (2): Suppose
√
d = d0 + d1p+ . . .. Then d ≡ d2

0(mod p) =⇒ d
p

= +1.

To return to the p-adic interpolation of a function related to ζ(s, x;A). We suppose

the elements of A are all algebraic numbers in some quadratic field F and that some

prime p splits in F . Then, by Lemma (19), F embeds in Qp. Accordingly, if we

assume p does not divide any of the elements of Aj, then these elements are all

integers in Qp. We do not have free choice of the prime p. By Lemma (19) we have

an embedding of F = Q(
√
d) into Qp only if d ≡ 2 (mod p), so, given d, we must

choose some p accordingly. Then p must split (completely) in F into two factors of
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the form (a+ b
√
d) and (a− b

√
d). There will be two choices for the embedding:

√
d =


a0 + a1p+ a2p

2 + . . . , 0 ≤ ai < p

b0 + b1p+ b2p
2 + . . . , 0 ≤ bi < p

where we must have a0 + b0 = p. We can take one of the embeddings to be
√
d and

the other to be −
√
d. We first choose either one of the two factors of p as p and then

we choose the embedding of
√
d into Qp so that the p-adic valuation of any element

β ∈ p is |β|p ≤ 1
p
< 1.

Example 20. We can embed Q(
√

5) into Q11 since ( 5
11

) = +1 . Now, as expected,

11 splits as 11 = (4 +
√

5)(4−
√

5). Choose p = (4 +
√

5). Then, given the choice of

embeddings

√
5 =


4 + a111 + a2112 + . . . , 0 ≤ ai < 11

7 + b111 + b2112 + . . . , 0 ≤ bi < 11

we choose
√

5 = 7 + b111 + b2112 + . . . so that 4 +
√

5 = c111 + c2112 + . . . and

|β|11 ≤ 1
11
< 1 for any β ∈ p.

4.3 p-adic zeta functions with one linear form

4.3.1 Definition

We want to define a p-adic zeta function which solves the interpolation problem for

a regularized zeta function defined as follows.

Definition 21. Let

ζ∗(s, x;Aj) =
∞∑

m1=0

∞∑
m2=0

p-Lj(m+x)

Lj(m+ x)−s Re(s) > 2. (4.1)
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where L = Lj(m+ x) = m1a1,j +m2a2,j + wj.

Note that, in the remainder of this paper, whenever we define a zeta function, the ζ∗

notation always means that we are removing the terms divisible by a fixed prime p or

a specified prime divisor p of p.

We suppose wj, a1,j and a2,j are all integers in a quadratic field F and that a fixed

prime p splits in F , say p = pp′ where if β ∈ p and β′ ∈ p′ then |β|p < 1 and |β′|p = 1.

We now define the term “p-adic limit” and then establish a pair of p-adic limits

we will use in our calculations.

Definition 22. Let α ∈ Zp. By N −→
p
α we mean N approaches α p-adically through

values in Z+ in such a way that N −→∞ as well.

For example, if

α = −1 = (p− 1) + (p− 1)p+ (p− 1)p2 + . . .

we could let N run through the sequence of partial sums

(p− 1), (p− 1) + (p− 1)p, (p− 1) + (p− 1)p+ (p− 1)p2, . . . .

We now choose two sequences of integers M1 and M2 defined as follows.

Definition 23. For α, β ∈ Zp, we choose sequences of positive integers M1 and M2

such that

M1 −→
p
α, M2 −→

p
β.

Alternatively, we can define these p-adic limits as follows. Let T ∈ Z+ be such that

T → +∞.
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Define M1 → +∞ such that

|M1 − α|p ≤ p−T ⇔M1 − α = pT q1, p - q1, q1 ∈ Zp.

Similarly, define M2 → +∞ such that

|M2 − β|p ≤ p−T ⇔M2 − β = pT q2, p - q2, q2 ∈ Zp.

We will later choose specific values for α and β, but, for the present, we can regard

them as general p-adic integers.

We now want to define, the p-adic function

H(s, x;Aj) = lim
T→∞

M1−1∑
m1=0

M2−1∑
m2=0

p-Lj(m+x)

(Lj(m+ x))−s, s ∈ Zp, (4.2)

where, Lj(m + x) =
∑2

i=1(mi + xi)ai,j, Aj = (a1,j, a2,j)
t, x = (x1, x2) and wj = xAj

(as in Definition (1)).

We first need to show H(s, x;Aj) is well-defined and that entails defining Lj(m+x)−s

for p - Lj(m + x). Since xi and ai,j are in Zp for all i and j, we can simply consider

n−s where n ∈ Zp and p - n. So, we consider the function f(k) = n−k where k is a

non-negative integer, n ∈ Zp and (n, p) = 1. We follow the arguments on page 26 of

Koblitz [1] and page 126 of Gouvêa [2] and claim:

Lemma 24. f(k) admits a p-adic interpolation, that is, f(k) may be extended in a

unique way from the non-negative integers to the p-adic integers so that the resulting

function is a continuous function of a p-adic variable s with values in Zp.
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Proof. For s ∈ Zp, we define the p-adic function,

fp(s) = lim
k→−s

nk

where p - n and k ∈ Z+ runs through a sequence of integers approaching −s. As

noted in the introductory remarks to this section, to prove p-adic continuity for this

function, it suffices to show that,

|k′ − k|p ≤
1

pN
=⇒ |n−k − n−k′ |p ≤

1

pN+1
.

Since (p− 1) ∈ Z×p , we can write

−s = (p− 1)s′ = (p− 1)(a0 + a1p+ . . .),

for some s′ ∈ Zp, s′ = a0 + a1p+ . . ..

Then we choose as sequences of integers k, (p − 1) times the partial sums of s′, so

that

k −→
p
−s, k ≡ 0(mod p− 1).

Accordingly, if we have k = (p− 1)k1 and k′ = (p− 1)k2, where k1, k2 ∈ Z+, then,

|k′ − k|p = |(p− 1)k1 − (p− 1)k2|p = |k1 − k2|p ≤
1

pN
.

We therefore have k1 − k2 = k3p
N , where 0 ≤ k3 < pN . Now, using Fermat’s little

theorem to put np−1 = 1 +mp for p - n,

∣∣nk − nk′∣∣
p

=
∣∣(np−1)k1 − (np−1)k2

∣∣
p

=
∣∣(np−1)k1

∣∣
p

∣∣1− (np−1)k2−k1
∣∣
p
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=
∣∣1− (1 +mp)k3pN

∣∣
p

=
∣∣(1 +mp)k3pN−1

∣∣
p

=
∣∣k3p

Nmp+

(
k3p

N

2

)
(mp)2 + . . .

(
k3p

N

k

)
(mp)k + . . .

∣∣
p

≤ max(|k3p
Nmp|p, |

(
k3p

N

2

)
(mp)2|p, . . . , |

(
k3p

N

j

)
(mp)j|p, . . .)

≤
∣∣pN+1

∣∣
p

≤ 1

pN+1

In summary,

Definition 25. For s ∈ Zp and n ∈ Z×p , we define n−s as

n−s = lim
k→−s

nk

where k runs through a sequence of non-negative integers congruent to 0(mod p− 1)

and tending to −s p-adically.

This allows us to investigate the values of H(s, x;Aj) at integers divisible by p − 1,

including 0. These integers must be even.

Second, now that we know n−s is well-defined, to show H(s, x;Aj), is well-defined, we

need to show convergence. We start with the elementary result that an infinite series∑∞
n=0 an with an ∈ Qp converges if and only if limn→∞ an = 0. Since the terms on

the right side of (4.2) are not divisible by p, the p-adic value of each of them is 1, so

the infinite series, on first inspection, does not appear to converge. We can, however,
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show convergence if we group the terms. We start with the infinite series

∞∑
n=0
p-n+x

(n+ x)−s,

and group the terms as follows:

∞∑
n=0
p-n+x

(n+ x)−s =
∑

0≤n<pr
p-n+x

(n+ x)−s +
∑

pr≤n<2 pr

p-n+x

(n+ x)−s + . . .

We will prove the following lemma not just for one linear form but, for future use, in

the general case of m linear forms.

Lemma 26. Suppose s, xi ∈ Zp, x = (x1, . . . , xk) and pa||s. Then for r ≥ a+ 1,

∑
n(mod pr)

p-
∏m
i=1(n+xi)

m∏
i=1

(n+ xi)
−s ≡


0(mod pr−a−1), if s 6= 0;

0(mod pr−1), if s = 0.

Proof. The case s = 0 is trivial.

∑
n(mod pr)

p-
∏m
i=1(n+xi)

m∏
i=1

(n+ xi)
−s
∣∣∣∣
s=0

= 1 + . . .+ 1︸ ︷︷ ︸
pr

−
[
pr

p

]
=
pr

2
(pr− 1)− pr−1 ≡ 0 (mod pr−1).

Suppose s 6= 0. Recall, for Bl the l-st binomial number, that

N−1∑
n=0

nj =
1

j + 1

j∑
l=0

BlN
j+1−l.

Consider, for t = (p− 1)pa u, u ∈ Z+,

S =

pr−1∑
n=0

m∏
i=1

(n+ xi)
t
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=

pr−1∑
n=0

mt∑
j=0

cj n
j, say,

=
mt∑
j=0

cj
j + 1

j∑
l=0

Bl p
r(j+1−l)

=
m∑
k=1

ckt−1

kt
Bkt−1 p

r + terms in pk, k ≥ 2r

≡ 0(mod pr−a−1) by the von Staudt-Clausen theorem.

Now consider the terms in S that are divisible by p. Suppose n+ x1 is divisible by p.

Let x1 = a0 + p u, u ∈ Zp. Then p|(n+ x1) if n = lp− a0, 1 ≤ l ≤ pr−1. Then we can

write for values of yi, di ∈ Zp,

∑
n(mod pr)

p|
∏m
i=1(n+xi)

m∏
i=1

(n+ xi)
−s =

pr−1∑
l=1

(lp+ py1)t
m∏
i=2

(lp+ yi)
t

= pt
pr−1∑
l=1

mt∑
j=0

dj l
j

= pt
[ pr−1∑
l=1

d0 +
mt∑
j=1

pr−1∑
l=1

dj l
j
]

≡ 0(mod pr+a−1).

Now put −s = t.

Remark 27. Stark [65] gives a different proof of the preceding lemma for the case of

one linear form and one summation variable.

We can now show that,

Lemma 28. H(s, x;Aj) converges and is continuous in both s, x1 and x2.

Proof. To show convergence, note that if T increases to T ′, the group of extra terms
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added to
M1−1∑
m1=0

M2−1∑
m2=0

p-Lj(m+x)

Lj(m+ x)−s

is

M ′1−1∑
m1=0

M ′2−1∑
m2=0

p-Lj(m+x)

Lj(m+ x)−s −
M1−1∑
m1=0

M2−1∑
m2=0

p-Lj(m+x)

Lj(m+ x)−s

=

M1−1∑
m1=0

M ′2−1∑
m2=M2

p-Lj(m+x)

Lj(m+ x)−s +

M ′1−1∑
m1=M1

M ′2−1∑
m2=0

p-Lj(m+x)

Lj(m+ x)−s.

We claim the p-adic value of this group approaches zero as T →∞. Consider,

M1−1∑
m1=0

M ′2−1∑
m2=M2

p-Lj(m+x)

Lj(m+ x)−s.

Fix a value of m1 and then consider

M ′2−1∑
m2=M2

p-Lj(m+x)

(wj +
2∑
i=1

miai,j)
−s = a−s2,j

M ′2−1∑
m2=M2
p-m2+x

(m2 + y)−s

where y =
wj+m1a1,j

a2,j
∈ Zp. Since the number of terms in this sum is

M ′
2 −M2 ≡ 0(mod pT ), we can apply Lemma (26). Then

|
M ′2−1∑
m2=M2

p-Lj(m+x)

Lj(m+ x)−s|p → 0
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as T →∞. The same argument applies to

M ′1−1∑
m1=M1

M ′2−1∑
m2=0

p-Lj(m+x)

Lj(m+ x)−s.

To show H(s, x;A) is continuous in s, we let |s1 − s2|p < p−r and n = Lj(m + x),

n ∈ Zp. Then,

|H(s1, x;Aj)−H(s2, x;Aj)|p = lim
T→∞

M1−1∑
m1=0

M2−1∑
m2=0

|n−s1 − n−s2 |p < p−r−1

by the same method of proof as in Lemma (24).

To show H(s, x;A) is continuous in x1, we can choose two values x11 and x12 such

that |x11 − x12|p < p−r. Write L̄j = m1a1,j +m2a2,j + x2a2j.

Then, with k = 1, 2, . . ., k ≡ 0(mod p− 1), for some value of m1 and m2,

|H(−k, (x11, . . .);Aj)−H(−k, (x12, . . .);Aj)|p ≤ |(L̄j+x11a1,j)
k−(L̄j+x12a1,j)

k|p < p−r.

Let −s = k. Similarly, H(s, x;Aj) is continuous in x2.

We return to the problem of interpolating the (special) values at s = −k,

k = 0, 1, 2, . . ., k ≡ 0(mod p − 1) of the (regularized) complex zeta function defined

by

ζ∗(s, x;Aj) =
∞∑

m1=0

∞∑
m2=0

p-m1a1,j+m2a2,j+wj

(m1a1,j +m2a2,j + wj)
−s, Re(s) > 2.

We need the following lemma for a zeta function, ζ(s, x; a) =
∑∞

n=0((n+x)a)−s, with
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one summation variable and one linear form.

Lemma 29. For even positive integers k, if x −→
p

0 then the value of ζ(−k, x; a) −→
p

0.

Proof. With Bk+1(y) as the usual Bernoulli polynomial with generating function

teyt

et − 1
=
∞∑
j=0

Bj(y)

j!
tj,

we have by Equation (3.16),

ζ(−k, x; a) = −Bk+1(ax; a)

k + 1

= −akBk+1(x)

k + 1

= − ak

k + 1

k+1∑
l=0

(
k + 1

l

)
Bl x

k+1−l

= − ak

k + 1

[ k∑
l=0

(
k + 1

l

)
Bl x

k+1−l +Bk+1

]
= xP (x), for even k,

where P (x) is a polynomial in x. Then ζ(−k, x; a) −→
p

0 as x −→
p

0.

In the light of what we need for the following theorem and its corollary, we now

make our choices for the p-adic integers α and β of Definition (23).

Definition 30. We define the sequence of positive integers M1 such that

M1 −→
p
− wj
a1,j

.

Then for each m1 such that 0 ≤ m1 < M1, we define the sequence of positive integers

M2 = M2(m1) such that

M2 −→
p
−wj +m1a1,j

a2,j

.
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Alternatively, we define these p-adic limits as:

Let T ∈ Z+ be such that T → +∞.

Choose M1 → +∞ such that

|M1a1,j + wj|p ≤ p−T ⇔M1a1,j + wj = pT q1, p - q1, q1 ∈ Zp.

For each m1 such that 0 ≤ m1 < M1, choose M2 → +∞ such that,

|M2a2,j +m1a1,j + wj|p ≤ p−T ⇔M2a2,j +m1a1,j + wj = pT q2, p - q2, q2 ∈ Zp.

We have the following theorem for the difference equation of two ζ∗ functions.

Theorem 31. For k as above,

ζ∗(−k, (x1, x2);Aj)− ζ∗(−k, (x1 +M1, x2);Aj)

=

M1−1∑
m1=0

M2−1∑
m2=0

p-m1a1,j+m2a2,j+wj

(m1a1,j +m2a2,j + wj)
k + E(T ) (4.3)

where E(T )→ 0 as T →∞.

Proof.

ζ∗(s, (x1, x2);Aj)− ζ∗(s, (x1 +M1, x2);Aj)

=
∞∑

m1=0

∞∑
m2=0

p-m1a1,j+m2a2,j+wj

(m1a1,j +m2a2,j + wj)
−s

−
∞∑

m1=0

∞∑
m2=0

p-m1a1,j+m2a2,j+M1a1,j+wj

(m1a1,j +m2a2,j +M1a1,j + wj)
−s
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=

M1−1∑
m1=0

∞∑
m2=0

p-m1a1,j+m2a2,j+wj

(m1a1,j +m2a2,j + wj)
−s

=

M1−1∑
m1=0

M2−1∑
m2=0

p-m1a1,j+m2a2,j+wj

(m1a1,j +m2a2,j + wj)
−s + S,

where,

S =

M1−1∑
m1=0

∞∑
m2=M2

p-m1a1,j+m2a2,j+wj

(m1a1,j +m2a2,j + wj)
−s

=

M1−1∑
m1=0

∞∑
m2=0

p-m1a1,j+m2a2,j+M2a2,j+wj

(m1a1,j +m2a2,j +M2a2,j + wj)
−s

=

M1−1∑
m1=0

∞∑
m2=0

(m1a1,j +m2a2,j +M2a2,j + wj)
−s

−
M1−1∑
m1=0

∞∑
m2=0

p|m1a1,j+m2a2,j+M2a2,j+wj

(m1a1,j +m2a2,j +M2a2,j + wj)
−s

Now the first double series is simply
∑M1−1

m1=0 ζ(s,Ω; a2,j) where

Ω = Ω(m1) =
m1a1,j +M2a2,j + wj

a1,2

−→
p

0

as T → ∞. At s = −k, by Lemma (29), we have ζ(s,Ω; a2,j) −→
p

0. In the second

double series, the condition p|m1a1,j +m2a2,j +M2a2,j +wj implies p|m2 by our choice

of M2. This allows us to write the second double series as
∑M1−1

m1=0 ζ(s,Ω; pa2,j). Again,

at s = −k, thanks to Lemma (29), we have ζ(s,Ω; pa2,j) −→
p

0.

Corollary 32.

ζ∗(−k, x;Aj)− ζ∗(−k, 0;Aj) = H(−k, x;Aj).
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Proof. We can write Equation (4.3) in the notation

ζ∗(−k, wj;Aj)− ζ∗(−k, wj +M1a1,j;Aj)

=

M1−1∑
m1=0

M2−1∑
m2=0

p-m1a1,j+m2a2,j+wj

(m1a1,j +m2a2,j + wj)
k + E(T ) (4.4)

We need to show

lim
T→∞

ζ∗(−k, wj +M1a1,j;Aj) = ζ∗(−k, 0;Aj),

that is, we can pass to the limit for M1 inside ζ∗. We first note that M1 passing to

the limit means we have T → ∞ so that the error term E(T ) in Equation (4.3) is

removed. Let L = Z a1,j + Z a2,j. Assume M1 is sufficiently large. Then w1 + M1a1,j

is divisible by a large power of p and therefore,

ζ∗(−k, wj +M1a1,j;Aj) =
∑
ρ

ζ∗(−k, wj +M1a1,j + ρ;Aj)

where ρ runs through a suitable set of representatives for L/pL and ρ 6∈ pL. At

s = −k, ζ∗(−k, wj +M1a1,j +ρ;Aj) is a polynomial in wj +M1a1,j +ρ so we can take

the limit M1a1,j −→
p
−wj inside. Then we have,

lim
M1a1,j−→

p
−wj

ζ∗(−k, wj +M1a1,j + ρ;Aj) =
∑
ρ

ζ∗(−k, ρ;Aj) = ζ∗(−k, 0;Aj).

Let us now set

h(s, x;Aj) = ζ∗(s, x;Aj)− ζ∗(s, 0;Aj), (4.5)
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so that h(−k, x;Aj) = H(−k, x;Aj). Then,

Lemma 33. (Duplication formula) With h as defined in (4.5),

ζ∗(s, 0;Aj) =
1

2s − 4

∑
xi=0, 1

2
x 6=0

h(s, (x1, x2);Aj) (4.6)

where the sum is over all possible combinations xi = 0 or xi = 1
2

for i = 1, 2, provided

x 6= 0.

Proof.

2sζ∗(s, (0, 0);Aj) =
∞∑

m1=0

∞∑
m2=0

p-m1
a1,j

2
+m2

a2,j
2

(m1
a1,j

2
+m2

a2,j

2
)−s

=
∑

xi=0, 1
2

ζ∗(s, (x1, x2);Aj)

where the sum is over all possible combinations xi = 0 or xi = 1
2

for i = 1, 2. Now

subtract 4× ζ∗(s, (0, 0);Aj) from both sides.

Corollary 34.

ζ∗(s, x;Aj) = h(s, x;Aj) +
1

2s − 4

∑
xi=0, 1

2
x 6=0

h(s, (x1, x2);Aj).

Accordingly, we define the p-adic zeta function as

Definition 35.

ζp(s, x;Aj) = H(s, x;Aj) +
1

2s − 4

∑
xi=0, 1

2
x 6=0

H(s, (x1, x2);Aj), (4.7)

where s ∈ Zp. Note ζp(s, x;Aj) is not defined at s = 2.
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We immediately have our first main theorem,

Theorem 36. ζp(s, x;Aj) is the unique p-adic zeta function that interpolates

ζ∗(−k, x;Aj), indeed,

ζp(−k, x;Aj) = ζ∗(−k, x;Aj)

on a dense subset of values k ∈ Zp, namely k = 0, 1, 2, . . ., k ≡ 0(mod p− 1).

Proof. By Corollary (32), for k = 0, 1, 2, . . ., k ≡ 0(mod p− 1),

ζp(s, x;Aj) = H(−k, x;Aj) +
1

2−k − 4

∑
xi=0, 1

2
x 6=0

H(−k, (x1, x2);Aj)

= ζ∗(−k, x;Aj)− ζ∗(−k, 0;Aj) +
1

2−k − 4

∑
xi=0, 1

2
x 6=0

H(−k, (x1, x2);Aj)

= ζ∗(−k, x;Aj).

For completion we show,

Lemma 37. The set K = {k = 0,−1,−2, . . . , k ≡ 0(mod p− 1)} is dense in Zp.

Proof. We need to show for all x ∈ Zp and for all ε > 0, there exists a k ∈ K such

that |x− k|p < ε. Let x =
∑∞

n=0 anp
n, 0 ≤ an < p. Choose N such that p−N < ε. Let

k = −(pN − 1)
∑N

n=0 anp
n. Then,

|x− k|p = |x−
N∑
n=0

anp
n + pN

N∑
n=0

anp
n|p < p−N < ε.



58

4.3.2 Derivative of p-adic ζp(s, x;Aj) function at s = 0.

We next show how to calculate the derivative of the p-adic zeta function ζp(s, x;Aj)

at s = 0 to a large number of p-adic digits. We first show, for n ∈ Zp and s ∈ Zp,

that the derivative of n−s at s = 0 exists. We start from the known result that any

n ∈ Z×p can be written as

n = ω(n)〈n〉

where 〈n〉 ∈ 1 + pZp and ω(n) is the Teichmüller character associated with n, in the

sense that |ω(n) − n|p < 1. Since ω(n) is a (p − 1)-st root of unity, and, for us,

n−s = limk−→
p
−s n

k, with k ≡ 0(mod p− 1), then we can start from

n−s = 〈n〉−s, 〈n〉 ∈ 1 + pZp.

Lemma 38. (Stark [65]) The derivative of n−s at s = 0 is − logp(n).

Proof. We start from n−s = 〈n〉−s, 〈n〉 ∈ 1 + pZp, so we only need to differentiate

n−s for n = 1 + d p, d ∈ Zp. In this case we have the definition,

logp(n) =
∞∑
j=1

(−1)j−1

j
(dp)j,

which satisfies the usual logarithm rules:

logp(nm) = logp(n)+logp(m); logp(n
−1) = − logp(n) =⇒ logp(n) =

1

p− 1
logp(n

p−1).

We previously defined the p-adic function fp(s) = n−s = limt→−s n
t, where t runs

through a sequence of integers that approach −s = (p− 1)s′, s′ ∈ Zp. Since we want

s = 0, we choose the sequence t = (p− 1)bpa, a →∞. Let np−1 = 1 + cp, c ∈ Zp, so



59

that

logp(n
p−1) =

∞∑
j=1

(−1)j−1

j
(cp)j.

Noting p|pj
j!

for all p, j,, we obtain,

nt = (1 + cp)bp
a

= 1 +
∞∑
j=1

bpa(bpa − 1) . . . (bpa − j + 1)
(cp)j

j!

≡ 1 +
∞∑
j=1

(bpa)[(−1)j−1(j − 1)!]
(cp)j

j!
mod( p2a+1).

Then,

nt − n0

t
≡ 1

p− 1

∞∑
j=1

(−1)j−1

j
(cp)j (mod pa+1)

≡ 1

p− 1
logp(n

p−1)(mod pa+1)

≡ logp(n)(mod pa+1).

We take the limit,

lim
t→−s

nt − n0

t
=
n−s − n0

−s
≡ logp(n)(mod pa+1),

to give, ∣∣∣∣n−s − n0

−s
+ logp(n)

∣∣∣∣
p

≤ p−a−1, for |s|p ≤ p−a, (4.8)

so that
d

ds
(n−s)

∣∣
s=0

= −logp(n).

This proof easily generalizes to the result that the derivative at s = 0 of the
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product of elements in Zp raised to the power −s is, as expected, simply minus one

times the sum of the p-adic logarithms of each of the elements. We now show we can

take the derivative inside the limit,

Lemma 39. The derivative at s = 0 of f(s) = limN−→
p
−x
∑N−1

n=0 (n+x)−s is given by,

d

ds
lim

N−→
p
−x

N−1∑
n=0

(n+ x)−s
∣∣
s=0

= − lim
N−→

p
−x

N−1∑
n=0

logp(n+ x).

Proof. We begin with the usual definition of a derivative,

d

ds
f(s)

∣∣
s=0

= lim
s→0

f(s)− f(0)

s
.

Now

f(s)− f(0)

s
= lim

N−→
p
−x

N−1∑
n=0

(n+ x)−s − 1

s
,

so that,

f ′(0) = lim
s→0

lim
N−→

p
−x

N−1∑
n=0

(n+ x)−s − 1

s
.

Then, with N1 < N ,

∣∣f ′(0) + lim
N−→

p
−x

N−1∑
n=0

logp(n+ x)
∣∣
p

≤ lim
s→0

lim
N−→

p
−x

N−1∑
n=0

∣∣(n+ x)−s − 1

s
+ logp(n+ x)

∣∣
p

= lim
s→0

lim
N−→

p
−x

N1−1∑
n=0

∣∣(n+ x)−s − 1

s
+ logp(n+ x)

∣∣
p

+ lim
s→0

lim
N−→

p
−x

N−1∑
n=N1

∣∣(n+ x)−s − 1

s
+ logp(n+ x)

∣∣
p

= S1 + S2,
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where the first sum, S1, p-adically approaches zero as N →∞ by Lemma (38). The

second sum becomes

S2 = lim
s→0

lim
N−→

p
−x

N−1∑
n=N1

∣∣(n+ x)−s − 1

s
+ logp(n+ x)

∣∣
p

≤ lim
s→0

lim
N−→

p
−x

N−1∑
n=N1

p−a−1, (notation as in (4.8)),

= lim
s→0

p−a−1 lim
N−→

p
−x

(N −N1).

The two products in this latter expression both p-adically approach 0 for the given

limits.

We can now find the derivative of our p-adic zeta function at s = 0. From the

definition of ζp we have

ζ ′p(0, x;Aj) = H ′(0, x;Aj)−
1

3

[
H ′(0, (

1

2
, 0);Aj) +H ′(0, (0,

1

2
);Aj) +H ′(0, (

1

2
,
1

2
);Aj)

]
− logp2

9

[
H(0, (

1

2
, 0);Aj) +H(0, (0,

1

2
);Aj) +H(0, (

1

2
,
1

2
);Aj)

]
First we show how to calculate the H(0, x;Aj) terms.

Lemma 40. At s = 0, we have,

H(0, x;Aj) = ζ(0, x;Aj)− ζ(0, 0;Aj),

Proof. By Corollary (32),

H(−k, x;Aj) = ζ∗(−k, x;Aj)− ζ∗(−k, 0;Aj).
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We can write ζ∗(s, x;Aj) as

ζ∗(s, x;Aj) = ζ(s, x;Aj)− ξ(s, x;Aj)

where

ξ(s, x;Aj) =
∞∑

m1=0

∞∑
m2=0

p|m1a1,j+m2a2,j+wj

(m1a1,j +m2a2,j + wj)
−s.

We need to show that the value of ξ(s, x;Aj) at s = 0 is p-adically zero. By a similar

method of proof to that in Corollary (32)

ξ(s, x;Aj) = β−s
∞∑

m1=0

∞∑
m2=0

(m1a1,j +m2a2,j + wj)
−s,

where p = (β) and |β|p ≤ 1. The values of this analytically continued function at

non-positive integers were found in Corollary (12). The special values at s = −k, k a

non-negative integer, are given by:

ξ(−k, w̃;C) = βk
1

(k + 1)(k + 2)
Bk+2(wj;Aj),

Since |β|p ≤ 1, by the von Staudt-Clausen theorem, the p-adic valuation of the right

side is less than p−k+α for some fixed integer α. The result follows for k −→
p

0 which

implies k →∞.

Remark 41. First, we note that ζ(0, x;Aj) and ζ(0, 0;Aj) were calculated in Corol-

lary (7).

Second, in [66], Stark stated the equation

ζ(−k, x;Aj)− ζ(−k, 0;Aj) = lim
T→∞

M1−1∑
m1=1

M2−1∑
m2=1

L(m+ x)k (4.9)
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implies

ζ∗(−k, x;Aj)− ζ∗(−k, 0;Aj) = lim
T→∞

M1−1∑
m1=1

M2−1∑
m2=1

p-L(m+x)

L(m+ x)k + E(k) (4.10)

where the error E(k)→ 0 as k −→
p

0. The reason he gave is that, if k is large enough,

the terms on the right side of (4.10) with a factor of p have a p-adic valuation at

most p−k, and if k is approaching 0 p-adically, then p−k is much much smaller than

the p-adic valuation of k itself, and so both the limit and derivative at s = 0 exist

and consist of the limit and derivative respectively on the right side at s = 0 with

the terms divisible by p deleted. He applied the same argument to the corresponding

difference between two Hurwitz zeta functions, (the case of one linear form and one

summation variable), to replace

ζ(−k, x; a1,1)− ζ(−k,M + x; a1,1) =
M−1∑
m=0

((m+ x)a1,1)k

with

ζ∗(−k, x; a1,1)− ζ(−k, 0; a1,1) = lim
M−→

p
−x

M−1∑
m=0

p-(m+x)a1,1

((m+ x)a1,1)k + E(k),

where E(k)→ 0 as k −→
p

0.

We have shown in Lemma (38) that the derivative of n−s, n ∈ Zp, s ∈ Zp exists

at s = 0. This means we can now proceed to find the derivative of H(s, x;Aj) at

s = 0. For 1 ≤ i ≤ 2, for the summation indices mi of the multiple sum in formula

(4.2) for H(s, x;Aj) we set mi = bi + uip, 0 ≤ bi ≤ p − 1, and define ci in the range

0 ≤ ci ≤ p−1 such that ci+Mi ≡ bi (mod p). Then we define a new set of sequences
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of positive integers, Ui, 1 ≤ i ≤ r, taking the p-adic limits:

Ui =
Mi + ci − bi

p
= Ūi −

i−1∑
t=1

utat,j
ai,j

,

where,

Ū1 = U1 −→
p

−wj
a1,j

+ c1 − b1

p
and Ū2 −→

p

−1
a2,j

(wj + b1a1,j) + ci − bi
p

.

We use the notation,

S1,...,l =

U1−1∑
u1=0

. . .

Ul−1∑
ul=0

1.

Theorem 42. (Stark [66]) The derivative of H(s, x;Aj) at s = 0 may be calculated

as

H ′(0, x;Aj) = −
p−1∑
b1=0

p−1∑
b2=0

p-Lj(b+x)

(R1 +R2 +R3) (4.11)

where,

R1 = S1,2 logpLj(b+ x),

R2 =
∞∑
k=1

(−1)k−1

k

pk

Lj(b+ x)k
1

(k + 1)(k + 2)

[
Bk+2(0;Aj)−Bk+2(Ū1a1,j;Aj)

]
,

R3 =
∞∑
k=1

(−1)k−1

k

pk

(Lj(b+ x))k
S1
Bk+1(Ū2a2,j; a2,j)

k + 1
.

and, as usual, Lj(t1, . . . , tr) =
∑r

i=1 ai,jti.

Proof. Assuming the limit T →∞ so that M1 −→
p
− wj
a1,j

and M2 −→
p
−wj+a1,j

a2,j
,

H ′(0, x;Aj)∣∣
s=0
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=
d

ds

M1−1∑
m1=0

M2−1∑
m2=0

p-Lj(m+x)

Lj(m+ x)−s∣∣
s=0

= −
M1−1∑
m1=0

M2−1∑
m2=0

p-Lj(m+x)

logp Lj(m+ x)

= −
p−1∑
b1=0

p−1∑
b2=0

p-Lj(b+x)

∑
0≤m1≤M1−1

m1≡b1(mod p)
0≤m2≤M2−1

m2≡b2(mod p)

logp (Lj(b+ x) + Lj(m− b))

= −
p−1∑
b1=0

p−1∑
b2=0

p-Lj(b+x)

∑
0≤m1≤M1−1

m1≡b1(mod p)
0≤m2≤M2−1

m2≡b2(mod p)

(
logp Lj(b+ x) + logp(1 +

Lj(m− b)
Lj(b+ x)

)

)

= −
p−1∑
b1=0

p−1∑
b2=0

p-Lj(b+x))

∑
0≤m1≤M1−1

m1≡b1(mod p)
0≤m2≤M2−1

m2≡b2(mod p)

(
logp Lj(b+ x) +

∞∑
k=1

(−1)k

k

(
Lj(m− b)
Lj(b+ x)

)k)

Let mi = bi + uip for 1 ≤ i ≤ 2. Each sum on an mi becomes a sum on ui in the

range 0 ≤ ui ≤ Ui where Ui is the smallest integer such that Uip+ bi ≥Mi. Then,

H ′(0, x;Aj)

= −
p−1∑
b1=0

p−1∑
b2=0

p-Lj(b+x)

∑
0≤u1≤U1−1
0≤u2≤U2−1

logp Lj(b+ x) +
∞∑
k=1

(−1)k−1

k

(∑2
i=1 uiai,j

Lj(b+ x)

)k

pk


= −

p−1∑
b1=0

p−1∑
b2=0

p-Lj(b+x)

∑
0≤u1≤U1−1
0≤u2≤U2−1

logp Lj(b+ x)

−
p−1∑
b1=0

p−1∑
b2=0

p-Lj(b+x)

∑
0≤u1≤U1−1
0≤u2≤U2−1

∞∑
k=1

(−1)k−1

k

(∑2
i=1 uiai,j

Lj(b+ x)

)k

pk
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Since logp Lj(b + x) is independent of the ui’s, the first sum on the right side is the

first term in the statement of the theorem.

For the second sum, for each i, define ci in the range 0 ≤ ci ≤ p − 1 such that

Mi + ci ≡ bi (mod p). Then Uip+ bi = Mi + ci or Ui = Mi+ci−bi
p

. Then

U1 = Ū1 −→
p

−wj
a1,j

+ c1 − b1

p
, U2 = Ū2−u1

a1,j

a2,j

, where Ū2 −→
p

−1
a2,j

(wj + b1a1,j) + ci − bi
p

.

Now, consider for complex s,

U1−1∑
u1=0

U2−1∑
u2=0

(u1a1,j + u2a2,j)
−s

=

U1−1∑
u1=0

∞∑
u2=0

(u1a1,j + u2a2,j)
−s −

U1−1∑
u1=0

∞∑
u2=0

(u1a1,j + u2a2,j + U2a2,j)
−s.

The second sum is
∑U1−1

u1=0 ζ(s, u1a1,j +U2a2,j; a2,j). The first sum may also be split as

follows

U1−1∑
u1=0

∞∑
u2=0

(u1a1,j + u2a2,j)
−s

=
∞∑

u1=0

∞∑
u2=0

(u1a1,j + u2a2,j)
−s −

∞∑
u1=0

∞∑
u2=0

(u1a1,j + u2a2,j + U1a1,j)
−s

= ζ(s, (0, 0);Aj)− ζ(s, (U1, 0);Aj).

At s = −k, k = 0, 1, 2, . . ., by Corollaries (11) and (12) we obtain

U1−1∑
u1=0

U2−1∑
u2=0

(u1a1,j + u2a2,j)
k
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=
1

(k + 1)(k + 2)

[
Bk+2(0;Aj)−Bk+2(U1a1,j, 0;Aj)

]
+ S1

Bk+1(u1a1,j + U2a2,j; a2,j)

k + 1

to which we can apply the limits for the Ui to obtain

U1−1∑
u1=0

U2−1∑
u2=0

(u1a1,j + u2a2,j)
k

=
1

(k + 1)(k + 2)

[
Bk+2(0;Aj)−Bk+2(Ū1a1,j;Aj)

]
+ S1

Bk+1(Ū2a2,j; a2,j)

k + 1
.

Remark 43. In the case of zeta functions with one linear form, we can generalize

both the definition of ζp(s, x;Aj) and its derivative at s = 0 to the case of r sum-

mation variables. The results are recursive formulas based on p-adic zeta functions

with 1, . . . , r summation variables. The proofs begin with the definition of the p-adic

function

H(s, x;Aj) = lim
T→∞

M1−1∑
m1=0

. . .
Mr−1∑
mr=0

Lj(m+ x)−s, s ∈ Zp,

where p - Lj and T → ∞ summarizes the taking of r p-adic limits for M1 to Mr

given by

Mk −→
p
−wj +

∑k−1
i=1 miai,j
ak,j

.

The process for forming a difference equation analogous to (4.3) works in a reverse

manner as required by the taking of the p-adic limits, that is, the first step is to form

the expression

Mr−1∑
mr=0

Lj(m+ x)−s =
∞∑

mr=0

Lj(m+ x)−s −
∞∑

mr=Mr

Lj(m+ x)−s,

then take the limit

Mr −→
p
−wj +

∑r−1
i=1 miai,j
ar,j

,
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to give a final term equal to a constant times a (Hurwitz) zeta function with one

summation variable, and so on. The analogous lemmas and theorems in the remainder

of this Section (4.3) then follow relatively easily. However, the relative ease with

which these results can be obtained for general r will not prove to be the case for zeta

functions with more than one linear form, which, in view of our goal relating to the

Gross Conjecture, are our primary concern.

4.4 p-adic zeta functions with two linear forms

4.4.1 Definition

We now want to define a p-adic zeta function which solves the interpolation problem

for a regularized zeta function defined as follows.

Definition 44. Let

ζ∗(s, x;A) =
∞∑

m1=0

∞∑
m2=0

p-
∏2
j=1 Lj(m+x)

2∏
j=1

Lj(m+ x)−s Re(s) > 1. (4.12)

where Lj = Lj(m+ x) = m1a1,j +m2a2,j +wj and L1 is the conjugate of L2. We will

also write LL′ =
∏2

j=1 Lj(m + x). Here A = (ai,j) is a 2 × 2 matrix, where the first

and second columns are conjugated over a real quadratic number field F .

We have a similar setup to the case of one linear form: We suppose wj, a1,j and

a2,j are all integers in a quadratic field F and that a fixed prime p splits in F , say

p = pp′, where, again, if β ∈ p then |β|p < 1 and |β′|p = 1. We choose two sequences

of integers M1 and M2 where M1 −→
p
α and M2 −→

p
β for some α β ∈ Zp. Later we

will choose α and β to suit our purposes. And, finally, as in the remarks following

Definition (21), we use T →∞ to describe the taking of these two p-adic limits.



69

We want to define, for s ∈ Zp and A and Lj = Lj(m + x) as above, p-adic func-

tions of the form

H(s, x;A) = lim
T→∞

M1−1∑
m1=0

M2−1∑
m2=0
p-L1L2

2∏
j=1

Lj(m+ x)−s, (4.13)

We first note that (L1L2)−s is well-defined since p - L1L2, so that H(s, wj;A) is

well-defined if it converges. Again, that follows from Lemma (26). We can now show,

Lemma 45. H(s, x;A) exists and is continuous in s, x1 and x2 (and in wj).

Proof. Put W =
∏2

j=1 m1a1,j + m2a2,j + wj. To show convergence, note that if T

increases to T ′, the group of extra terms added to
∑M1−1

m1=0

∑M2−1
m2=0
p-W

W−s is

M ′1−1∑
m1=0

M ′2−1∑
m2=0
p-W

2∏
j=1

W−s −
M1−1∑
m1=0

M2−1∑
m2=0
p-W

2∏
j=1

W−s =

M1−1∑
m1=0

M ′2−1∑
m2=M2
p-W

W−s +

M ′1−1∑
m1=M1

M ′2−1∑
m2=0
p-W

W−s.

We claim the p-adic value of this group approaches zero as T →∞. Consider,

M1−1∑
m1=0

M ′2−1∑
m2=M2

p-
∏2
j=1 m1a1,j+m2a2,j+wj

2∏
j=1

(wj +
2∑
i=1

miai,j)
−s.

Fix a value of m1 and then consider

M ′2−1∑
m2=M2

p-
∏2
j=1 m1a1,j+m2a2,j+wj

2∏
j=1

(wj +
2∑
i=1

miai,j)
−s = (a2,1a2,2)−s

M ′2−1∑
m2=M2
p-m2+y1

2∏
j=1

(m2 + yj)
−s

where yj =
m1a1,j

a2,j
∈ Zp.

Since the number of terms in this sum is M ′
2 − M2 ≡ 0(mod pT ), we can apply
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Lemma (26). Then

∣∣∣∣ M ′2−1∑
m2=M2

p-
∏2
j=1 m1a1,j+m2a2,j+wj

2∏
j=1

(wj +
2∑
i=1

miai,j)
−s
∣∣∣∣
p

→ 0

as T →∞. The same argument applies to

M ′1−1∑
m1=M1

M ′2−1∑
m2=0

p-
∏2
j=1m1a1,j+m2a2,j+wj

2∏
j=1

(wj +
2∑
i=1

miai,j)
−s.

To show H(s, x;A) is continuous in s, we let |s1 − s2|p < p−r and nj = m1a1,j +

m2a2,j + wj, n ∈ Zp. Then,

|H(s1, x;A)−H(s2, x;A)|p = lim
T→∞

M1−1∑
m1=0

M2−1∑
m2=0

p-
∏2
j=1 nj

2∏
j=1

|n−s1j − n−s2j |p < p−r−1

by Lemma (24).

To show H(s, x;A) is continuous in x1, put w = x1, Lj = m1a1,j +m2a2,j + x2a2,j

and let |w1 − w2|p < p−r. Then, for some value of m1 and m2,

|H(s, x;A)−H(s, x;A)|p ≤ |
2∏
j=1

(Lj + w1a1,j)
−s −

2∏
j=1

(Lj + w2a1,j)
−s|p < p−r,

since for k = −s, k −→
p
−s, the difference has a term in (w1−w2). Similarly, H(s, x;A)

is continuous in x2.
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We now proceed to interpolate the complex zeta function

ζ∗(s, x;A) =
∞∑

m1=0

∞∑
m2=0
p-L1 L2

(L1(m+ x)L2(m+ x))−s

=
∞∑

m1=0

∞∑
m2=0
p-LL′

(LL′)−s

where Lj(m + x) = m1 a1,j + m2 a2,j + wj and the 2× 2 matrix A is now A = (ai,j).

We will require the following lemma.

Lemma 46. The complex zeta function

f(s, a, b) =
∞∑
n=0

(n+ a)−s(n+ b)−s, Re(s) >
1

2
,

where a, b are positive real numbers, has a meromorphic continuation to the whole

complex plane with a simple pole at s = 1
2
.

The special values at s = −k, k = 0, 1, 2, . . ., k ≡ 0(mod p− 1), are given by

f(−k, a, b) =
(k!)2

2

∑
j,l≥0

j+l=2k+1

Bl(1)

j! l!

∑
u,v≥0
u+v=k

(−1)j
(
j

u

)(
l − 1

v

)
[aj−ubu + bj−uau]. (4.14)

Proof. We follow Theorem (14) to first obtain,

f(s, a, b) = Γ(s)−2

∫ ∞
0

∫ ∞
0

e(1−a)t1+(1−b)t2

et1+t2 − 1
(t1t2)s−1dt1 dt2.

We set D1 = {t ∈ R2 | 0 ≤ t2 ≤ t1} and D2 = {t ∈ R2 | 0 ≤ t1 ≤ t2} to give

f(s, a, b) = Γ(s)−2

2∑
k=1

∫
Dk

e(1−a)t1+(1−b)t2

et1+t2 − 1
(t1t2)s−1dt1 dt2 = f1(s, a, b) + f2(s, a, b).

where, after the change of variables t = u(y), 0 < u, 0 ≤ y2 ≤ 1 , y1 = 1 as in
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Theorem (14), we have

f1(s, a, b) = Γ(s)−2

∫ ∞
0

du

∫ 1

0

eu(1−a)+u(1−b)y2

eu(1+y2) − 1
u2s−1 ys−1

2 dy2.

Using the usual keyhole integration path, we find at s = −k, k = 0, 1, 2, . . ., that

f1(−k, a, b) equals the coefficient of u2kyk in

k!2

2

∞∑
j=0

(−1)j
uj(a+ by)j

j!

∞∑
l=0

Bl(1)

l!
[u(1 + y)]l−1.

Similarly, f2(−k, a, b) equals the coefficient of u2kyk in

k!2

2

∞∑
j=0

(−1)j
uj(b+ ay)j

j!

∞∑
l=0

Bl(1)

l!
[u(1 + y)]l−1.

Adding the corresponding terms gives (4.14). (Note the sum of the corresponding

terms with l = 0 is included in this equation.)

We now choose values of α and β for the p-adic limits M1 −→
p
α and M2 −→

p
β. We

put α = −x1 and

−β = x2 +
m1 + x1

2
(
a1,1

a2,1

+
a1,2

a2,2

) = x2 +
m1 + x1

2
tr(

a1,1

a2,1

). (4.15)

Following the same procedure as in Theorem (31), for s ∈ C, s 6= 1, M1 and M2

positive integers, and L = L(m+ x), we put

S(s,M1,M2;A) = ζ(s, (x1, x2);A)− ζ(s, (x1 +M1, x2);A)−
M1−1∑
m1=0

M2−1∑
m2=0

N(L)−s.
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We also define,

Φ(s, t;A) = 2s−1N
− s

2
0 ζ(s, t),

where ζ(s, t) =
∑∞

n=0(n+x)−s is the Hurwitz zeta function andN0 = N(a1,1a2,2−a1,2a2,1

a2,1a2,2
).

By interchanging the columns of A if necessary, we can assume N0 > 0.

Theorem 47. At s = −k, k = 0, 1, 2, . . ., we have

lim
M1−→

p
α

lim
M2−→

p
β
S(−k,M1,M2;A) = Φ(−2k, x1;A).

Proof. By the definition of S, we have

S(s,M1,M2;A) = N(a2,1)−s
M1−1∑
m1=0

f(s, a, b),

where a = x2 + M2 + (m1 + x1)a1,1

a2,1
and b is the conjugate of a in F . According to

Lemma (46), the special values of f(s, a, b) at s = −k are polynomials in a and b,

explicitly given by

f(−k, a, b) =
(k!)2

2

∑
j,l≥0

j+l=2k+1

Bl(1)

j! l!

∑
u,v≥0
u+v=k

(−1)j
(
j

u

)(
l − 1

v

)
[aj−ubu + bj−uau].

We have Bl = 0 for all odd l except B1(1) = 1
2
. Hence, the contribution of all terms

with l odd is equal to

(k!)2

4(2k)!

(
2k

k

)
2(ab)k =

1

2
(ab)k.

In all other cases, j is odd since l is even. Therefore,

aj−ubu + bj−uau = (ab)u[aj−2u + bj−2u]
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where aj−2u + bj−2u is divisible by a+ b since j is odd. But in our case,

a+ b = 2(x2 +M2) + (m1 + x1)tr(
a1,1

a2,1

),

so that a + b −→
p

0 for M2 −→
p
β by our choice of β. Hence the contribution of all the

terms with l even vanishes in the limit M2 −→
p
β, which implies M2 →∞. Since,

lim
M2−→

p
β
a =

m1 + x1

2
(
a1,1

a2,1

− a1,2

a2,2

)

we obtain

lim
M2−→

p
−β
S(−k,M1,M2) = 2−2k−1Nk

0

M1−1∑
m1=0

(m1 + x1)2k.

But, with ζ(s, t) the Hurwitz zeta function,

M1−1∑
m1=0

(m1 + x1)2k = ζ(−2k, x1)− ζ(−2k, x1 +M1)

= − 1

2k + 1
[B2k+1(x1)−B2k+1(x1 +M1)].

Using B2k+1(0) = 0 again, we see that

lim
M1−→

p
α

lim
M2−→

p
β
S(−k,M1,M2;A) = −2−2k−1Nk

0

B2k+1(x1)

2k + 1

= Φ(−2k, x1;A),

Recall that by our definition of the ζ∗ notation, S∗(s,M1,M2;A) refers to the

Dirichlet series defining S(s,M1,M2;A) where all terms not relatively prime to p

have been removed. We now make the following assumption.
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Assumption 48.

lim
M1−→

p
α

lim
M2−→

p
β
S∗(−k,M1,M2;A) = Φ∗(−2k, x1;A).

This assumption is true for k −→
p

0 as discussed in Remark (41).

Stark, [65], has shown that the regularized Hurwitz zeta function, ζ∗(−2k, x1) is

interpolated by the p-adic Hurwitz zeta function ζp(s, x1), s ∈ Zp. This means that

the values Φ∗(−2k, x1;A) are p-adically interpolated by

Φp(s) = Φp(s, x1;A) = 2s−1N
− s

2
0 ζp(s, x1), s ∈ Zp.

Corollary 49. Under Assumption (48), we have for k ≡ 0(mod p−1), k = 0, 1, 2, . . .,

ζ∗(−k, x;A)− ζ∗(−k, (0, x2);A) = Φp(−2k, x1;A) +H(−k, x;A), (4.16)

where H(s, x;A) is the function of the p-adic variable s that we defined in (4.13).

Our next goal is to eliminate the term ζ∗(−k, (0, x2);A) in (4.16). To this end

we write x̃ = (x2, x1) and Ã =

a2,1 a2,2

a1,1 a1,2

, where, as usual, x = (x1, x2) and

A =

a1,1 a1,2

a2,1 a2,2

 . Then, since

ζ∗(−k, x;A) = ζ∗(−k, x̃; Ã), (4.17)

we have,

ζ∗(−k, (0, x2);A)− ζ∗(−k, (0, 0);A) = ζ∗(−k, (x2, 0); Ã)− ζ∗(−k, (0, 0); Ã)
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= Φp(−2k, x2; Ã) +H(−k, (x2, 0); Ã). (4.18)

Adding (4.16) and (4.18), we obtain,

ζ∗(−k, (x1, x2);A)− ζ∗(−k, (0, 0);A) = G(−k, x;A)

where,

G(−k, x;A) = H(−k, x;A) +H(−k, (x2, 0); Ã) + Φp(−2k, x1;A) + Φp(−2k, x2; Ã).

Finally, to eliminate the term ζ∗(−k, (0, x2);A) we develop a duplication formula, as

we did in (4.6), in the form

ζ∗(−k, 0;A) = G0(−k;A)

where

G0(s;A) =
1

22s − 4

∑
xi=0, 1

2
x 6=0

G(s, (x1, x2);A).

We are now ready to define the p-adic interpolation of the Shintani cone zeta function

ζ∗(s, x;A).

Definition 50. For s ∈ Zp, we define

ζp(s, x;A) = G(s, x : A) +G0(s, A).

We then have our second main theorem,

Theorem 51. Under assumption (48), ζp(s, x;A) is the unique p-adic zeta function
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that interpolates ζ∗(−k, x;A), indeed,

ζp(−k, x;A) = ζ∗(−k, x;A)

on a dense subset of values k ∈ Zp, namely k = 0, 1, 2, . . ., k ≡ 0(mod p− 1).

4.4.2 Derivative of p-adic ζp(s, x;A) at s = 0.

From the definition of ζp we immediately have the following theorem. Note that,

following the arguments of Stark [66] as discussed in Remark (41), assumption (48)

is not required in the case where s = 0.

Theorem 52. The derivative of ζp(s, x;A) at s = 0 is given by:

ζ ′p(0, x;A) = G′(0, x;A) +G′0(0;A). (4.19)

We can calculate the terms on the right side of (4.19) as follows. First,

G′0(0;A) = −1

9

∑
xi=0, 1

2
x 6=0

G′(0, (x1, x2);A) +
2

9
logp 2

∑
xi=0, 1

2
x 6=0

G(0, (x1, x2);A).

We will show how to calculate G′(0, x;A) below. The three terms in the second sum

are of the form

G(0, x;A) = H(0, x;A) +H(0, (x2, 0); Ã) + Φp(0, x1;A) + Φp(0, x2; Ã).

Note that,

H(0, x;A) = ζ(0, x;A)− ζ(0, 0;A) + E(T ),

where, as discussed in remark (41), E(T )→ 0 as T →∞. We can then evaluate the
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two remaining terms on the right side using Corollary (18). The term Φp(0, x1;A) is

simply 1
2
B1(x1) and Φp(0, x2; Ã) is 1

2
B1(x2).

Let us now consider the calculation of G′(0, x;A). We have,

G′(0, x;A) = H ′(0, x;A) +H ′(0, (x2, 0); Ã) + Φ′p(0, x1;A) + Φ′p(0, x2; Ã).

The term Φ′p(0, x1;A), (Φ′p(0, x2; Ã) is similar), is given by

Φ′p(0, x1;A) = (
1

2
logp 2− 1

4
logpN0)ζp(0, x1) +

1

2
ζ ′p(0, x1).

As discussed in Section (2.2), Stark [65] showed ζ ′p(0, x) = logp Γp(x), so both terms

in Φ′p(0, x1;A) can be readily calculated.

It remains to calculate H ′(0, x;A). We first need to generalize Theorem (42) to a

general statement for M1 −→
p
α and M2 −→

p
β where β = β(m1) and α, β ∈ Zp. Recall

that Lj = m1a1,j + m2a2,j + wj. To deal with the primality condition p - L for any

prime divisor of p in F , we restrict m1 and m2 to residue classes m1 ≡ a(mod p),

m2 ≡ b(mod p). Then p - L if and only if p - aa1,j + ba2,j + wj. So it is enough to

consider the subseries

Ha,b(s) = lim
M1−→

p
α

M1−1∑
m1=0

m1≡a(mod p)

lim
M2−→

p
β

M2−1∑
m2=0

m2≡b(mod p)

Lj(m+ x)−s, s ∈ Zp,

where β = γ+ δ m1 for fixed p-adic integers α, γ and δ, and a, b are two integers such

that 0 ≤ a, b < p and aa1,j + ba2,j + wj is relatively prime to p. We write,

m1 = a+ up, m2 = b+ vp.
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Then 0 ≤ m2 < M2 is equivalent to 0 ≤ v < V where V is the smallest integer such

that V p + b ≥ M2. Similarly, 0 ≤ m1 < M1 is equivalent to 0 ≤ u < U where U is

the smallest integer such that Up+ a ≥M1. Next we choose integers c, d such that

Up+ a = M1 + c, V p+ b = M2 + d, 0 ≤ c, d < p.

Then M1 −→
p
α, M2 −→

p
β means that

U −→
p
U0 =

(α + c− a)

p
∈ Zp and V −→

p

(γ +m1δ + d− b)
p

∈ Zp.

We also set,

V0 =
γ + aδ + d− b

p
∈ Zp.

We now introduce the p-adic generating series

G(x; a2,j) =
∞∑
k=1

(−1)k−1

k(k + 1)
Bk+1(x; a2,j)

( p

aa1,j + ba2,j + wj

)k
,

where the generating function for Bj(x; a) is, as usual,

t etx

eat − 1
=
∞∑
j=0

Bj(x; a)

j!
tj,

and, with Aj given as usual by (a1,j, a2,j)
t,

F (x;Aj) =
∞∑
k=1

(−1)k

k(k + 1)(k + 2)
Bk+2(x;Aj)

( p

aa1,j + ba2,j + wj

)k
,

where the generating function for Bj(x;Aj) is, as usual,

t2 etx

(ea1,jt − 1)(ea2,jt − 1)
=
∞∑
k=0

Bk(x;Aj)

k!
tk.
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We define, for Aj = (a1,j, a2,j)
t and Ãj = (a3,j, a2,j)

t

ha,b(w;α, β,Aj) = U0(V0+(U0−1)
δ

2
) logp(aa1,j+ba2,j+wj)−F (0;Aj)+F (U0a1,j;Aj)+T,

where

T =


F (V0a2,j + U0a3,j; Ãj)− F (V0a2,j; Ãj), if a3,j = a1,j + δa2,j 6= 0

U0G(V0a2,j; a2,j), if a3,j = 0.

We now prove a generalization of Theorem (42) in which Stark [66] considered

only the case a3,j = 0.

Theorem 53. With notation as above,

H ′a,b(0) = −ha,b(w;α, β,A).

Proof. After taking the derivative of Ha,b(s) term by term and setting s = 0, we need

to evaluate the p-adic limit of

−
U−1∑
u=0

V−1∑
v=0

logp[(aa1,j + ba2,j + wj) + (ua1,j + va2,j)p, ]

in the order M2 −→
p
β and then M1 −→

p
α. We expand the p-adic logarithm in the above

sum as,

logp(aa1,j + ba2,j + wj) +
∞∑
k=1

(−1)k−1

k

( ua1,j + va2,j

aa1,j + ba2,j + wj

)k
pk,

and choose two supplementary integer sequences W and Ω such that W −→
p
γ and
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Ω −→
p
δ. This allows us to write

M2 = W +m1Ω = W + (a+ up)Ω,

and,

V = V1 + uΩ, V1 =
W + aΩ + d− b

p

with,

V1 −→
p
V0 =

γ + aδ + d− b
p

as M2 −→
p
β. The theorem now follows from the following two lemmas.

Lemma 54. Let a3,j = a1,j + δa2,j. Then,

lim
M2−→

p
β

V−1∑
v=0

(ua1,j + va2,j)
k =

1

k + 1

[
Bk+1(ua3,j + V0a2,j; a2,j)−Bk+1(ua1,j; a2,j)

]
.

Proof. We need only to pass to the limit M2 −→
p
β on the right side of the polynomial

identity,

V−1∑
v=0

(ua1,j + va2,j)
k =

1

k + 1

[
Bk+1(ua1,j + (V1 + uΩ)a2,j; a2,j)−Bk+1(ua1,j; a2,j)

]
,

and observe,

ua1,j+(V1 +uΩ)a2,j = u(a1,j+Ωa2,j)+V1a2,j −→
p
u(a1,j+δa2,j)+V0a2,j = ua3,j+V0a2,j.

Lemma 55. If a3,j 6= 0, then,

U−1∑
u=0

Bk+1(ua3,j + x; a2,j) =
1

k + 2
[Bk+2(x+ Ua3,j; Ãj)−Bk+2(x; Ãj)].
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Proof. By definition,

∞∑
j=0

U−1∑
u=0

Bk(ua3,j + x; a2,j)

k!
tk =

U−1∑
u=0

tet(ua3,j+x)

eta2,j − 1

=
1

t

t2 et(Ua3,j+x) − t2 etx

(eta2,j − 1)(eta3,j − 1)
.

In the excluded case a3,j = 0, we have,

U−1∑
u=0

Bj+1(x; a2,j) = U Bj+1(x; a2,j).

We are now ready to pass to the limit M1 −→
p
α, or, equivalently, U −→

p
U0. First, we

observe

U−1∑
u=0

V−1∑
v=0

1 =
U−1∑
u=0

(V1 + uΩ) = U V1 +
ΩU(U − 1)

2
−→
p
U0(V0 +

δ(U0 − 1)

2
,

which yields the coefficient of logp(aa1,j +ba2,j +wj) in the statement of this Theorem

(53). Next we pass to the limit U −→
p
U0 in Lemma (55) in the case a3,j 6= 0 and

obtain,

lim
U−→

p
U0

U−1∑
u=0

lim
M2−→

p
β

V−1∑
v=0

(ua1,j + va2,j)
k

=
1

(k + 1)(k + 2)

[
Bk+2(V0a2,j + U0a,j3; Ãj)−Bk+2(V0a2,j; Ãj)

−Bk+2(U0a1,j;Aj) +Bk+2(0;Aj)

]
.
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In the case a3,j = 0, the right side of this equation is replaced by

1

(k + 1)(k + 2)

[
Bk+2(0;Aj)−Bk+2(U0 a1,j;Aj)

]
+

1

k + 1
U0Bk+1(V0 a2,j; a2,j).

This finishes the proof of Theorem (53).

Remark 56. The complexity of the calculations of the polynomials Bk grows like a

polynomial of degree k. Theorem (53) therefore represents a polynomial time algo-

rithm for the calculation of H ′a,b(0) to a specified number of p-adic digits.

Corollary 57. In the case of one linear form,

H ′(0, x;Aj) = −
p−1∑
a=0

p−1∑
b=0

p-(aa1,j+ba2,j+wj)

ha,b(wj;α, β,Aj).

In the case of two linear forms, where A = (A1, A2), we need to change notation and

write

ha,b(w;α, β,A) = ha,b(w1, α, β, A1) + ha,b(w2, α, β, A2)

to indicate the dependence on the linear form Aj. Then we have,

H ′(0, x;A) = −
p−1∑
a=0

p−1∑
b=0

p-N(aa1,1+ba2,1+w1)

ha,b(w2;α, β,A2).

This completes the final step in showing how to calculate the derivative of ζp(s, x;A)

at s = 0 to a specified number of p-dic digits.

Remark 58. Note that the choice of α = −x1 ∈ Q and

β = −(x2 +
m1 + x1

2
tr(

a1,1

a2,1

∈ Q
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for the p-adic limits M1 −→
p
α and M2 −→

p
β means we can remove the restriction that

p splits in the number field F from the calculations in the case of two linear forms.
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A Appendix

A.1 Stark’s conjecture

In order to prepare for the statement of the Gross-Stark conjecture, which is a p-adic

version of the Stark conjecture, we begin by briefly recalling an important special case

of the Stark conjecture. We follow the expositions of Stark’s Conjecture in Roblot [54],

Dummit [19] and Tate [68]. Let F be a number field and E be an abelian extension

of F with G = Gal(E/F ). Let S be a fixed finite set of places of F containing the

infinite places of F and the finite places ramified in E/F . For σ ∈ G = Gal(E/F ),

define the partial zeta function by the Dirichlet series

ζS(σ, s) =
∑

(a,S)=1
a⊆ZF
σa=σ

N(a)−s

where a runs through the integral ideals of F not divisible by any prime ideal contained

in S and such that the Artin symbol σa is equal to σ. We assume there exists an

infinite place v which is totally split in E/F and we fix w, a place of E dividing v.

We also assume Card S ≥ 2.

Conjecture 59. (Stark) Let m be the number of roots of unity contained in E. There

exists an S-unit ε ∈ E such that for all σ ∈ G,

log|σ(ε)|w = −m ζ ′S(σ, 0). (A.1)

Furthermore, E( m
√
ε)/F is an abelian extension and if Card S ≥ 3 then ε, denoted

ε(E/F,w), is a (Stark) unit.

Assuming the conjecture is true, the application to the Hilbert’s 12-th problem, (how

to construct finite abelian extension fields of any number field F using analytic func-
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tions depending only on F ), is given by the following:

Theorem 60. (Roblot, [54]) Let F Stark be the subfield of C generated over F by

all the units ε(E/F,w) where E/F runs through the finite abelian extensions of F

in which v is totally split and w runs through the infinite places of E dividing v.

Then, the maximal real abelian extension of F is contained in F Stark or, equivalently,

for any finite real abelian extension L/F , there exist Stark units ε1, . . . , εr such that

L ⊂ F (ε1, . . . , εr)

In [61] Stark proved this conjecture for F = Q and in [64] he proved it, using modular

forms, for the case where d is a negative integer. The case of d a positive integer

remains an open conjecture. Considerable significance is attached to the fact that Q

and Q(
√
−d) are the only number fields with a finite number of units.

A.2 Gross-Stark conjecture

The following exposition of the Gross-Stark conjecture is included here as the mo-

tivation for the importance of being able to calculate the derivative of p-adic zeta

functions at s = 0. The interest is to verify the Gross conjecture in particular cases

to a high degree of p-adic accuracy. The p-adic version of Stark’s conjecture is due

to Gross. We follow Gross [27] and Dasgupta [16]. Let F be a totally real number

field and E be a CM field (a totally imaginary quadratic extension of a totally real

field) which is an abelian extension of F . For each place P of E we let EP denote the

completion at P. If P is finite we let NP denote the cardinality of the residue field

of EP. The restriction of the usual absolute value map |.| to E∗P is the normalized
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local absolute value for which we have the formulas,

‖ α ‖P=


NHP/R(α) P complex

sign(α).α P real

(NP)−ordP(α) P finite.

If we restrict the p-adic absolute value ‖ . ‖p to the subgroup E∗P we obtain a local

absolute value with the formulas,

‖ α ‖P,p=



1 P complex

sign(α) P real

(NP)−ordP(α) P finite, not dividing p

(NP)−ordP(α)NHP/Qp(α) P divides p.

Let p be a prime of the totally real number field F lying above the rational prime p

of Q. Let E be a finite abelian extension of F such that p splits completely in E. Let

S be a finite set of primes/places of F which contain all the archimedean primes, the

primes lying above p, and all the primes which ramify in E. Note S contains a (finite)

place p which splits completely in E. Assume #S ≥ 3, since this only excludes the

case E = F = Q. Write R = S − p.

For σ ∈ G, define the complex partial zeta functions of E/F relative to the sets

S and R as:

ζS(σ, s) =
∑

(a,S)=1
σa=σ

Na−s; ζR(σ, s) =
∑

(a,R)=1
σa=σ

Na−s, (A.2)

where the sums are over all integral ideals a ⊂ ZF that are relatively prime to the

elements of S and R respectively, and whose associated Frobenius element σa is equal
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to σ. These series converge for Re(s) > 1 and have meromorphic continuation to C,

being regular outside s = 1. They are related by the formula

ζS(σ, s) = (1−Norm(p)−s)ζR(σ, s). (A.3)

Hence, ζS(σ, 0) = 0 and ζ ′S(σ, 0) = logNorm(p).ζR(σ, 0) for all σ ∈ G. The values of

each series at non-positive integers are rational and mζS(σ, s) is an integer (Deligne

and Ribet [18] and Siegel [59]).

Deligne and Ribet [18] and Cassou-Noguès [11] independently proved the existence

of a Qp-valued function ζS, p(σ, s), meromorphic on Zp and regular outside s = 1, such

that

ζS, p(σ, k) = ζS(σ, k) (A.4)

for non-positive integers k ≡ 0(mod d) where d = [F (µ2p) : F ]. In particular,

ζS, p(σ, 0) = ζS(σ, 0) = 0. (A.5)

Define the group,

Up = {ε ∈ E∗ : ||ε||P = 1 if P does not divide p}

Here P ranges over all the finite and archimedean places of E. For each divisor

P of p in H, extend the P-adic valuation ordP : Up → Z to the tensor product

QUp = Q⊗ Up → Q.

Proposition 61. (3.8, [27]) Let P be a divisor of p in E. Then there is a unique
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element u = u(P) in QUp = Q⊗Z Up such that

−ζ ′S(σ, 0) = log||uσ||P for all σ ∈ G. (A.6)

and,

ζR(σ, 0) = ordP(uσ) for all σ ∈ G. (A.7)

Since p splits completely in E, we have E ⊂ EP
∼= Fp.

Gross made the Conjecture for the same element u that:

Conjecture 62. (2.12, [27]) The element u of Equations (A.6) and (A.7) satisfies

−ζ ′S,p(σ, 0) = logp||uσ||P,p = −logpNormFp/Qp(u
σ) for all σ ∈ G. (A.8)

Gross [27] proved this conjecture in the case F = Q using formulas developed

by Hurwitz and Ferrero-Greenberg [22], the latter of which was in turn derived from

the Gross-Koblitz formula proved in [29]. In [41], page 71, Koblitz gave a further

proof of the formula and observed (page 45) that “it would be interesting to find an

elementary proof”. Such a proof was provided by Robert [53] which needs to be read

in conjunction with Robert [52].
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