

Question			Answer	Marks	Guidance
1	(b)	(i)		1	ALLOW correct structural OR displayed OR skeletal formula ALLOW combination of formulae as long as unambiguous
		(ii)	$6 \checkmark$	1	NO ECF from (i)
		(iii)	Two of the three structures below with 1 mark for each correct structure	2	ALLOW correct structural OR displayed OR skeletal formula ALLOW combination of formulae as long as unambiguous Structures must clearly show position of Br on benzene ring in relation to side chain ALLOW ECF from (i) if BOTH Br atoms on same carbon on side chain DO NOT ALLOW ECF from (i) if EITHER bromine has been substituted onto the benzene ring
		(iv)	reaction 1: electrophilic addition \checkmark reaction 2: electrophilic substitution	2	ALLOW electrophile addition ALLOW electrophile substitution ALLOW other phonetic spellings for electrophilic, e.g. electrophylic, etc.
			Total	10	

Question			Answer	Marks	Guidance
2	(a)	(i)	photodegradable OR light/sunlight/UV \checkmark	1	IGNORE IR/heat IGNORE bacteria DO NOT ALLOW burn/combustion
		(ii)		1	DO NOT ALLOW structure with any C shown (especially as part of $\mathrm{C}=\mathrm{O}$) DO NOT ALLOW OH-
	(b)	(i)	ammonia/ NH_{3} AND ethanol OR ethanolic ammonia \checkmark	1	ALLOW ammonia in a sealed tube IGNORE heat ALLOW dilute ethanolic ammonia $/ \mathrm{NH}_{3}$ DO NOT ALLOW any reference to water or hydroxide ions, e.g. DO NOT ALLOW dilute ethanolic $\mathrm{NH}_{3}(\mathbf{a q})$ e.g. DO NOT ALLOW ethanolic $\mathrm{NH}_{3}+\mathrm{NaOH}$
		(ii)	Nitrogen electron pair/lone pair accepts a proton/ $/ \mathrm{H}^{+}$ Requires position of electron pair on N $\mathrm{Cl}^{-} \mathrm{H}_{3} \mathrm{~N}^{+}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{~N}^{+} \mathrm{H}_{3} \mathrm{Cl}^{-}$ $\mathrm{OR} \mathrm{CIH} 33\left(\mathrm{CH}_{2}\right)_{4} \mathrm{NH}_{3} \mathrm{Cl} \checkmark$	2	DO NOT ALLOW Nitrogen/N lone pair accepts hydrogen proton $/ H^{+}$required ALLOW nitrogen donates an electron pair IGNORE NH_{2} group donates electron pair ALLOW + charge (if shown) on N or H of NH_{3} e.g. $\mathrm{Cl}^{-} \mathrm{H}_{3} \mathrm{~N}^{+}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{NH}_{3}{ }^{+} \mathrm{Cl}^{-}$ DO NOT ALLOW just $\mathrm{H}_{3} \mathrm{~N}^{+}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{NH}_{3}{ }^{+}$ i.e. $\mathbf{2 \times \mathrm { Cl } ^ { - }}$ MUST be included

Question			Answer	Marks	Guidance
2	(c)	(i)	One mark for each correct structure	2	ALLOW correct structural OR displayed OR skeletal formula ALLOW combination of formulae as long as unambiguous ALLOW COO ${ }^{-}$ '-' charge must be on O of COO^{-}but ALLOW + sign shown as ${ }^{+} \mathrm{NH}_{3} \mathrm{OR} \mathrm{NH}_{3}{ }^{+}$ BUT only one NH_{2} can be protonated in zwitterion
		(ii)	Zwitterion at $\mathrm{pH} 9.60 /$ higher pH has one NH_{2} group OR Zwitterion OR amino acid at $\mathrm{pH} 9.60 /$ higher pH has a side chain with an NH_{2} group \checkmark Note: ASSUME that 'it' refers to zwitterion	1	ALLOW amino acid at 9.60/higher pH has two NH_{2} groups ALLOW amino acid at 9.60/higher pH has more NH_{2} groups ALLOW amine OR amino for NH_{2} IGNORE CHOH slightly acidic
			Total	10	

Question			Answer	Marks	Guidance
3	(a)	(i)		2	ALLOW trans-isomer has Hs on opposite sides OR trans-isomer has branches on opposite sides OR trans-isomer has same groups on opposite sides DO NOT ALLOW 'similar groups' for 'same groups' OR trans-isomer has lowest priority groups on opposite sides OR trans-isomer has highest priority groups on opposite sides For explanation, ALLOW a clear diagram, ie: cis ALLOW response in terms of packing, e.g. molecules/chains of trans-isomer pack close together OR molecules/chains of cis-isomer do not pack closely together DO NOT ALLOW 'carbon atoms' for 'molecules/chains'
		(ii)	heart disease/strokes \checkmark	1	ALLOW any named heart/circulatory complaint e.g. atheroma, atherosclerosis ALLOW increase in bad cholesterol/LDL ALLOW high in LDLs ALLOW fat lining arteries ALLOW high blood pressure ALLOW hypertension IGNORE reference to HDLs and cholesterol on its own

Question		Answer	Marks	Guidance		
(b)	(i)	27	1			
		(c)	(i)	alcohol \checkmark		IGNORE OH OR hydroxyl OR hydroxy DO NOT ALLOW phenol OR hydroxide

Question		Answer	Marks	Guidance
3	(iii)			ANNOTATIONS MUST BE USED
		1st step		
		reagent: $\mathrm{NaBH}_{4} \checkmark$		ALLOW $\mathrm{H}_{2} / \mathrm{Ni}$ (catalyst) DO NOT ALLOW LiAlH_{4} (because LiAlH_{4} reduces COOH)
		functional groups: aldehyde forms an alcohol \checkmark names required		IGNORE type of reaction or conditions IGNORE CHO OR OH IGNORE carbonyl OR hydroxyl OR hydroxy DO NOT ALLOW phenol OR hydroxide
		2nd step Marks ONLY available from correct hydroxycarboxylic acid formed in 1st step		
		reagent: Acid $\mathrm{OR} \mathrm{H}^{+}$(catalyst) \checkmark		ALLOW named acid/correct formula IGNORE dilute/concentrated
		functional groups: alcohol and carboxylic acid / carboxyl group form an ester \checkmark names required		IGNORE OH, $\mathrm{COOH}, \mathrm{COO}$, IGNORE hydroxyl OR hydroxy DO NOT ALLOW phenol OR hydroxide
		Total	12	

Question

Question			Answer	Marks	Guidance
4	(b)		```\(2 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}+\mathrm{KOH} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOK}\) OR \(2 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}+\mathrm{OH}^{-} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}\) 1 mark for \(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OH} \checkmark\) 1 mark for \(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOK}\) OR \(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\) OR \(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-} \checkmark\) 1 mark for complete fully correct balanced equation (i.e. as above) \(\checkmark\)```	3	ALLOW correct structural OR displayed OR skeletal formula ALLOW combination of formulae as long as unambiguous ALLOW use of NaOH instead of KOH throughout, i.e. $2 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}+\mathrm{NaOH} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COONa}$ ALLOW $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-} \mathrm{K}^{+}$
	(c)			3	ALLOW correct structural OR displayed OR skeletal formula ALLOW combination of formulae as long as unambiguous e.g. ALLOW

Question			Answer	Marks	Guidance
4	(d)	(i)		4	ANNOTATIONS MUST BE USED IGNORE connectivity on OH of product Curly arrow MUST start from - sign of R^{-}OR from lone pair on R^{-} lone pair does not need to be shown on R^{-} IGNORE any curly arrows shown for stage 2 i.e. in intermediate
		(ii)	 OR	1	ALLOW correct structural OR displayed OR skeletal formula ALLOW combination of formulae as long as unambiguous IGNORE $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Li}$ OR $\mathrm{C}_{4} \mathrm{H}_{9}{ }^{-\mathrm{Li}^{-}}$
			Total	17	

Question			Answer	Marks	Guidance
5	(a)	(i)	(number of esters) from number of peaks/retention times AND (proportions) from (relative) peak areas \checkmark	1	BOTH points for 1 mark ALLOW peak heights OR sizes of peaks
		(ii)	(Some esters may have) same retention time \checkmark	1	ALLOW (very) similar retention times ALLOW some esters come out at same time
	(b)		Ester structure 3 marks STICKS IF there are sticks are shown in $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OR}$ in CH_{3} DO NOT AWARD when first seen DO NOT ALLOW sticks on the benzene ring, Sticks on benzene ring must be interpreted as methyl groups e.g.	3	ANNOTATIONS MUST BE USED ALLOW correct structural OR displayed OR skeletal formula ALLOW combination of formulae as long as unambiguous NO ECF for structure IF the structure is NOT fully correct, award the following marks: IF ESTER shown AND contains ONE of the following: $\mathrm{C}_{6} \mathrm{H}_{5}$ OR $\mathrm{CH}_{3} \mathrm{C}=\mathrm{O}$ OR $\mathrm{CH}_{2} \mathrm{CH}_{2}$ IF ESTER shown AND contains TWO of the following: $\mathrm{C}_{6} \mathrm{H}_{5}$ OR CH $\mathrm{O}_{3} \mathrm{C}=\mathrm{O}$ OR CH CH_{2} IF ESTER contains $\mathrm{C}_{6} \mathrm{H}_{5}$ AND $\mathrm{CH}_{2} \mathrm{CH}_{2}$ BUT ester link is reversed 2 marks $\checkmark \checkmark$ DO NOT ALLOW $\mathrm{CH}_{2} \mathrm{CH}_{2}$ with H on any adjacent Cs e.g. DO NOT ALLOW $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$, etc. IGNORE any name

