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Preface

The history of number theory extends over thousands of years. Some early results
were found on stone tablets dating from the Babylonian era almost 4000 years ago.
Humans have always been fascinated by numbers and in particular by whole numbers,
their patterns and relationships.

This book attempts to be different to introductory number theory textbooks. It
is a reader rather than a study book. It is written for inquisitive 16 to 19 year
olds, or indeed, inquisitive minds of any age. It presents a minimum amount of
the background theory of each topic before tackling some of the major results in
number theory. It assumes no mathematical knowledge beyond high school algebra.
It presents the theory of trigonometry and calculus in a progressive manner proving
only the results that are needed for the number theory topic being studied.

Why present a number theory text that discusses simple material like the proof
of the triangle inequality in an early chapter and the complicated material of the
Riemann hypothesis with its background reliance on the gamma and zeta functions
in its concluding chapter and the prime number theorem on the way? Maybe we
can think of it as walking a chain of mountains – we start with the foothills, then
some mountains are easy, others are very steep and difficult – the whole journey
is a fascinating insight into the beauty of nature given us by our persistence and
perspiration.

This book succeeds if it lures you into the fascinating beauty of number theory.
Following Euler, we regard number theory as about all numbers, not only integers
but also e and π and ζ(2). Why accept the challenge of number theory? Well, like
Everest, as Hillary said, I climbed it “because it’s there”.

This book’s inspiration is the apprenticeship system, say for becoming not just
a cook, but a chef, hence the culinary references. In many countries you obtain an
apprenticeship by knocking on a door and asking a master chef to take you under his
wing. For the first three years of your apprenticeship you are required to attend a
vocational college offering cooking trade training for one day a week. The other six
days you are at the beck and call of the master.

The aim of this book is to allow the young reader to read and study and understand
some of the great results in number theory, even though the reader is obviously just
an apprentice. Hopefully you too will know enough from the “shopping excursions”
and brief introductions to be able to “cook alongside” and appreciate the wide range
of wonderful results put together by the master chefs of number theory, the greats
like Pythagoras, Diophantus, Fermat, Newton, Euler, Gauss, Legendre, Lagrange,
Riemann, Erdös and Selberg. Hopefully you too will be inspired to do the work
needed to become a master number theorist. There’s a host of unexplored areas in
number theory just as there are a host of unexplored tastes in most of our mouths.
Like Wiles, you may want to find that conjectured recipe, to savor the loneliness and
frustrations of the long years in the cold attic in the hope that one day you will taste



the adulations of your peers.
Of course, if you want to solve any of the many challenges left in number theory,

to become a master number theorist, then you need to go through the corresponding
“blood, sweat and tears” process to becoming a chef. As Euler said to his Tsar patron
who assumed as king that he could simply have a quick course to do what Euler did,
“Alas, my liege, there are no kings in mathematics”.



End Signals

The end of the proof of a Theorem is signaled with a box, ◻
The end of an Example of more than one line is signaled with a diamond, ◇.

Greek Alphabet Letters used in this Book

Letter Spoken as

α alpha
β beta
γ gamma

∆, δ delta
ε epsilon
ζ zeta
θ theta
µ mu
ξ xi(kigh)

Π, π pi
ρ rho

Σ, σ sigma
τ tau
φ phi

Ψ, ψ psi(sigh)
Ω, ω omega
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Mathematics and Number Theory
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We begin with a brief review of “what is mathematics?” and “what is the branch
of mathematics called number theory?”

Mathematics is a branch of philosophy which itself is the study of the nature of,
and principles underlying, our universe. All disciplines of science are branches of
philosophy. They all need mathematics and accordingly, mathematics is sometimes
called the “Queen of the Sciences”. Many of the early philosophers, from Plato to
Descartes to Bertand Russell, also made significant contributions to mathematics.

You apprentice to a branch of science or mathematics by becoming a graduate
student. If your masters judge you have a broad knowledge of mathematics and have
made a significant original contribution through supervised research to their branch of
science or mathematics, then their university awards you a Doctorate in Philosophy.



Chapter 1

Our field of study

Course: Perusing the Menu I

1.1 What is mathematics?

Mathematics is the logical output of our minds when we look at situations and see
physical commonalities at the highest level of abstraction.

For example, if Mary, Martha and Jane each have a child, then the “. . .” mothers
altogether have “. . .” children. To describe what is common to the group of mothers
and to the group of children, we invent a word, namely, “three”.

We have used all of logic and intuition, analysis and construction, generality and
individuality1 even in this simple example. There may be other commonalities: the
mothers may all be blondes, the children may all be boys, the mothers may all be
wearing red lipstick, the children may all be laughing. But at the highest level
of physical commonalities or abstraction, there are three of each of mother, child,
blonde, red lipstick-wearer, laugher. The mother-child combinations may belong to
three families, live in three separate houses, travel in three different cars. The “three”
survives into these different constructions, while the blonde, boy, red-lipstick, laughing
abstractions do not.

The highest level of abstraction we call numbers: one, two, three, four, etc. Each
abstraction defines a group of a different size.

Our abstractions do not just apply to numbers. We see similar commonalities
in geometric abstractions such as points, lines, triangles, circles, spheres, and other
geometric objects. Mathematicians have extended their abstractions way beyond
these!

Interestingly, psychologists distinguish the left and right sides of the human brain.
The left side is best at logic, language, numbers and analytical thinking – in math-
ematics, at arithmetic and algebra. The right side is best at expressive and creative

1Words used in “What is Mathematics” by Courant and Adler

4
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tasks – in mathematics at geometry and topology. This may explain why some stu-
dents are good at arithmetic and algebra and struggle with geometry and shapes,
and vice versa. It is certainly true that few mathematicians are equally adept in all
branches of mathematics.

1.2 Mathematical operations

As we work with numbers, we intuitively begin to define operations. We can add
two more mothers to our group of three, we can subtract one mother, we can put
this group in a car and a similar group in five other cars and we know how many
mothers we have altogether by multiplication. When the cars reach a destination
we can divide the exiting occupants into two larger groups. We can do all these
operations of +,−,×,÷ in our head, but we do this in shorthand, more importantly,
we internationalize the language of our calculations. I cannot talk Portuguese to a
Brazilian, but we both know the answer to 2 + 2 =? written on a piece of paper.

1.3 Number symbols

Many civilizations developed their different symbols for numbers. What has be-
come international is due to the Arabic-Hindu traditions. The list is short, namely,
0,1,2,3,4,5,6,7,8,9. Why only these? Maybe because we have this many fingers or
toes. More probably, because we don’t need any more and any less doesn’t work as
efficiently for us. Of course, for computers it is different, they just need two: 0,1 for
off/on.
Back to our operations +,−,×,÷. We need only the ten symbols for an infinite num-
ber of numbers because we have accepted an international place number system. We
know what 547 means. We know what “tens” are and that here we have 4 of them.
We know “hundreds” are and that here we have 5 of them. And we know what
“units” are and that here we have 7 of them. For us it is now easy to calculate
the arithmetic problems 237 + 4378 or 367 × 114 or 289 ÷ 17. The poor old Romans
with their number symbols may have tried to add LMCIX + CLXIV, pity them if
it became LMCIX ×CLXIV .

1.4 Algebra

We also need the concept of negative numbers. If I try to remove 8 objects from a
set of 6 objects, I come up short by 2. I write 6 − 8 = −2.
We come to “how many”. If we can put 17 people in each bus and we have 289 people
then we know how many buses we need. We just need division 289 ÷ 17 = 17.
It is an easy step to algebra. If one of our buses already has 11 people in it, how
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many more can it take? We define “variable”, we solve the equation,

x + 11 = 17

To do this, we logically set up equality rules, that we can add or subtract the same
number from both sides of the equation, or multiply or divide both sides of the
equation by the same number. Then,

x + 11 = 17⇒ x + 11 − 11 = 17 − 11⇒ x = 6

where we have added a logic symbol ⇒ meaning “if . . . then” or “implies.”

1.5 Fractions and Decimals

Division leads us to the need for fractions,

If I divide a pizza into four pieces and eat one piece,
how much is left?

I need the symbol
3

4
for three-fourths,

and to decimals,

I know a dollar is 100 cents, but if I have one dollar
and divide it among my four friends,

how many dollars did each friend get?

I need the symbol 0.25 for 25 cents in terms of 1 dollar

For the latter, we therefore extend our place number system to constructions such
as 37.419 and we know what this means in terms of “tenths”, “hundredths”, “thou-
sandths”.

For fractions, we learn that a fraction in lowest terms is the head of an infinite
family, for example,

3

4
= 6

8
= 9

12
= . . . = 3n

4n
,n a non-zero integer,

and that we can add and subtract fractions by converting to them to the appropriate
member of the respective family, for example,

5

6
+ 3

4
= 20

24
+ 18

24
= 38

24
= 19

12
= 1

7

12

The last two equivalences required us to prove cancellation and define a notation
for mixed fractions.
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1.6 Doing mathematics: Euclid’s Geometry

How do we “do” mathematics?
Each branch of mathematics, beginning with arithmetic, algebra and geometry, has
its own set of notations and axioms from which are developed definitions, then proofs
or theorems. All the axioms are based on logic and intuition, analysis and construc-
tion, generality and individuality.

A very long time ago, Euclid (circa 300 BC) stated five axioms or postulates for
geometry on a plane or flat surface, the most logical environment since the earth was,
after all, flat.

1. A straight line segment can be drawn joining any two points.

2. Any straight line segment can be extended indefinitely in a straight line.

3. Given any straight line segment, a circle can be drawn having one end as the
center and the segment as a radius.

4. All right angles are congruent.

5. If two lines are drawn which intersect a third line in such a way that the sum of
the inner angles is less than two right angles, then the two lines must invariably
intersect one another on that side if extended far enough.
(sic: parallel lines never meet),
(sic: the alternate interior angles formed by a line intersecting two parallel lines
are equal)
Diagrammatically the last version of the fifth axiom proves theorems such as if
l1 ∥ l2 then for the angles, α = β.

l1

l2

α

β

Implied in the axioms is a set of definitions for point, line, angle, right angle and
circle. If you think the definitions are obvious, try writing a definition of a point or
a line or an angle.
A typical theorem is that the sum of the interior angles of a triangle is two right
angles or, in our extended notation, 1800. (To prove it, draw any triangle and a line
through any vertex parallel to the opposite side and use the fifth axiom).
Before we consider the axioms for numbers, let us first extend our mathematical
vocabulary.
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1.7 Notation

1.7.1 Logic Notation

If P and Q are statements we have,

Symbol Meaning

P ⇒ Q If P then Q or P implies Q
P ⇔ Q P and Q are equivalent statements, or

P implies Q and Q implies P

1.7.2 Sum and Product notation

Symbol Meaning

Sum:
n

∑
i=1
ai = a1 + a2 + . . . + an

Product:
n

∏
i=1
ai = a1a2⋯an

1.7.3 Set Notation

A set is a collection of objects. For our purposes, the objects are numbers, functions
or polynomials. We use the following notation.

Symbol Meaning

A = {x, y, z, ...} A is the set of objects or elements x, y, z, ...
∣ such that

x ∈ A x is an element of set A
x ∉ A x is not an element of set A
A ∪B the union of two sets A and B

A ∪B = {x ∣ x ∈ A or x ∈ B} the union of two sets A,B is the set of elements x
such that x is in A or x is in B

A ∩B the intersection of two sets A and B
A ∩B = {x ∣ x ∈ A and x ∈ B} the intersection of two sets A,B is the set of elements

x such that x is in A and x is in B
A ⊂ B A is contained within B or A is a subset of B

that is, every element of A is also in B
A ⊃ B A contains B or B is a subset of A

that is, every element of B is also in A
A = B Sets are equal if A ⊂ B and A ⊃ B

−we say equality is double containment
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1.8 Number Sets

We define,

Definition 1. natural numbers N, integers Z and rational numbers Q
The natural numbers, integers and rationals are defined by,

N = {1,2,3, . . .}
Z = {0,±1,±2,±3, . . .}
Q = {a

b
∣ a, b ∈ Z, b ≠ 0}

Note 1. We extend set notation to expressions such as,
Z+ are the positive integers {1,2, . . .}
Q − {0} or Q/{0} are the rational numbers with 0 removed.

The Pythagorean Greeks discovered there are other numbers, for example the
length of the hypotenuse of a right triangle whose other sides are both 1. They didn’t
have the symbol

√
2 for its length. We shall prove below that

√
2 is not a rational

number. We call these numbers irrational. Both π and e are irrational as we shall
prove later. There is no symbol for the set of irrational numbers but there is for the
union of Q and the irrationals. We define,

Definition 2. real numbers
The real numbers are defined by R = Q ∪ {x∣x is irrational}

Example 1. 0,−4,0.87,− 7

11
,
√

3, π ∈ R.

Finally, let’s skip ahead and solve a quadratic equation such as x2 + 1 = 0. Since
x2 is always positive (we need to prove this), then when you add it to 1 you cannot
possibly obtain 0 as a result. We define imaginary or complex numbers by first saying,

x2 + 1 = 0⇒ x2 = −1⇒ x = ±
√
−1⇒ x = ±i, where i =

√
−1

then we have,

Definition 3. complex numbers
The complex numbers are defined by C = {x + iy ∣ x, y ∈ R, i =

√
−1}

We can write N ⊂ Z ⊂ Q ⊂ R ⊂ C, meaning each left set is contained within the
one on its right. While number theory is predominantly the study of the integers, we
shall find its proofs require access to the other four basic sets.
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1.9 Doing Mathematics - Axioms of Real Numbers

If we apply our logic and intuition, analysis and construction, generality and individ-
uality to the real numbers under the operations of addition and multiplication, we
accept, without proof, the following axioms.

1. Closure of R under addition and multiplication.
For all a, b ∈ R, both a + b and a × b are in R.

2. Associativity of addition and multiplication.
For all a, b, c ∈ R, the following equalities hold:

a + (b + c) = (a + b) + c and a × (b × c) = (a × b) × c.

3. Commutativity of addition and multiplication.
For all a, b ∈ R, the following equalities hold:

a + b = b + a and a × b = b × a.

4. Existence of additive and multiplicative identity elements.
There exists an element of R called the additive identity element and denoted
by 0, such that for all a ∈ R, a + 0 = a.
Likewise, there is an element of R, called the multiplicative identity element
and denoted by 1, such that for all a, b ∈ R, a × 1 = a.

5. Existence of additive inverses and multiplicative inverses.
For every a ∈ R, there exists an element −a ∈ R, such that a + (−a) = 0.
Similarly, for any a ∈ R other than 0, there exists an element a−1 ∈ R such that
a × a−1 = 1.
(The expressions a+(−b) and a× b−1 are also denoted a− b and

a

b
respectively.)

In other words, subtraction and division operations exist.

6. Distributivity of multiplication over addition.
For all a, b, c ∈ R, the following equality holds,

a × (b + c) = (a × b) + (a × c).

7. R is ordered, meaning that for all real numbers

� If x ≥ y then x + z ≥ y + z
� If x ≥ 0 and y ≥ 0 then xy ≥ 0.

In dealing with equations, we assume also the additive and multiplicative laws of
equality, namely, we can add the same number to both sides of an equation and we
can multiply both sides of an equation by the same number.

We will use these axioms to prove theorems. Here is a simple example.
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Theorem 1. (Additive Cancellation)
For all real numbers x, y, x,

x + z = y + z ⇒ x = y

In mathematical language: ∀x, y, z ∈ R, x + z = y + z ⇒ x = y.
(translation: for all real numbers x, y, z, if x + z = y + z then x = y. )

Proof.

x + z = y + z
⇒ (x + z) + (−z) = (y + z) + (−z) (Law of equality)
⇒ (x + (z + (−z)) = y + (z + (−z)) (Associative axiom)
⇒ x + 0 = y + 0 (Inverses axiom)
⇒ x = y (Identity axiom)

1.10 Further extending our Vocabulary

Mathematics is the language of numbers and the other abstracted symbols describing
the highest level of abstraction from physical objects (points, lines, angles, triangles,
etc.). Its alphabet includes the symbols and notation met above. Its sentences are
constructed from the symbols and notation. The axioms are the rules of its grammar.
Just as we learned our native language in steps, so we learn mathematics in steps.
Just as we had to learn vocabulary and how to spell before we could apply the rules
of grammar to make intelligible sentences, so we have to learn the meaning of terms
and notation such as:

� Divisibility in Z: we say a divides b, written a∣b if b = ac, c ∈ Z.

� Primes: a natural number greater than 1 is a prime if it is only divisible by
itself and 1. We will use P for the set of all primes.

� Composites: the natural numbers other than the primes or 1.

� Natural number exponents or powers. We define an, a, n ∈ N by

an =
n times

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
a × a ×⋯ × a

In particular,

– Squares: a2 = a × a
– Cubes: a3 = a × a × a
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� Rational exponents and roots: we define n
√
a, a, n ∈ N by n

√
a = a 1

n where

n times
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
a

1
n × a 1

n ×⋯ × a 1
n = a

In particular,

– Square roots:
√
a ×√

a = a
– Cube roots: 3

√
a × 3

√
a × 3

√
a = a

� Factorization: If b ∈ N is divisible by other natural numbers greater than 1 and
less than b we say b can be factored, e.g., 22 = 2 × 11.

� Pairs of numbers: We say the greatest common divisor of the numbers a, b is c
if c is the largest number than divides both a and b and we write gcd(a, b) = c.

Just as we developed versatility in the use of our native language by learning simple
constructions of the alphabet symbols into words, so we started mathematics with
learning our times-tables.

× 1 2 3 4 5 6 7 8 9 10 11 12
1 1 2 3 4 5 6 7 8 9 10 11 12
2 2 4 6 8 10 12 14 16 18 20 22 24
3 3 6 9 12 15 18 21 24 27 30 33 36
4 4 8 12 16 20 24 28 32 36 40 44 48
5 5 10 15 20 25 30 35 40 45 50 55 60
6 6 12 18 24 30 36 42 48 54 60 66 72
7 7 14 21 28 35 42 49 56 63 70 77 84
8 8 16 24 32 40 48 56 64 72 80 88 96
9 9 18 27 36 45 54 63 72 81 90 99 108
10 10 20 30 40 50 60 70 80 90 100 110 120
11 11 22 33 44 55 66 77 88 99 110 121 132
12 12 24 36 48 60 72 84 96 108 120 132 144

It is also useful to have learned the squares of all the numbers from 1 to 20, the
rest are:

132 = 169, 142 = 196, 152 = 225, 162 = 256

172 = 289, 182 = 324, 192 = 361, 202 = 400

We also need to recognize the lower powers of 2,3,4,5, and 6.
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n 2n 3n 4n 5n 6n

1 2 3 4 5 6
2 4 9 16 25 36
3 8 27 64 125 216
4 16 81
5 32 243
6 64

1.11 The Importance of Algebra

Most college students are required to take a College Algebra course. Not only does a
serious student of number theory need to be versatile with numbers, knowing multi-
plications and factors of numbers without (much) thought, but familiarity and ease of
use of the basic topics of algebra is essential. Topics like the exponent rules, adding
and multiplying polynomials and rational functions and factoring polynomials.
In number theory, we need to be crystal-clear that variables represent numbers, mostly
integers. As a party trick, if you know how to factor the difference between two
squares,

a2 − b2 = (a + b)(a − b),

then you can beat an opponent with a calculator in answering questions like 37 × 43,
59× 61, 88× 92, 996× 1004 in less time!2. Of course, you need to select the questions!
Don’t let her say 83 × 87!

1.12 Branches of Mathematics

At the simplest level, Mathematics is divided into two branches: pure and applied.
Pure mathematics studies entirely abstract objects; applied mathematics uses the
results of pure mathematics to model objects studied in sciences and engineering.

Pure mathematics encountered in K-12 education includes arithmetic, geometry,
algebra, trigonometry and calculus. The use of concrete examples to understand pure
mathematics is essentially applied mathematics.

� Arithmetic broadens into number theory and combinatorics. � Geometry broad-
ens into topology. � Algebra broadens into abstract algebra. � Calculus broadens into
analysis, both real and complex.

Mathematicians love to mix and match, they delight in a proof that crosses over
and uses results from one branch to prove a result in another, none more so than
number theorists! The boundaries between algebra, analysis and topology blur as we
delve deeper and deeper into our abstractions.

2For example, 43 × 37 = (40 + 3)(40 − 3) = 402 − 32 = 1600 − 9 = 1591
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1.13 A Mathematical “no-no”

We defined above the fractions or rational numbers Q = {a
b

∣ a, b ∈ Z, b ≠ 0}. We

can interpret the restriction b ≠ 0 as “division by 0” is not allowed in mathematics.
Students will generally answer the question as to “Why not?” by saying “It is unde-
fined”. But why is it undefined, why is it not allowed? Let’s do it and see why not.

We agree

1 × 0 = 0 and 2 × 0 = 0

Hence,

1 × 0 = 2 × 0

Let’s divide by 0. We get,

1 × 0

0
= 2 × 0

0

Cancelling the zeros gives,

1 = 2

which is absolutely ridiculous or as I say to my students “It’s a stupid result.” So
that is why division by zero is not allowed in mathematics. It gives stupid results.
There is nothing special about starting with 1 and 2 and multiplying them by zero.
We could start with any numbers at all, for example π and

√
3 and then “prove” they

are equal. Then mathematics is reduced to “All numbers are equal!”

So, when we move into algebra and trigonometry and calculus, we always need to
be careful that we are not dividing by zero. For example let’s start with,

a2 − a2 = a2 − a2

We can factor the two sides of this equation in different ways – either taking out a
common factor of a on the left side or using the formula x2 − y2 = (x + y)(x − y) on
the right side to give,

a(a − a) = (a + a)(a − a)

Dividing both sides by the common factor (a − a) gives,

a���
�(a − a)

���a − a = (a + a)����(a − a)
���a − a ⇒ a = a + a⇒ a = 2a⇒ 1 = 2 (Stupid!)

In this example, without thinking enough, we divided by a − a, but that is 0.
This is a major reason why any function must always be defined not only by its
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relationship between the variables, but also by the allowed values of the independent
variables which we call the domain of the function.

For example, y = 1

x − 1
(where values of the independent variable x generate values

of the dependent variable y) should always be written (but often is not!) as,

y = 1

x − 1
, x ≠ 1

so that we exclude division by zero.
Division by zero is by no means the only mathematical “no-no” as we will see. The
domain of a function can be limited by other reasons. We’ll deal with these as they
arise.



Chapter 2

What is Number Theory?

Course: Perusing the Menu II

2.1 What is number theory?

Nowadays we say number theory is the branch of mathematics devoted entirely to
the study of the integers. Its old names were arithmetic or higher arithmetic.

In general, the problems dealt with in number theory are easily explained to a
lay audience. Their proofs, however, are often incomprehensible to the lay person,
due to the fact that number theorists readily use results from other branches of
mathematics or other findings in number theory in their proofs. Understanding their
proofs therefore assumes a significant mathematical background.

The most recent example is the proof of Fermat’s Last Theorem (FLT) by Andrew
Wiles. We all know at least one solution 32+42 = 52 in the integers to the Pythagorean
equation x2 + y2 = z2 so it is easy to understand the statement of the FLT,

There are no non-zero integer solutions to x3 + y3 = z3, x4 + y4 = z4 etc., or in
general for xn + yn = zn, n ≥ 3,

yet its proof is incomprehensible to most mathematicians, let alone the lay person.

There are five major branches of number theory.

1. Elementary number theory uses proof techniques that do not include the tools
of complex analysis (i =

√
−1, etc.). The title is misleading since elementary

proofs may be considerably more difficult that those acquired through complex
analysis. Complex analysis itself is barely 200 years old, so there are thou-
sands of years of elementary proofs in number theory. One of the oldest is the
Pythagorean theorem,
In a right triangle, the square of the length of the hypotenuse is equal to the sum
of the squares of the lengths of the other two sides.

16
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2. Analytic number theory uses the tools of analysis, particularly complex analysis.
One of its most famous achievements was the proof of the prime number theorem
in the 1890’s by Hadamard and de la Vallée-Poussin. Interestingly, Selberg and
Erdös proved the same theorem in 1949 using only elementary techniques. The
theorem states that the number of primes less than or equal to x gets closer and

closer to
x

log x
as x gets larger or tends to infinity, again very easy to state, yet

it took over 100 years to find a proof. (Of course, we will define log x later!)

3. Algebraic number theory is the study of algebraic numbers using the results of
abstract algebra. An algebraic number is the root of a non-zero polynomial in
one variable with integer coefficients. There is the well known formula for the
roots of quadratic equations,

ax2 + bx + c = 0⇒ x = −b ±
√
b2 − 4ac

2a

and there are also formulas for the roots of cubic and quartic equations, but in
general the roots of polynomials of degree 5 or higher cannot be expressed in
terms involving +,−,×,÷, roots and powers, yet the graph of every polynomial of
odd degree has at least one x−axis intercept, making that root a real number.
We therefore need to add the algebraic numbers to the set of real numbers,
indeed, they are the majority of the real numbers!

4. Diophantine number theory studies the integer solutions of polynomial equa-
tions in one or more variables. The general formulas for Pythagorean triples
x, y, z that satisfy x2 + y2 = z2 is an example.

5. Computational number theory is the study of computations with numbers, de-
veloping algorithms to calculate things such as factorizations and the numbers
of points on a curve.

2.2 Is number theory important?

Beyond its intellectual challenge, number theory has important applications in the
theory of cryptography. The recent invention of public-system crytosystems ensuring
the confidentiality of financial and other transactions in the public domain are usually
based on the difficulty of a number theory computation, often involving very large
primes, has stimulated research in number theory. For example, the RSA public key
encryption algorithm comes out of modular arithmetic.
In addition, research into number theory underpins many results in abstract algebra.
In more recent times, number theory has become important in quantum mechanics.
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2.3 Is it all done?

By no means. There are a large number of unsolved problems in number theory.
The two most famous are also regarded as two of the hardest four problems in all of
mathematics. Again they are easy to state.

Twin Primes Conjecture: Prove there are an infinite number of pairs of prime num-
bers (p, q) such that q − p = 2.
For example, (3,5), (5,7), (29,31), (191,193)

Goldbach’s Conjecture: Prove that EVERY even number greater than 4 can be ex-
pressed as the sum of two prime numbers (in at least one, maybe more, ways).
We start with 6 = 3 + 3, 8 = 5 + 3, 10 = 3 + 7 = 5 + 5, 12 = 5 + 7, . . .

Computers are very useful in testing conjectures in number theory. Goldbach’s con-
jecture has been shown to be true for every even number up to 4 × 1014. (But is it
true for 4 × 1014 + 2?)

Here’s another unsolved problem on perfect numbers. A perfect number is the sum
of its smaller factors, e.g., 6 = 1 + 2 + 3, 28 = 1 + 2 + 4 + 7 + 14
Prove or disprove: There are no perfect odd numbers.

Richard Guy has authored a 436 page Springer text titled “Unsolved problems in
Number Theory”

2.4 Axioms of Integers

Number theory is predominantly the study of the integers. We must begin with a
set of axioms. The axioms of the integers are those of the real numbers with the
exception that the integers (other than 1) do not have a multiplicative inverse. For

example, there is no integer n such that 7 × n = 1. (Of course 7 × 1

7
= 1 but

1

7
∉ Z.)

Mathematicians call the real numbers a “field” and the subset of the integers with no
multiplicative inverses, a “ring”. Then they generalize! In every one of their abstract
fields there is a ring of abstract integers.
We extend the operations of addition and multiplication to subtraction and division,
squares and square roots and so on.
We need to add the accepted laws of equality, in naive words, that we can do whatever
we like to one side of an equation as long as we do exactly the same thing to the other
side (and do not contravene any other laws, such as division by zero).
The main set of axioms for the integers is:



2.4. Axioms of Integers 19

1. Closure1 of Z under addition and multiplication.
For all a, b ∈ Z , both a + b and aḃ are in Z.

Example 2. 2,−5 ∈ Z and 2 + (−5) = −3 ∈ Z; and 2 × (−5) = −10 ∈ Z

2. Associativity of addition and multiplication.
For all a, b, c ∈ Z, the following equalities hold:

a + (b + c) = (a + b) + c and a ⋅ (b ⋅ c) = (a ⋅ b) ⋅ c.

Example 3. (5 + 6) − 6 = 5 + (6 − 6) = 5 + 0 = 5; 5 ⋅ (2 ⋅ 6) = (5 ⋅ 2) ⋅ 6 = 60

3. Commutativity of addition and multiplication.
For all a, b ∈ Z, the following equalities hold,

a + b = b + a and a ⋅ b = b ⋅ a,

Example 4. 5 − 3 = −3 + 5 = 2; 5 ⋅ 4 = 4 ⋅ 5 = 20

4. Existence of additive and multiplicative identity elements.
There exists an element of Z called the additive identity element, denoted by
0, such that for all a in Z,

a + 0 = a.

Example 5. 3+0=3

Likewise, there is an element, called the multiplicative identity element and
denoted by 1, such that for all a ∈ Z,

a ⋅ 1 = a

Example 6. 5 ⋅ 1 = 5.

5. Existence of additive inverses2:
For every a in Z, there exists an element −a in Z, such that,

a + (−a) = 0.
The expression a + (−b) is denoted a − b.

Example 7. 5 + (−5) = 5 − 5 = 0.

6. Distributivity of multiplication over addition:
For all a, b, c ∈ Z, the following equality holds,

a ⋅ (b + c) = (a ⋅ b) + (a ⋅ c).

Example 8. 3(4 − 2) = 3 ⋅ 4 − 3 ⋅ 2 = 6

1A set is closed under an operation on its elements if the result is still within the set.

2Note the integers do not have multiplicative inverses. Thus 7 × 1

7
= 1 but

1

7
∉ Z
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7. Every non-empty subset S of Z with an upper bound in Z has a least upper
bound in Z.

Example 9. The upper bounds of {3,5,7,12,4,6} are {12,13,14, . . .} . The
least is 12.

8. There is an order relation ≤ (less than or equal to) on Z which totally orders Z,
namely, for all a, b, c ∈ Z:

(a) a ≤ a
(b) a ≤ b and b ≤ a⇒ a = b
(c) a ≤ b and b ≤ c⇒ a ≤ c

This order relation satisfies similar laws to those of equality:

(d) a ≤ b⇒ a + c ≤ b + c
(e) a × c ≤ b × c if c ≤ 0

(f) In addition, there is the notation 0 < 1 where “<” means “≤ but not =”

2.5 How is it done? Mathematical Proofs

One of the attractions of number theory to teachers is that it provides a wealth
of simple proofs that illustrate how mathematicians do mathematics. The major
methods of proof in mathematics are:

1. Direct

2. Indirect

(a) Contradiction

(b) Contrapositive

3. Mathematical induction

Let us note:

1. A theorem sentence is always able to be put in the form “if P then Q” or P ⇒ Q
where P and Q are statements.

2. The converse of a theorem is “If Q then P” or Q ⇒ P. In logic, it is easy to
show that the truth of a theorem does not mean the converse is also true. If
the theorem and the converse are both true then we write P ⇔ Q and say P
is true or false if and only if (iff) Q is respectively true of false. We also say P
and Q are equivalent statements.

3. If we are required to prove an iff statement in a theorem, then we are required
to prove two statements, P ⇒ Q and Q⇒ P.
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4. A definition is always an iff sentence. For example, “ A number is a prime if
it is divisible only by itself or 1” is actually “A number is a prime if and only
if (iff) it is divisible only by itself or 1”, but we seldom use iff instead of if in
definitions. We mostly reserve iff for a theorem where the converse is also true,
for example,

“If the interior angles of a polygon add up to 1800 then the polygon is a
triangle”

can be written
“A polygon is a triangle iff its interior angles sum to 1800”

since the converse is also true, namely,
“If the interior angles of a polygon add to 1800 then it is a triangle”.

2.5.1 Direct Proofs

A direct proof begins with an “if” statement and proceeds to prove a “then” state-
ment. We begin an example of such proofs with a definition.

Definition 4. odd and even integers
An odd integer has the form 2k + 1 where k = 0,±1,±2, . . . or k ∈ Z.

The odd integers are ±1,±2 ± 3, . . . Positive odd integers when divided by 2 always
leave a (least positive) remainder of 1.
An even integer has the form 2k where k = 0,±1,±2, . . . or k ∈ Z. The even integers
are 0,±2,±4, . . . Consequently, positive even integers when divided by 2 always leave
a remainder of 0, that is they have 2 as a factor.

Theorem 2.
The product of two odd integers is odd. (sic: If x, y are odd integers, then xy is an
odd integer)

Proof. Let x, y be any odd integers.
Then (by definition of an odd integer), x = 2a + 1, y = 2b + 1 where a, b ∈ Z.
We need to show xy = 2c + 1, c ∈ Z. Now,

xy = (2a + 1)(2b + 1)
= (2a + 1) × 2b + (2a + 1) × 1 (distributive law)

= 2b(2a + 1) + 2a + 1 (commutative and identity laws)

= 4ab + 2b + 2a + 1 (distributive and commutative laws)

= 2(2ab + b + a) + 1 (associative and distributive law)

= 2c + 1, c ∈ Z (closure law)

making xy an odd number.

We will always indicate the end of a proof by a box, ◻
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2.5.2 Proofs by Contradiction

Proofs by contradiction proceed by assuming a statement is true and then proving it
is false, or vice versa. These proofs are based on the laws of logic, one of which is,

not(notP ) = P,

where P is a statement or proposition. For example, we prove in Theorem 3 that
√

2
is irrational. We begin with a definition.

Definition 5. greatest common divisor
The greatest common divisor, gcd(a, b) of two integers a, b is the greatest positive
integer that divides both a and b.

Example 10. gcd(5,25) = 5, gcd(13,17) = 1

Theorem 3.√
2 is irrational, that is

√
2 ∉ Q.

Proof. By the definition of rational numbers, Q = {a
b
∣a, b ∈ Z, b ≠ 0} , we need to show

√
2 ≠ a

b
so

√
2 ∉ Q. We use the rules of logic where the contradiction law says that

if we assume a statement is true and that leads to an impossible result, then the
statement must have been false.
Accordingly, assume

√
2 = a

b
, a, b ∈ Z where gcd(a, b) = 1, that is, using cancellation,

no number larger than 1 divides both a and b. Squaring, and using Theorem 1,

2 = a
2

b2
⇒ a2 = 2b2 ⇒ a2 is even⇒ a is even.

(We do need to prove that if a2 is an even integer, then a is an even integer. We will
do that in Theorem 4.)
So we let a = 2k, k ∈ Z. Then,

a2 = 2b2 ⇒ 4k2 = 2b2 ⇒ b2 = 2k2 ⇒ b is even.

Then if a, b are both even, the gcd(a, b) is at least 2.
This is a contradiction to gcd(a, b) = 1, so the assumption is not true and

√
2 is not

rational or
√

2 is irrational.

2.5.3 Contrapositive proofs

Contrapositive proofs are based on the proof in logic that the sentences P ⇒ Q and
not Q⇒ not P are logically equivalent. For example, the sentence,

”If it is raining then the ground is wet”
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is logically equivalent to the sentence,

”If the ground is NOT wet, then it is NOT raining”.

An example of a contrapositive proof is the following theorem.

Theorem 4.
If a2 is an even integer, then a is an even integer.

Proof. We shall prove that if a is not an even integer, then a2 is not an even integer.
In other words, we shall prove that if a is odd, then so is a2.
Choose any a ∈ Z that is not an even integer, so it must be an odd integer. Then, by
definition of an odd integer, a = 2k + 1, k ∈ Z. Therefore,

a2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1 = 2m + 1,m = 2k2 + 2k ∈ Z,

where we have used the distributive, commutative and closure laws.
So a2 is an odd integer. We conclude if a2 is even then so is a.

(We could have simply used Theorem 2 on page 21 to prove a2 is odd if a is odd,)

2.5.4 Mathematical Induction

The Principle of Mathematical Induction is as follows.
Let S(1), S(2), . . . , S(n), S(n + 1) be a series of n + 1 statements, one for each of the
integers 1,2,3, . . . , n, n + 1. Suppose we can prove:

1. (Basis step) S(1) is a true statement.

2. (Inductive step) If S(n) is true, then S(n + 1) is true.

Then we can conclude that S(k) is a true statement for 1 ≤ k < ∞.

Proof. The reason for this is as follows:
We proved S(1) is true.
But if S(1) is true, then S(2) is true (put n = 1 in the inductive step).
But if S(2) is true, then S(3) is true (put n = 2 in the inductive step).
But if S(3) is true, then S(4) is true.
We can continue this chain indefinitely.
So S(k) is true for k = 1,2,3, . . . or for 1 ≤ k < ∞ or ∀k ∈ N.

For example, we have the following Theorem.

Theorem 5.
The sum of the first n positive integers is given by,

1 + 2 + 3 + . . . + n = n(n + 1)
2
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Proof. Let S(n) be the statement that 1 + 2 + 3 + . . . + n = n(n + 1)
2

.

Basis step: S(1) is the statement that 1 = 1(1 + 1)
2

, which is true since 1 = 1.

Inductive step: Assume S(n) that 1 + 2 + 3 + . . . + n = n(n + 1)
2

is true.

We need to show S(n + 1) that 1 + 2 + 3 + . . . + n + n + 1 = (n + 1)(n + 2)
2

is true.

Left side =
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
1 + 2 + 3 + . . . + n+n + 1

= n(n + 1)
2

+ n + 1 (S(n) is assumed to be true)

= n2 + n + 2n + 2

2

= (n + 1)(n + 2)
2

= Right side

Example 11.

1 + 2 + 3 + . . . + 100 = 100 × 101

2
= 5050

An interesting historical note is that the 10 year old Carl Gauss stunned his teacher
by calculating the sum of the first 100 numbers this way.

S = 1 + 2 + 3 + 4 + . . . + 49 + 50 + 51 + 52 + . . . + 99 plus 100

Reversing,

S = 99 + 98 + . . . + 50 + 51 + 52 + . . . + 3 + 2 + 1 plus 100

Adding,

2S =
99 times

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
100 + 100 + . . . + 100+200

⇒ 2S = 99 × 100 + 200 = 10100

⇒ S = 5050

The study of numbers using this technique is the area of sequences, whether:

(a) Arithmetic (when each number is the previous plus some other fixed number)
For example: 2,5,8,11, . . . (add 5 each time)

(b) Geometric (where each number is the previous multiplied by some fixed number)
For example: 2,6,18,54, . . . (multiply by 6 each time)
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Later we will use the formula

Sn = a + (a + d) + (a + 2d) + . . . (a + (n − 1)d) = n
2
(2a + (n − 1)d)

for the sum of n terms of the finite arithmetic progression,

a + (a + d) + (a + 2d) + . . . + (a + (n − 1)d)

and the formula

a + ar + ar2 + . . . + arn−1 = a(r
n − 1)
r − 1

for the sum of terms of the finite geometric progression,

a + ar + ar2 + . . . + arn−1

If your college algebra did not include this, you can prove them easily. For the first,
use Gauss’s method, for the second, form rSn − Sn.



Part II

A Pythagorean Feast - Pythagoras
to Wiles

26



27

Let us now read some major results in number theory beginning with a long trail
leading directly from Pythagoras to Fermat to Wiles. Later we will follow another
trail beginning with Euclid that branched out into several different fields of number
theory before being put to rest by Dirichlet.

First Pythagoras to Fermat to Wiles . It is an easy step from knowing equations of
the form x2+y2 = z2 have integer solutions such as 52+122 = 132 to asking whether the
same applies to x3 + y3 = z3 and so on. Taking the step, however, took thousands of
years. The amateur mathematician Pierre Fermat is generally regarded as the founder
of modern number theory. Number theory itself had languished for centuries after the
Greeks and other ancient civilizations waned. Fermat shared only one number theory
proof with his peers, however, he challenged them with results he believed to be true.
In the margin of a 1621 translation of Diophantus’s c. 250 A.D. book “Arithmetica”,
he wrote a note, discovered after his death, that would torture mathematicians for
almost 400 years:

No cube can be split into two cubes, nor any biquadrate into two biquadrates, nor
generally any power beyond the second into two of the same kind.

I have discovered a truly remarkable proof for this, but the margin is too narrow to
contain it.

Due to Fermat’s importance, this was called Fermat’s Last Theorem (FLT). In today’s
language, it is:

The equation xn + yn = zn, n ≥ 3 has no non-zero integer solutions.

Although it was for centuries an unproved conjecture, it is now a theorem, proved in
the 1990’s by Andrew Wiles, a Princeton professor of Mathematics. The proof is so
complex that nearly every one doubts Fermat actually did have a proof, but maybe
he did!
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Pythagoras: The n = 2 case.

Let’s investigate x2 + y2 = z2.

Course: Appetizers
Ingredients
High school algebra
Area
4 congruent triangles
Greatest common divisor
Pythagorean triples
Directions
Assemble the triangles to prove the Pythagorean Theorem
Use high school algebra to find all Pythagorean triples

3.1 Area

Definition 6. - area, area of a rectangle, area of a right triangle
We define the area of a square of side 1 unit to be 1 square unit.

1

1

L

W

1

1

By the area of a rectangle we mean the number of squares of side 1 unit that it
contains. If it is L units long and W units wide then it contains L ×W squares of
side 1 unit, so its area is,

Area of rectangle = L ×W

28
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If a diagonal is drawn from one vertex of the square to the opposite vertex, then we
have a right triangle of base L and height W which is obviously half the area of the
rectangle, so the area of a right triangle is.

Area of right triangle = 1

2
L ×W

3.2 Pythagoras

And now for the Greeks’ famous theorem.

Theorem 6. (Pythagorean Theorem)
In a right triangle, the sum of the squares of the lengths of the two sides forming the
right angle is equal to the square of the length of the side opposite the right angle (the
hypotenuse).

Proof. We start with four copies of the same right triangle or four congruent triangles.
We want to show a2 + b2 = c2.

c
b

a

The area of each triangle is
ab

2
making their combined area 2ab. We place the four

triangles together as shown.

c

b

a

a
a-b
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The inner square has sides of length1 a − b making its area (a − b)2 .
The outer square has area c2. It contains the four triangles and the smaller square,
so,

(a − b)2 + 2ab = c2 ⇒ a2 − 2ab + b2 + 2ab = c2 ⇒ a2 + b2 = c2

There are 96 different proofs of the Pythagorean theorem at the web-site http://www.cut-
the-knot.org/pythagoras/index.shtml. One is due to a U.S. President!

3.2.1 Irrational Numbers

Of immediate interest is that a right triangle can be drawn with the sides containing
the right angle equal to 1. What then is the length of the hypotenuse? What is
the number c such that c2 = 12 + 12 = 2? We have already proved it is not a rational
number. And, of course, it is the first of an infinite number of what we call irrational
numbers. The Greeks pondered this long and hard.

3.2.2 Pythagorean Triples

We now want to find a formula that generates Pythagorean triples, that is, numbers
a, b, c such that a2 + b2 = c2.. Here are two lemmas we will use often in what follows.

Lemma 7.
Let a, b ∈ Z. If gcd(a, b) = d then dn divides anx+ bny for all n ∈ N and for all x, y ∈ Z.

Proof. gcd(a, b) = d ⇒ d∣a and d∣b, in other words a = dj, b = dk for some j, k ∈ Z.
Then,

anx + bny = (dj)n + (dk)ny = dnjnx + dnkny = dn(jnx + kny)

so that dn∣anx + bny.

Lemma 8.
Let a, b, c, d ∈ Z. Consider the equation a + b = c. If d∣a and d∣b then d∣c.

Proof. Let a = dj and b = dk as in the previous lemma. Then,

a + b = dj + dk = d(j + k) ⇒ d∣a + b⇒ d∣c.

We want to generate Pythagorean Triples.

1It makes no difference whether a > b or a < b since (a − b)2 = (b − a)2.
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Definition 7. Pythagorean triples
If the integers x, y, z satisfy x2 + y2 = z2 we call x, y, z a Pythagorean triple.

It is trivial to observe that there are an infinite number of Pythagorean triples.
Obviously, given (3,4,5) is one, then so are (3d,4d,5d) for all d ∈ Z since,

32 + 42 = 52 ⇒ d2(32 + 42) = d252 ⇒ (3d)2 + (4d)2 = (5d)2

Example 12. Give 32 + 42 = 52 then 62 + 82 = 102, 362 + 482 = 602

We want to generate what are called primitive Pythagorean triples.

Definition 8. primitive Pythagorean triples
If x, y, z are all mutually prime or co-prime, meaning gcd(x, y) = gcd(x, z) = gcd(y, z) =
1, we say (x, y, z) is a primitive Pythagorean triple.

Example 13. 52 + 122 = 132, 3912 + 1202 = 4092.

The important question is whether there are an infinite number of primitive
Pythagorean triples. In particular, is there a formula which generates an infinite
number? Better still, is there a formula that generates every primitive Pythagorean
triple?

The Pythagorean School (c. 570 B.C.) was not the first group to investigate right
triangles with integer solutions. The integer solutions to x2 + y2 = z2 are duly called
Pythagorean triples, but there is a solution (4961, 6480, 8161) on a Babylonian tablet
from the 2000 B.C. to 1600 B.C. period.
It is acknowledged, however, that Pythagoras was the first to find a formula for
primitive Pythagorean triples. His formula was,

x = k, y = k
2 − 1

2
, z = k

2 + 1

2
, k ∈ Z

which follows from the algebra:

x2 + y2 = k2 + (k2 − 1)2

4
= 4k2 + k4 − 2k2 + 1

4
= k

4 + 2k2 + 1

4
= (k2 + 1)2

22
= z2

But, this formula does not generate all Pythagorean triples (for example, (20,21,29)).
Neither does that due to Plato (c. 380 B.C.), namely (x, y, z) = (2k, k2 − 1, k2 + 1).
Let us find this elusive formula.
By requiring primitive solutions we have eliminated the possibility that both x and
y are even since gcd(x, y) = 1. We now also eliminate the possibility that both x and
y are odd.
We earlier stated all odd numbers are of the form 2k + 1, k ∈ Z. We can extend this
to the division of odd numbers by 4. The possible remainders are 0,1,2,3 so the odd
numbers will be 4k + 1 or 4k + 3. Since,

4j + 3 = 4(j + 1) − 1 = 4k − 1

we can also say all odd numbers are of the form 4k ± 1.
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Theorem 9.
If x, y, z) is a primitive Pythagorean triple then x and y cannot both be odd.

Proof. We use a proof by contradiction. Suppose x and y are both odd. Then, by
Theorem 2, page 21, x2 and y2 are both odd so that their sum z2 is even and therefore
by Theorem 4, page 23, z is even.
Then, since we supposed both x and z are odd, they are of the form 4k + 1 or 4k − 1.
Then,

x2 + y2 = (4k ± 1)2 + (4j ± 1)2)
= 16k2 ± 8k + 1 + 16j2 ± 8j + 1

= 4(4k2 ± 2k + 4j2 ± 2j) + 2

= 4m + 2, m = 4k2 ± 2k + 4j2 ± 2j ∈ Z

But if z is even, then either z = 4k⇒ z2 = 4(4k2), or z = 4k + 2⇒ z2 = 4(4k2 + 4k + 1)
and in neither case can z2 = 4m + 2.
This contradiction proves x, y cannot both be odd.

Without loss of generality we can therefore always suppose y is even.

Theorem 10. (The n = 2 case)
A Pythagorean triple (x, y, z) satisfying x2 + y2 = z2, with y even, is primitive iff it is
of the form

x =m2 − n2, y = 2mn, z =m2 + n2

where m,n are positive integers of opposite parity (one odd, one even) with m > n
and gcd(m,n) = 1.

Proof. We first prove,
If x = m2 − n2, y = 2mn, z = m2 + n2 with gcd(m,n) = 1, then (x, y, z) is a primitive
Pythagorean triple.
It is a triple since,

x2 + y2 = (m2 − n2)2 + (2mn)2

=m4 − 2m2n2 + n4 + 4m2n2

= (m2 + n2)2

= z2

To show it is a primitive triple, suppose not, that is p∣x, p∣y and p∣z for some prime
p. First we note,

z + x = 2m2 and z − x = 2n2



3.2. Pythagoras 33

So, by Lemma 8, page 30, if p∣x and p∣z then p∣2m2 and also p∣2n2.
Since p is odd then p∣m2 and also p∣n2. Now2 if a prime p divides a square such as
m2 then it must divide m. So p∣m and p∣n making gcd(m,n) ≥ p.
This is a contradiction to gcd(m,n) = 1.
Then our supposition is not correct and (x, y, z) is a primitive triple.

*****

We next prove the converse that if (x, y, z) is a primitive Pythagorean triple, that is,
if,

x2 + y2 = z2, gcd(x, y) = gcd(x, z) = gcd(y, z) = 1,

then,
x =m2 − n2, y = 2mn, z =m2 + n2, m,n ∈ Z, gcd(m,n) = 1

Since y is even and (x, y, z) are mutually prime then x is odd and z is odd. Therefore
z + x and z − x are both even, say z + x = 2r and z − x = 2s. So we let,

r = z + x
2

, s = z − x
2

where we must therefore have r, s ∈ Z.
Adding we get r + s = z and subtracting we get r − s = x.
Since z = r + s, x = r − s, by Lemma 8, page 30, any common divisor of r and s must
also divide x and z.
But gcd(x, z) = 1 and therefore gcd(r, s) = 1.
The reason for this is if gcd(r, s) = q and q ≠ 1, then let r = aq, s = bq and then
x = r − s = q(a − b), z = r + s = q(a + b) so that gcd(x, z) ≥ q which contradicts
gcd(x, z) = 1.
Also, since,

y2 = z2 − x2 = (z + x)(z − x) = (2r)(2s),

then (y
2
)

2

= rs with y even so that
y

2
∈ Z.

But r and s have no common factors, so if their product is a perfect square then
each of r and s must be a perfect square3.

2Suppose p∣m2. Let the complete prime factorization (where the primes may not be distinct) of
m be m = p1p2⋯pn. Then m2 = p21p22⋯p2n. So if p∣m2 then p∣p2i for some i ∶ 1 ≤ i ≤ n. Since both p and
pi are primes this is only possible if p = pi. Therefore p∣m.

3Let us prove that if rs is a perfect square then each of r and s must be a perfect square. Suppose
rs =m2. We can write the prime decomposition of m as m = p1p2⋯pn so that,

rs = (p1p2⋯pn)2 = p21p22⋯p2n

Now each p2i can only be in the prime decomposition of either r or s since if, for instance, r = piq and
s = pit then gcd(r, s) ≥ pi and is not 1. So the p2i ’s are distributed across the prime decompositions
of r and s giving, say,

r = p21p22⋯p2j and s = p2j+1p2j+2⋯p2n
and obviously each of r and s is a perfect square.
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The reason for this is that if any prime p divides (y
2
)

2

then p2 must divide (y
2
)

2

and therefore p2∣rs. Since gcd(r, s) = 1 then this p2 must divide only one of r or s.
Consequently both r and s must be products of the squares of the primes that divide

(y
2
)

2

making each a perfect square.

If we therefore put r =m2 and s = n2 then gcd(m,n) = 1 and

x = r − s =m2 − n2, y =
√

4rs = 2mn, z = r + s =m2 + n2

It is therefore easy for us to generate large Pythagorean triples. For example, if
m = 103, n = 64 then (6513,13184,14708) is a primitive Pythagorean triple. Maybe
this is how the Babylonians found (4961, 6480, 8161) using m = 81, n = 40.



Chapter 4

The n = 4 case

We want to prove x4 + y4 = z4 has no non-zero solutions in the integers.

Course: Entrée
Ingredients
Fermat’s method of infinite descent
Formula for Pythagorean triples
Directions
The proof is by contradiction using infinite descent. We consider x4 + y4 = z2 rather
than x4 + y4 = (z2)2 since if there are no solutions to the first then there cannot be
solutions to the second. If x4 +y4 = z2 has integer solutions, then, of all the solutions,
one has the smallest value of z, or z is minimal. Assume this and, using the formula
for Pythagorean triples, produce another solution with a smaller value of z, providing
the contradiction.
The algebra of this proof is very simple, the challenge lies in the ability to follow a
logical argument. Much of mathematics is like this, some say “It’s just logic!”

The only proof of a theorem the secretive Fermat shared with his peers is the follow-
ing proof of the n = 4 case which is a special case of FLT. The proof uses his “method
of infinite descent”.

4.1 Method of Infinite Descent

Fermat’s method of infinite descent states that the natural numbers are well-ordered
and there are only a finite number of them of any given structure that are smaller
than any given one.
Assuming an example with a particular property exists, one shows that another exists
that is in some sense ‘smaller’as measured by a natural number. Then by mathemat-
ical induction (infinitely repeating the same step), one shows there is a yet smaller
example, then a yet even smaller example, and hence there must be an infinitude
of ever smaller examples. Since there are only a finite number of natural numbers

35
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smaller than the size of the initially postulated example, (for example there are only
999 natural numbers less than 1000), this is impossible – it is a contradiction, so no
such initial example can exist.
A more common type of proof formulation is that we suppose a ‘smallest’solution and
then derive a smaller one – thereby getting a contradiction.

4.2 Proof of the n = 4 case

Theorem 11. (Fermat)
The equation x4 + y4 = z4 has no non-zero integer solutions.

Proof. The proof is by contradiction using infinite descent. We use x4+y4 = z2 rather
than z4.
If x4 + y4 = z2 has integer solutions, then, of all the solutions, one has the smallest
value of z, or z is minimal. We will assume this and produce another solution with a
smaller value of z, providing the contradiction.

Suppose (x, y, z) is the solution of x4 + y4 = z2 with z minimal.
Either x, y have a common prime factor p > 1 or not.

*****

Case A: Suppose x, y have a common prime factor p > 1,
Now p∣x⇒ x = pj and p∣y⇒ y = pk where j, k ∈ Z. Then,

x4 + y4 = p4j4 + p4k4 = p4(j4 + k4) ⇒ p4∣x4 + y4

So p4∣z2 or z2 = mp4,m ∈ Z. This is only possible in whole numbers if m = l2 or m is
a square1.
Then, z2 = l2p4 ⇒ z = lp2 means l < z but also p2∣z.
Therefore, substituting into x4 + y4 = z2, we obtain,

(jp)4 + (kp)4 = (lp2)2 ⇒ j4 + k4 = l2

We have produced a smaller value l less than z satisfying an equation of the form
x4 + y4 = z2 which is a contradiction, so there are no integer solutions to x4 + y4 = z2.

*****

1This is easily proved by using the fact that any integer ≥ 2 can be factored into the product of
prime numbers, (specifically this is the Fundamental Theorem of Arithmetic we will prove later).
Let’s prove z2 =mp4 is only possible if m is a perfect sqaure. Let z = p1p2⋯pn so that z2 = p21p22⋯p2n.
So we have mp4 = p21p

2
2⋯p2n. Then we must have something like p2 = p21 and p2 = p22 to enable

cancellation. But that leaves m = p23p24⋯p2n. So m is a perfect square.
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Case B: The other possibility is that x, y have no common prime factor.
Now since we have supposed (x2)2 + (y2)2 = z2 then x2, y2, z is a Pythagorean triple.
Then, by Theorem 9, page 32, x2 and y2 are of opposite parity (one odd, one even)
and we may assume x2 is odd and y2 is even.
Then, by Theorem 10, page 32, there are integers m,n with m > n, gcd(m,n) = 1 such
that,

x2 =m2 − n2, y2 = 2mn, z =m2 + n2

But, again by Theorem 10, x2 + n2 = m2 means there are integers r, s, gcd(r, s) = 1
such that,

x2 = r2 − s2, n = 2rs,m = r2 + s2

Since y2 = 2mn = 4mrs and m,r, s have no common factors, then they must all be
perfect squares, making (say),

r = a2, s = b2,m = c2, a, b, c ∈ Z

Since m = r2 + s2 then, substituting into x2 = r2 − s2, we obtain,

a4 + b4 = c2

But c2 = m⇒ c = √
m < m and z2 = m2 + n2 ⇒ m < z so we have c < z contradicting

the minimality of z for equations of this form, and again there are no integer solutions
to x4 + y4 = z2.

Corollary 12.
The equation x4 + y4 = z4 has no integer solutions.

Proof. x4+y4 = z4 ⇔ x4+y4 = (z2)2 ⇔ x4+y4 = u2 which has no integer solutions.

4.3 Comments on the General Case

It is now not necessary to prove cases of xn + yn = zn, n ≥ 3 other than n an odd
prime.
The reason for this is that for any n ≥ 3 either n = 4k, k ∈ N or n = kp where p is some
odd prime. The case,

x4k + y4k = x4k⇔ (xk)4 + (yk)4 = (zk)4

has been eliminated in the previous Corollary. The cases

xkp + ykp = zkp⇔ (xk)p + (yk)p = (zk)p,

p an odd prime, are all covered by proving xp + yp = zp has no integer solutions for
any odd prime p.



Chapter 5

Euler: The n = 3 Case by
Elementary Methods

We prove x3 + y3 = z3 has no non-zero integer solutions.

Course: Main Course Choice 1
Ingredients
Well Ordering Principle
High school algebra
Method of infinite descent
Directions
Prove a classic chain of theorems about integers, namely, Division Algorithm, Eu-
clidean Algorithm for finding gcd(m,n), Solutions of Linear Diophantine Equations,
Euclid’s Lemma on Primes, Fundamental Theorem of Arithmetic.
Use this chain of theorems and high school algebra to read Euler’s elementary proof
of the n = 3 case. This proof depends upon 5 lemmas regarding the particular charac-
teristics of a2 + 3b2, in particular its possible factors.
Proceed to prove x3 + y3 + (−z)3 = 0 has no integer factors by supposing it does. The
supposition leads to a factor of (−z)3 of the form a2+3b2, and then, via the 5 lemmas,
to an infinite number of factors of this form. By the method of infinite descent, this
is not possible, so the supposition is incorrect.

We will now prove the case n = 3. It is considerably more difficult to prove than
the n = 4 case, nevertheless, the elementary proof requires no more than high school
algebra. We will prove it using elementary techniques and then, in the next chapter,
using complex number techniques.
For the elementary proofs we need the following results on divisibility and factoriza-
tions of integers and a principle or axiom applying to the natural numbers.
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5.1 Well-ordering principle

The well-ordering principle is that every non-empty set of the positive integers con-
tains a smallest element.

Example 14. The set {56,31,84,5,92} has a smallest element of 5.

5.2 Divisibility and Factorization of Integers

The following theorem simply says we can divide any integer by any positive integer
and obtain a remainder less than the divisor, e.g., 77 ÷ 8 = 9 with a remainder of 5
which is less than 8.

Theorem 13. (Division algorithm)
For every a, b ∈ Z there exist a unique pair q, r ∈ Z such that,

a = bq + r, 0 ≤ r < b.

Proof. Let S be the set of positive integers that are greater than a/b. By the Well-
Ordering principle S contains a smallest element t, that is, we can construct the
inequality,

t − 1 ≤ a
b
< t.

Let q = t − 1 ⇔ t = q + 1, multiply through by b and subtract qb from all the terms.
Then,

q ≤ a
b
< q + 1⇒ qb ≤ a < (q + 1)b⇒ 0 ≤ a − qb < b

Putting r = a − qb gives us the desired result a = qb + r.
Then, substituting this result into 0 ≤ a − qb < b we also obtain 0 ≤ r < b.

Example 15. 67,12 ∈ Z and 67 = 12 ⋅ 5 + 7 where 7 < 12.

Definition 9. absolute value
By ∣x∣ we mean the absolute value of x defined by,

∣x∣ =
⎧⎪⎪⎨⎪⎪⎩

x if x ≥ 0

−x if x < 0

Example 16. ∣6∣ = 6, ∣ − 6∣ = 6

Note 2. It follows from the definition that ∣x∣ ≤ a⇔ −a ≤ x ≤ a. The easiest way to
see this is to realize that on the number line ∣x∣ is simply the distance to the origin 0
from either x or −x so if the distance is less than a then x lies between a and −a.



40 Chapter 5. Euler: The n = 3 Case by Elementary Methods

x

0

∣
−x x. . .−a . . . a

Corollary 14.
Let a, b be integers with a positive. Then there exist unique integers q, r such that,

a = qb + r, ∣r∣ ≤ b
2

Proof. By the theorem we have a = qb + r, 0 ≤ r < b. There are two possibilities for r.

Case A: r < b
2

and we are done.

Case B:
b

2
≤ r < b.

Adding and subtracting b in a = qb + r, 0 ≤ r < b we have,

a = qb + b + r − b = b(q + 1) + r − b⇒ a = b(q + 1) + s, s = r − b

Thus s < 0 since r < b and s = r − b ≥ b
2
− b⇒ s ≥ − b

2
.

Thus we have − b
2
≤ s < 0 making1 ∣s∣ ≤ b

2
giving,

a = b(q + 1) + s, ∣s∣ ≤ b
2

Example 17.

66 = 9 × 7 + 3, 3 < 7

2

67 = 9 × 7 + 4 = 10 × 7 − 3, ∣ − 3∣ < 7

2
◇

Note we will always indicate the end of an example of more than one line with a ◇
We now consider two definitions, the first of which we have already met.

Definition 10. greatest common divisor
Given two integers a, b the greatest common divisor, gcd(a, b), is the greatest positive
integer that divides both a and b.
If gcd(a, b) = 1 we say a, b are co-prime.

Example 18. gcd(36,99)=9; gcd(5,7)=1

Note 3. If gcd(a, b) = d we can write a = jd, b = kd where j, k ∈ Z and d��∣j and d��∣k.
We will use this many times.

1see Note 2 above.
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Definition 11. linear combination
Given two integers a, b there are an infinite number of linear combinations of them of
the form ax + by where x, y ∈ Z.
Example 19. 3a-5b is a linear combination of a, b.

Theorem 15.

(a) Let a and b be integers and d = gcd(a, b). Then d is the smallest positive integer
that can be expressed as a linear combination of a and b, that is d = ax + by.

(b) There exist integers x, y satisfying ax + by = c if and only if d∣c where
d = gcd(a, b).

Proof.
(a) Let a and b be integers and d = gcd(a, b). By the Well Ordering principle2, the
set of all linear combinations of a and b contains a smallest positive element m, say
m = sa + tb.
We want to prove m = gcd(a, b) = d.
By the Division Algorithm, Theorem 13 on page 39, we can write,

a = qm + r, 0 ≤ r <m. (5.2.1)

Then, using m = sa + tb,

r = a − qm = a − q(sa + tb) = (1 − qs)a + (−tq)b,

so r is a linear combination of a and b.
But by (5.2.1) 0 ≤ r < m and we supposed m is the smallest positive element of the
set of all possible linear combinations of a and b. This contradiction gives us r = 0
and a = qm or m∣a.
By a similar argument applied to b = qm + r, 0 ≤ r <m we obtain m∣b.
Then m is a common divisor of a and b.
Now since d∣a and d∣b then3 d∣(sa + tb) so that d∣m making d ≤m.
Since d is the greatest common divisor, we cannot have d <m so we must have d =m
which proves (a), namely d = gcd(a, b) is the smallest positive integer that can be
expressed as a linear combination ax + by.

**********

(b) We want to prove there exist integers x, y satisfying ax + by = c iff d∣c where
d = gcd(a, b).
First assume ax + by = c holds. We want to prove d∣c.
For d = gcd(a, b), let a = ed, b = fd. Then,

c = ax + by = edx + fdy = d(ex + fy) ⇒ d∣c.
2Recall, the Well Ordering Principle states that every non-empty set of natural numbers contains

a smallest element.
3If a = dx, b = dy then sa + tb = sdx + tdy = d(sx + ty) ⇒ d∣(sa + tb).
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*****

Conversely, assume d∣c, say kd = c. We want to prove there exist integers x, y satisfying
ax + by = c.
Now by Part (a), there exist x′, y′ such that ax′ + by′ = d. Hence, multiplying by k,

a(x′k) + b(y′k) = dk = c

In other words, x = x′k and y = y′k are a solution of ax + by = c.
This proves Part (b).

Corollary 16.
There exist integers x, y satisfying ax + by = 1 iff gcd(x, y) = 1.

Proof. Put c = 1 in Theorem 15(b).

Example 20. For example, given gcd(7,11) = 1, we can construct, as we do below,

7 × 8 − 11 × 5 = 1. ◇

Lemma 17. (Euclid’s Lemma for Integers)
If p is a prime and a, b ∈ Z, then if p∣ab either p∣a or p∣b.

Proof. Suppose p∣ab, p a prime and a, b ∈ Z.
Now if p is a prime then either p∣a (and we are done) or p��∣a making gcd(p, a) = 1.
In this latter case, by Corollary 16, page 42 if gcd(p, a) = 1 then there exist integers
r, s such that,

rp + sa = 1⇒ brp + sab = b where we multiplied through by b.

Then since p∣ab means ab = pk for some k ∈ Z, we have,

brp + spk = b⇒ b = p(br + sk) ⇒ p∣b.

Example 21. 3∣48 = 6 × 8 and 3∣6

We can go further.

Corollary 18.
In general, if p∣a1a2 . . . ar then p∣ai for at least one ai, 1 ≤ i ≤ r.

Proof. If p��∣a1, then p∣a2a3 . . . ar. Then if p��∣a2 then p∣a3a4 . . . ar and so on. Thus if
p��∣ai, 1 ≤ i ≤ r − 1 then we must have p∣ar.

The fundamental theorem of arithmetic is that each integer is able to be factored
into the product of primes in a unique way up to order (that is, apart from the order,
for example, 12 = 22 × 3 = 3 × 22).
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Theorem 19. (Fundamental Theorem of Arithmetic)
Every integer n > 1 is a product of a unique set of primes. That is,

n = pα1
1 p

α2
2 p

α3
3 . . . pαrr =

r

∏
i=1

pαii

where each pi is a prime and all αi ∈ N.

Proof. To show n is a product of primes, we use a proof by contradiction.
Suppose there is an integer greater than 1 that is not the product of primes.
Then, by the Well-Ordering principle, there must be a smallest one, say m.
Either m is a prime and we are done, or m is not a prime.
In that case, m factors as say, m = rs. Since both r and s are smaller than m, they
must be the product of primes, and therefore m is also, so we have a contradiction.
We conclude there are no integers greater than 1 that are not a product of primes.

*****

To show n is a product of a unique set of primes, we suppose there are integers greater
than 1 with two different factorizations. To find a contradiction, let n be the smallest
of these and let two factorizations of n be,

n = pα1
1 p

α2
2 p

α3
3 . . . pαrr = qβ11 q

β2
2 q

β3
3 . . . qβss (5.2.2)

where the pi are distinct primes and the qj are distinct primes and the exponents4

αi, βj ∈ N.
Since p1 divides the right side, then by Corollary 18, page 42, p1 divides q

βj
j for some

j.
Hence p1 = qj since both are prime. Thus we may divide (5.2.2) by p1 to get two

different factorizations of
n

p1

.

But
n

p1

< n, so we have a contradiction since we supposed n is the smallest integer

with two different factorizations.
We conclude any integer has a unique factorization into primes.

Example 22. 720 = 24325

5.3 Euler’s Proof of the n = 3 case

5.3.1 The Lemmas

We are now prepared to read Euler’s elementary proof of the n = 3 case. This proof
depends upon particular characteristics of a2 + 3b2, a, b ∈ Z, in particular its possible
factors.

4α=alpha, β = beta
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(i) If we multiply two expressions of the form a2 + 3b2 we get another expression of
the same form (a square plus three times a square)

Example 23.

22 + 3 × 33 = 31

12 + 3 × 22 = 13

13 × 31 = 403 = 162 + 3 × 72

(ii) If 2∣a2 + 3b2 then also 4∣a2 + 3b2

Example 24. 32 + 3 × 12 = 12 = 2 × 6 = 4 × 3

(iii) If a prime of the form p2 + 3q2 divides a2 + 3b2 then the quotient
a2 + 3b2

p2 + 3q2
is also

of this form.

Example 25. 13 = 12 + 3 × 22 is a prime and 13 divides 403 = 162 + 3 × 72,

specifically
403

13
= 31 = 22 + 3 × 32

(iv) If a2+3b2 has an odd factor f which is not of this form, then so does the quotient
obtained by dividing a2 + 3b2 by f.

Example 26. 1452 = 332 + 3 × 112 and
1452

11
= 132 = 11 × 13 and 11 is not of

this form.

(v) If gcd(a, b) = 1, then every odd factor of a2 + 3b2 is also of this form.

Example 27. 183 = 3 × 61 and 3 = 02 + 3 × 12 while 61 = 72 + 3 × 22.
Actually, with a little bit of thought we realize any example for (iii) requires
gcd(a, b) ≠ 1 and gcd(a, b) to be not of this form.

We proceed to prove x3 + y3 + (−z)3 = 0 has no integer factors by supposing it does.
The supposition leads to a factor of the form a2+3b2 and then, via the above lemmas,
to an infinite number of factors of this form. By the method of infinite descent this
is not possible, so our supposition is incorrect.
We first prove the lemmas stated above.

Lemma 20.
If we multiply two polynomials of the form a2 + 3b2 then we get a polynomial of the
same form (a square plus three times a square).
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Proof.

(a2 + 3b2)(c2 + 3d2) = a2c2 + 3a2d2 + 3b2c2 + 9b2d2

= (a2c2 − 6abcd + 9b2d2) + (3a2d2 + 6abcd + 3b2c2)
(where we added and subtracted 6abcd)

= (a2c2 − 6abcd + 9b2d2) + 3(a2d2 + 2abcd + b2c2)
= (ac − 3bd)2 + 3(ad + bc)2

Lemma 21.

If 2∣a2 + 3b2 then 4∣a2 + 3b2 and
a2 + 3b2

4
= c2 + 3d2 for some c, d.

Proof.
We can have a = 2m or a = 2m + 1 and b = 2n or b = 2n + 1.
Case 1: a = 2m,b = 2n gives,

a2 + 3b2 = 4m2 + 3 × 4n2 = 4(m2 + 3n2)

In this case, a2 + 3b2 is even and is divisible by 4 and,

a2 + 3b2

4
= c2 + 3d2, c =m,d = n,

Case 2: a = 2m + 1, b = 2n gives,

a2 + 3b2 = 4m2 + 4m + 1 + 3 × 4n2 = 4(m2 +m + 3n2) + 1

In this case, a2 + 3b2 is odd so the Lemma statement 2∣a2 + b2 excludes this case.
Case 3: a = 2m,b = 2n + 1 gives,

a2 + 3b2 = 4m2 + 3 × (4n2 + 4n + 1) = 4(m2 + 3n2 + 3n) + 3

In this case, a2 + 3b2 is also odd so again the Lemma statement excludes this case.
Case 4: a = 2m + 1, b = 2n + 1 gives,

a2 + 3b2 = 4m2 + 4m + 1 + 3(4n2 + 4n + 1) = 4(m2 +m + 3n2 + 3n + 1)

In this case, a2 + 3b2 is even and is divisible by 4.

We still need to prove that in this case
a2 + 3b2

4
= c2 + 3d2 for some c, d. Once again,

we need to go deeper into the possibilities for odd numbers, namely, 4k ± 1. Letting
a = 4m ± 1, b = 4n ± 1 gives four possible cases for each of a ± b ∶

a b a + b a − b
4m + 1 4n + 1 4m + 4n + 2 4m − 4n = 4(m − n)
4m + 1 4n − 1 4m + 4n = 4(m + n) 4m − 4n + 2
4m − 1 4n + 1 4m + 4n = 4(m + n) 4m − 4n − 2
4m − 1 4n − 1 4m + 4n − 2 4m − 4n=4(m − n)
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So, comparing the final two columns, either 4∣a + b or 4∣a − b.

Case 4a: 4∣a + b
Using Lemma 20, page 44, namely,

(c2 + 3d2)(a2 + 3b2) = (ac − 3b)2 + 3(ad + bc)2

with c = d = 1 we have,

(12 + 3 × 12)(a2 + 3b2) = (a − 3b)2 + 3(a + b)2

⇒ 4(a2 + 3b2) = (a − 3b)2 + 3(a + b)2

Since a − 3b = (a + b) − 4b and 4∣a + b⇒ a + b = 4j then,

a − 3b = (a + b) − 4b = 4j − 4b = 4(j − b) ⇒ 4∣a − 3b

So let a − 3b = 4c and a + b = 4d for some c, d ∈ Z. Then,

c2 + 3d2 = (a − 3b

4
)

2

+ 3(a + b
4

)
2

= a
2 −��6ab + 9b2 + 3a2 +��6ab + 3b2

16
= a

2 + 3b2

4

*****

Case 4b: Similarly, using Lemma 20, page 44,

(c2 + 3d2)(a2 + 3b2) = (ac − 3bd)2 + 3(ad + bc)2

with c = 1, d = −1 we have,

(12 + 3 × (−1)2)(a2 + 3b2) = (a + 3b)2 + 3(−a + b)2

⇒ 4(a2 + 3b2) = (a + 3b)2 + 3(a − b)2

Since a + 3b = (a − b) + 4b and 4∣a − b then we must have 4∣a + 3b.

So let a + 3b = 4c⇒ c = a + 3b

4
and a − b = 4d⇒ d = a − b

4
. Then,

c2 + 3d2 = (a + 3b

4
)

2

+ 3(a − b
4

)
2

= a
2 +��6ab + 9b2 + 3a2 −��6ab + b2

16
= a

2 + 3b2

4

Lemma 22.
If a prime of the form p2 + 3q2 divides a2 + 3b2 then there exist c, d such that,

a2 + 3b2

p2 + 3q2
= c2 + 3d2
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Proof. Let p2 + 3q2 be a prime5 and,

a2 + 3b2

p2 + 3q2
= f ⇒ a2 + 3b2 = f(p2 + 3q2) (5.3.1)

Now, algebraically,

(pb − aq)(pb + aq) = p2b2 − a2q2

= p2b2 + (3q2b2 − 3q2b2) − a2q2

= b2(p2 + 3q2) − q2(a2 + 3b2)
= b2(p2 + 3q2) − q2f(p2 + 3q2)
= (p2 + 3q2)(b2 − q2f)

where we added and subtracted 3q2b2 and substituted for a2 + 3b2 using (5.3.1).
Since p2 + 3q2 is a prime, then by Euclid’s Lemma 17, page 42, p2 + 3q2 divides either
pb − aq or pb + aq and therefore either d(p2 + 3q2) = pb + aq or d(p2 + 3q2) = pb − aq for
some integers d.
Rather than take this as two cases, we can treat both cases at the same time by
stating,

d(p2 + 3q2) = pb ± aq for some integer d. (5.3.2)

By Lemma 20, page 44,

(c2 + 3d2)(a2 + 3b2) = (ac − 3bd)2 + 3(ad + bc)2

With c = p, d = ±q we know,

(p2 + 3(±q)2)(a2 + 3b2) = (pa ± 3qb)2 + 3(pb ± aq)2 (5.3.3)

⇒ (pa ± 3qb)2 = (p2 + 3q2)(a2 + 3b2) − 3(pb ± aq)2 (5.3.4)

Then, using (5.3.2),

(pa ± 3qb)2 = (p2 + 3q2)(a2 + 3b2) − 3d2(p2 + 3q2)2 (5.3.5)

= (p2 + 3q2)[(a2 + 3b2) − 3d2(p2 + 3q2)] (5.3.6)

This implies p2 + 3q2 divides (pa ± 3qb)2 and therefore6 the prime p2 + 3q2 divides
pa ± 3qb, that is,

pa ± 3qb = c(p2 + 3q2) for some integer c. (5.3.7)

Together (5.3.2) and (5.3.5) mean there exist c, d such that,

pa ± 3qb = c(p2 + 3q2) and pb ± qa = d(p2 + 3q2) (5.3.8)

5For example 22 + 3 × 52 = 79 ∈ P.
6See footnote on page 32 which shows if a prime p divides m2 then we must have p∣m.
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Then,

(pa ± 3qb)2 + 3(pb ± qa)2 = [c(p2 + 3q2)]2 + 3[d(p2 + 3q2)]2 (5.3.9)

From Equation (5.3.3), we have,

a2 + 3b2 = (pa ± 3qb2) + 3(pb ± aq)2

p2 + 3(±q)2

so that,

a2 + 3b2

p2 + 3q2
= (pa ± 3qb2) + 3(pb ± aq)2

(p2 + 3(±q)2)(p2 + 3q2)

= [c(p2 + 3q2)]2 + 3[d(p2 + 3q2)]2

(p2 + 3q2)2
by (5.3.9)

= c2 + 3d2

Lemma 23.
If a2 + 3b2 has an odd factor f that is not of this form (square plus 3 times a square),

then the quotient
a2 + 3b2

f
has an odd factor that is not of this form.

Proof. We need to show that if an odd number f is a factor of a2+3b2 and f ≠ p2+3q2

for any p, q then
a2 + 3b2

f
has an odd factor f ′ where f ′ ≠ p2 + 3q2 for any p, q.

Suppose a2 + 3b2 = fg where f is odd and f ≠ p2 + 3q2 for any p, q. We need to

show g = a
2 + 3b2

f
has a factor which is not of the form p2 + 3q2 for any p, q. We use

contradiction.
Let’s assume all the odd factors of g have the form p2 + 3q2. By the Fundamental
Theorem of Arithmetic, Theorem 19, page 43, g = p1 × p2 ×⋯× pn, a series of primes.

So consider f = a
2 + 3b2

g
, g = p1 × p2 ×⋯ × pn.

Now if g is even then for cancellation to be possible a2 + 3b2 must also be even, given
f is odd. We cannot have a odd and b even or vice versa since we would then have
a2 + 3b2 odd. So there are two cases.
Case A: a, b even. Then with a = 2k, b = 2j,

a2 + 3b2 = (2k)2 + 3(2j)2 = 4[k2 + 3j2]

Case B: a, b odd. Then with a = 2k + 1, b = 2j + 1,

a2 + 3b2 = (2k + 1)2 + 3(2j + 1)2 = 4k2 + 4k + 1 + 12j2 + 12j + 3 = 4[k2 + k + 3j2 + 3j + 1]
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In each case 4∣a2 + 3b2 and by Lemma 21, page 45,

a2 + 3b2

4
= c2 + 3d2, for some c, d.

retaining the form when we divide a2 + 3b2 by each occurrence of 4 in the prime
expansion of g.

So, eliminating all the 4 factors in g, we can say f = a2 + 3b2

g
where g is now the

product of odd primes of the form p2 + 3q2 and we can divide by all the odd primes
in g since we are assuming all odd factors take the form c2 + 3d2 and by Lemma 22,

page 46,
a2 + 3b2

p2 + 3q2
= c2 + 3d2 for some p, q.

But this leaves f = p2 + 3q2 which is a contradiction. Therefore, g must have a factor
which is not of the form p2 + 3q2 for some p, q.

The following lemma is the most difficult in this series. It uses the method of
infinite descent. Again, the algebra is not difficult. The difficulty lies in following the
logic of the argument.

Lemma 24.
Let a, b be any integers with gcd(a, b) = 1. Then every odd factor x of a2 + 3b2 has the
same form, that is x = c2 + 3d2, c, d ∈ Z.

Proof. Let a, b be any integers with gcd(a, b) = 1.
Let x be a positive odd factor of a2 + 3b2. Then there exists f ∈ Z such that,

a2 + 3b2 = xf

Now 1 = 12 + 3 × 02, so the lemma is true for x = 1.
Assume x > 1. Then by the Division Algorithm, Theorem 13, page 39, there exist
integers m,n, c, d such that,

a =mx ± c, b = nx ± d with ∣c∣ < x, ∣d∣ < x. (5.3.10)

As proved in Corollary 14, page 40 to the Division Algorithm, we can assume ∣c∣ < x
2

and ∣d∣ < x

2.
Then,

a2 + 3b2 = (mx ± c)2 + 3(nx ± d)2

= x(m2x ± 2mc + 3n2x ± 6nd) + c2 + 3d2

But x∣a2 + 3b2, hence x∣c2 + 3d2, say c2 + 3d2 = xy.
Then using ∣c∣, ∣d∣ < x

2
,

xy = c2 + 3d2 < (x
2
)

2

+ 3(x
2
)

2

= x2

⇒ y < x (5.3.11)
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Now c2+3d2 ≠ 0, else both c, d = 0 and then by (5.3.10) a =mx, b = nx⇒ gcd(a, b) ≥ x,
contradicting gcd(a, b) = 1.
Let g = gcd(c, d) so that c = gC, d = gD, gcd(C,D) = 1. Then,

xy = c2 + 3d2 = g2(C2 + 3D2) ⇒ g2∣xy. (5.3.12)

We claim g2∣y. We use contradiction. Assume there is any prime p that divides g and
x. Then there exist X,G such that g = pG,x = pX, and, again referring to (5.3.10),

a =mx ± c =mpX ±GpC = p(mX ±GC)
b = nx ± d = npX ±GpD = p(nX ±GD)

which means gcd(a, b) ≥ p, contradicting gcd(a, b) = 1.
So none of the factors of g and therefore g2 can divide x. Then,

g2∣y⇒ y = g2z, z ∈ Z (5.3.13)

Then,

xy = g2(C2 + 3D2) ⇒ xz = C2 + 3D2 (5.3.14)

for some z = y

g2
with gcd(C,D) = 1.

To conclude, we claim x = p2 + 3q2 for some p, q. Again we use contradiction and
assume x is not of this form.
But by Lemma 23, page 48, if C2+3D2 has an odd factor x which is not of this form,

then the quotient z = p
2 + 3q2

x
has an odd factor which is not of this form.

So there is a w such that w∣z and w is not of the form p2 + 3q2.
Now w ≠ 1 since 1 = 11 + 3(0)2 (the form p2 + 3q2) and w∣z ⇒ w < z and from (5.3.13)
y = g2z ⇒ z < y and from (5.3.11) y < x so w < z < y < x.

We have proved that the existence of a factor x of a2 +3b2 not of the form p2 +3q2

proves the existence of a smaller factor w which divides a smaller value z not of the
form p2+3q2. We can use the same argument to find a smaller factor w′ which divides
a smaller value of the same form and then another w′′ < w′ < w and so on, thereby
generating an infinite number of different factors of the one natural number C2+3D2.
This is a contradiction by the method of infinite descent.
Then, x = p2 + 3q2 for some p, q.

5.3.2 The Theorem: n = 3 case

Having proved the lemmas regarding a2 + 3b2, we proceed to prove x3 + y3 + (−z)3 = 0
has no integer solutions. We again use a proof by contradiction. We suppose it does.
This supposition leads to a factor of (−z)3 of the form a2+3b2 and then to an infinite
number of factors of this form. By the method of infinite descent this is not possible,
so our supposition is incorrect. The proof is due to Euler.
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Theorem 25. (Euler, 1770) The n = 3 case.
The equation x3 + y3 = z3 ⇔ x3 + y3 + (−z)3 = 0 has no non-zero integer solutions.

Proof. We assume a smallest solution (x, y, z) to the equation x3 + y3 + z3 = 0, where
the three non-zero integers x, y, z are pair-wise co-prime and not all positive.
One of the three must be even, whereas the other two are odd. Without loss of
generality, z may be assumed to be even, say z = 2k.
Since x and y are both odd, their sum and difference are both even numbers, say,

x + y = 2u,x − y = 2v⇒ x = u + v, y = u − v

where we claim the non-zero integers u and v are co-prime (or gcd(u, v) = 1) and have
different parity (one is even, the other odd).
The reason for being co-prime is that if u = rd, v = sd, gcd(u, v) = d ≠ 1, then,

x = u + v = d(r + s) and y = u − v = d(r − s)

makes gcd(x, y) ≥ d contradicting gcd(x, y) = 1. This then means u, v cannot both be
even.
Also, if both are odd, say u = 2m + 1, v = 2n + 2 then,

x = u + v = 2m + 1 + 2n + 1 = 2(m + n + 1)
y = u − v = 2m + 2 − 2n − 2 = 2(m − n)

making both x, y even, again contradicting gcd(x, y) = 1. Therefore they must be of
opposite parity (one odd, the other even).
Now x = u + v, y = u − v gives,

−z3 = x3 + y3

= (u + v)3 + (u − v)3

= u3 +���3u2v + 3uv2 +��@@v3 + u3 −���3u2v + 3uv2 −��@@v3

= 2u(u2 + 3v2) (5.3.15)

Since u = 2k, v = 2j + 1 or u = 2j + 1, v = 2k, then,

u2 + 3v2 = (2j + 1)2 + 3(2k)2 = 2(2j2 + 2j + 6k2) + 1 = 2m + 1,m ∈ Z
or

u2 + 3v2 = (2k)2 + 3(2j + 1)2 = 2(2k2 + 6j + 6j2 + 1) + 1 = 2n + 1, n ∈ Z,

so u2 + 3v2 is always an odd number. Therefore, if z = 2m and u2 + 3v2 = 2n + 1 then,
from (5.3.14),

−z3 = 2u(u2 + 3v2) ⇒ −8m3 = 2u(2n + 1) (5.3.16)

which is only possible if 8∣2u, so u must be even and therefore v must be odd.
Since gcd(u, v) = 1, then we claim the greatest common divisor of 2u and u2 + 3v2 is
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either 1 or 3.
This is true since if u = 3k then u2 + 3v2 = 9k2 + 3v2 = 3(3k2 + v2) is divisible by 3, so
gcd(u,u2 + 3v2) = 3. But no other prime p > 3 can be a common divisor since if p∣u
and we substitute 2u = pj into u2 + 3v2 = pk, then,

p2j2

4
+ 3v2 = pk⇒ 3v2 = p[k − p

2j2

4
]

so p∣v also which is a contradiction to gcd(u, v) = 1. Hence gcd(u,u2 + 3v2) = 1 or 3.
Let us consider these two cases for gcd(u, v).
Case A: gcd(2u,u2 + 3v2) = 1
This implies 3��∣u since if u = 3k then,

2u = 6k, u2 + 3v2 = 9k2 + 3v2 = 3(3k2 + v2) ⇒ gcd(u, v) ≥ 3

Then in (5.3.15) −z3 = 2u(u2 + 3v2) is only possible if both 2u and u2 + 3v2 are cubes
of two smaller numbers r, s say

2u = r3, u2 + 3v2 = s3 (5.3.17)

Since u is even and v is odd then u2 + 3v2 is odd and so is s.
Lemma 24, page 49 proved that if s is odd and satisfies an equation s3 = u2 + 3v2 so
that s is an odd factor of u2 + 3v2 then s can be written in terms of two co-prime
integers e and f as s = e2 + 3f 2, so that we can only have,

u = e(e2 − 9f 2)
v = 3f(e2 − f 2),

since then7,

u2 + 3v2 = [e(e2 − 9f 2)]2 + 3[3f(e2 − f 2)]2

= e2(e4 − 18e2f 2 + 81f 4) + 3[9f 2(e4 − 2e2f 2 + f 4)]
= e6 − 18e4f 2 + 81e2f 4 + 27e4f 2 − 54e2f 4 + 27f 6

= e6 + 9e4f 2 + 27e2f 4 + 27f 6

= (e2 + 3f 2)3

= s3

***

Now gcd(e, f) = 1 so either e is even and f odd or vice versa. But u is even so if e
were odd and f even then

u = e(e2 − 9f 2) = (odd)(odd − even) = (odd)(odd)
7Recall (x + y)3 = x3 + 3x2y + 3xy2 + y3
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so we must have e even and f odd.
Now from (5.3.17),

r3 = 2u = 2e(e − 3f)(e + 3f) (5.3.18)

We claim the factors 2e, e − 3f, e + 3f are co-prime.

***

First 3 cannot divide e, else 3∣u = e(e2 − 9f 2) and 3∣v = 3f(e2 − f 2), so 3∣u and 3∣v
making gcd(u, v) ≥ 3 contradicting gcd(u, v) = 1.
And if 3��∣e then 3��∣e − 3f and 3��∣e + 3f so we can rule out 3 as a factor of any of the
three factors.
Second no other prime p > 3 can divide more than one of e, e − 3f, e + 3f.
First suppose 2e = kp, e± 3f = jp. Then multiplying e± 3f = jp by 2 and substituting
2e = kp we have

2e ± 6f = 2jp⇒ kp ± 6f = 2jp⇒ p∣f since p > 3,

and

2e =kp⇒ p∣e

so that gcd(e, f) ≥ p which contradicts gcd(e, f) = 1. Hence gcd(2e, e ± 3f) = 1.
Second suppose p > 3 and gcd(e + 3f, e − 3f) = p. Then e − 3f = pk, e + 3f = pj.
Adding we have 2e = p(j + k) and subtracting we have 6f = p(k − j) Hence p∣e and
p∣f again contradicting gcd(e, f) = 1.
We conclude the factors 2e, e − 3f, e + 3f are co-prime, proving our claim.

***

Since the three factors on the right side of Equation (5.3.18) are co-prime they must
individually equal cubes of smaller integers, say,

−2e = k3, e − 3f = l3, e + 3f =m3

This yields a smaller solution8,

k3 + l3 +m3 = −2e + e − 3f + e + 3f = 0

Therefore, by the argument of infinite descent, the original solution (x, y, z) was im-
possible.

Case B: gcd(2u,u2 + 3v2) = 3
The argument is similar to Case A.

8Why smaller? We have u = e(e − 3f)(e + 3f) = −k
3

2
⋅ l3 ⋅m3, so all of k, l,m are less than u. But

x = u + v so u < x. Hence k, l,m < x and by a similar argument y and hence z.
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gcd(2u,u2 + 3v2) = 3 means 3∣u or u = 3w,w < u.
Since, from (5.3.15), 8∣2u⇒ 4∣u⇒ 4∣3w then w is even. Since u, v are co-prime, then
so are v,w. Then neither 3 nor 4 divide v.
Substituting u = 3w in −z3 = 2u(u2 + 3v2) gives,

−z3 = 6w(9w2 + 3v2) = 18w(3w2 + v2)

Because v,w are co-prime and 3��∣v then 18w and 3w2+v2 are also co-prime9. Therefore,
since their product is a cube, they are each the cube of smaller integers r and s thus,

18w = r3, 3w2 + v2 = s3

By Lemma 24, page 49, since s is odd and a factor of a number of the form 3w2 + v2,
it can be expressed in terms of smaller co-prime numbers, e and f as s = e2 + 3f 2 so
that (as above),

v = e(e2 − 9f 2)
w = 3f(e2 − f 2)

Since v is odd, then e is odd and f is even. Now,

r3 = 18w

= 54f(e2 − f 2)
= 54f(e − f)(e + f)
= 33 × 2 × f(e − f)(e + f)

Since 33∣r3 then 3∣r so (r
3
)

3

is an integer and (r
3
)

3

= 2f(e − f)(e + f).
Since e and f are co-prime, so are the factors 2f, e − f, e + f. Therefore, they must
individually equal cubes of smaller integers, say,

2f = k3, e − f = l3, (e + f) = (−m)3

By the same argument as for Case A this also yields a smaller solution,

k3 + l3 +m3 = 2f + e − f − e − f = 0

Therefore, by the argument of infinite descent, the original solution (x, y, z) was
impossible.

9This is so since for p > 3 if 18w = kp and 3w2 + v2 = jp then
3k2p2

182
+ v2 = jp implies p∣w and p∣v

contracdicting gcd(w, v) = 1.



Chapter 6

Shopping Excursion I

Complex Numbers and the Triangle Inequality

We need to know more about numbers, not only real numbers but also complex
numbers. We explore them through the example of the Triangle Inequality which is
widely used in proofs in number theory and other branches of mathematics – indeed
we refer to it later. Its name derives from an ancient proof by Euclid that the length
of any one side of a triangle is less than the sum of the lengths of the other two sides.
Let’s first prove it for real numbers, then develop the theory of complex numbers to
a level that enables us to prove it for complex numbers.

6.1 The Triangle Inequality for Real Numbers

First, we recall the definition of absolute value, ∣x∣ =
⎧⎪⎪⎨⎪⎪⎩

x, if x ≥ 0

−x, if x < 0

It therefore follows that for all real numbers that,

∣x∣2 = x2 (6.1.1)

xy ≤ ∣x∣ ⋅ ∣y∣ (6.1.2)

since for 6.1.1 both sides are positive aand for 6.2.2 the left side may be positive or
negative but the right side is always positive.

Lemma 26. (Triangle Inequality in R)
For all real numbers x, y, we have ∣x + y∣ ≤ ∣x∣ + ∣y∣

55
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Proof.

∣x + y∣2 = (x + y)(x + y) by (6.1.1
= x2 + 2xy + y2

= ∣x∣2 + 2xy + ∣y∣2 by (6.1.1)
≤ ∣x∣2 + 2∣x∣ ⋅ ∣y∣ + ∣y∣2 by (6.1.2)
= (∣x∣ + ∣y∣)2

Taking the square root of both sides, we have ∣x + y∣ ≤ ∣x∣ + ∣y∣

6.2 Complex Numbers – Notation and Definitions

Notation 1. We put i =
√
−1.

We note that i is a solution of the equation, x2 + 1 = 0 since (i)2 + 1 = −1 + 1 = 0
We further note that there is no real solution to the equation x2+1 = 0 since the square
of any real number is always positive. We call i an imaginary or complex number.

Definition 12. complex numbers
The set C of complex numbers is defined as,

C = {z = x + iy ∣ x, y ∈ R, i =
√
−1}

We call x the real part of z, written x = Re(z), and we call y the imaginary part
of z, written y = Im(z).
We note that every real number is included in C (take y = 0), that is, R ⊂ C.
Definition 13. complex conjugate
The complex conjugate z̄ of the complex number z = x + iy is defined by z̄ = x − iy.
Definition 14. magnitude of a complex number
The magnitude ∣z∣ of the complex number z = x + iy is defined by ∣z∣ =

√
x2 + y2.

Definition 15. complex number plane
Analogous to the real number plane, we define the complex number plane by retaining
the x − axis for Re(z) and assigning Im(z) to the imaginary y − axis.

−4 −2 2 4

−4i

−3i

−2i

−i

i

2i

3i

+3i

+4i

3 + 2i

2 + 3i

−1 + i Re(z)

Im(z)
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The complex numbers are placed on the complex plane as indicated by 2 + 3i cor-
responding to the placement of (2,3) on the real number plane and so on.

The reader may choose to skip over the following section and return to it after
Part III Shopping Excursion II - Calculus and Part V Shopping Excursion III: Expo-
nential and Trigonometric Functions. If so go to section 6.4, The Theory of Complex
Numbers, below.

6.3 Definitions using Polar Coordinates

Again analogous to the real number plane, each complex number may be assigned a
distance r from the origin, called its magnitude, and an angle θ, called its argument,
formed by the positive x-axis or Re(z)-axis and the line joining the number to the
origin.

r y

z = x + iy

x
θ

Re(z)

Im(z)

We have cos θ = x
r
, sin θ = y

r
so we can write,

z = x + iy = r cos θ + ir sin θ = reiθ

where we used Euler’s equation eiθ = cos θ + i sin θ. (see Theorem 119, page 173).

We define,

� Magnitude of z by r = ∣z∣ =
√
x2 + y2

� Argument of z by Arg(z) = θ = tan−1 (y
x
)

� Complex conjugate of z by z̄ = x − iy.

As an aside, let’s prove a theorem using the polar coordinate form of complex numbers.
We could also prove it by induction using ordinary complex numbers, but it is then a
much longer proof. Polar coordinates can shorten proofs considerably!
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Theorem 27. (DeMoivre’s Theorem)
If z = r(cos θ + i sin θ) then zn = rn(cosnθ + i sinnθ)

Proof.

z = r(cos θ + i sin θ) = reiθ

⇒ zn = rn (eiθ)n = rneinθ = rn(cosnθ + i sinnθ)

6.4 The Theory of Complex Numbers

We now prove a series of general lemmas for complex numbers. We will then use
them in the proof of the triangle inequality for complex numbers. This procedure
is excellent simple example of how theorems are built from other theorems or from
lemmas.
Let z = x + iy, z1 = x1 + iy1, z2 = x2 + iy2 ∈ C.
Note ¯̄z = x − iy = x + iy = z.

Lemma 28.
∣z∣2 = zz̄

Proof. zz̄ = (x + iy)(x − iy) = x2 + y2 = ∣z∣2.

Lemma 29.
z̄1z2 = z1z̄2

Proof.

z1z̄2 = (x1 + iy1)(x2 − iy2)
= x1x2 + y1y2 + i(x2y1 − x1y2)
= x1x2 + y1y2 − i(x2y1 − x1y2)
= (x1 − iy1)(x2 + iy2)
= z̄1z2

Lemma 30.
z1z2 = z̄1z̄2

Proof. Replace z2 with z̄2 in Lemma 29 to obtain z̄1z̄2 = z1 ¯̄z2 = z1z2

Lemma 31.
∣z∣ ≥ Rez = x

Proof. ∣z∣2 = x2 + y2 ≥ x2 ⇒ ∣z∣ ≥ x = Re(z).
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Lemma 32.
z + z̄ = 2Re(z)

Proof. z + z̄ = x + iy + x − iy = 2x = 2Re(z).

Lemma 33.
∣z1z2∣ = ∣z1∣∣z2∣

Proof. We use ∣x + iy∣2 = x2 + y2.

∣z1z2∣2 = ∣(x1 + iy1)(x2 + iy2∣2

= ∣x1x2 − y1y2 + i(x2y1 + x1y2)∣2

= (x1x2 − y1y2)2 + (x2y1 + x1y2)2

= x2
1x

2
2 −����

��
2x1x2y1y2 + y2

1y
2
2 + x2

2y
2
1 +����

��
2x2y1x1y2 + x2

1y
2
2

= x2
1(x2

2 + y2
2) + y2

1(x2
2 + y2

2)
= (x2

1 + y2
1)(x2

2 + y2
2)

= ∣z1∣2∣z2∣2

Take the square root to obtain the result.

Lemma 34.
∣z1∣∣z̄2∣ = ∣z1z̄2∣

Proof. Putting z2 = z̄2 in Lemma 33 we have,

∣z1z̄2∣ = ∣z1∣∣z̄2∣

Lemma 35.
z1 + z2 = z̄1 + z̄2

Proof.

z1 + z2 = x1 + iy1 + x2 + iy2

= x1 + x2 + i(y1 + y2)
= x1 + x2 − i(y1 + y2)
= x1 − iy1 + x2 − iy2

= z̄1 + z̄2

Lemma 36.
∣z∣ = ∣z̄∣

Proof. Put z = z̄ in ∣z∣2 = zz̄ to get ∣z̄∣2 = z̄ ¯̄z = z̄z ⇒ ∣z̄∣2 = ∣z∣2.
Take the square root to obtain the result.
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6.5 Triangle Inequality for Complex Numbers

Theorem 37. (Triangle Inequality in C)

∣z1 + z2∣ ≤ ∣z1∣ + ∣z2∣

Proof.

∣z1 + z2∣2 = (z1 + z2)(z1 + z2) by Lemma 28

= (z1 + z2)(z̄1 + z̄2) by Lemma 35

= z1z̄1 + z2z̄2 + z2z̄1 + z1z̄2

= ∣z1∣2 + ∣z2∣2 + z̄1z2 + z1z̄2 by Lemma 28

= ∣z1∣2 + ∣z2∣2 + z1z̄2 + z1z̄2 by Lemma 29

= ∣z1∣2 + ∣z2∣2 + 2Re(z1z̄2) by Lemma 32

≤ ∣z1∣2 + ∣z2∣2 + 2∣z1z̄2∣ by Lemma 31

≤ ∣z1∣2 + ∣z2∣2 + 2∣z1∣∣z̄2∣ by Lemma 34

≤ ∣z1∣2 + ∣z2∣2 + 2∣z1∣∣z2∣ by Lemma 36

≤ (∣z1∣ + ∣z2∣)2

Take the square root of both sides to obtain the result.



Chapter 7

The n = 3 Case by Complex
Techniques

We now use complex numbers to prove x3 + y3 = z3 has no non-zero integer solutions.

Course: Main Course Choice 2
Ingredients
Greek alphabet
Complex number theory
Algebraic numbers and algebraic integers
k(ρ), a subset of the complex numbers
Directions
Prove a bunch of lemmas relating to the numbers of k(ρ).
Use the lemmas to prove the n = 3 case.

We will now prove there are no solutions to x3 + y3 = z3 in the natural numbers using
complex methods. The proof may be found in Hardy and Wright’s “An Introduction
to the Theory of Numbers.” The mathematics of complex numbers usually uses Greek
letters for variables. It is handy to know the English names of the Greek letters.

Name Symbol Name Symbol Name Symbol
Alpha α A Beta β B Gamma γΓ
Delta δ∆ Epsilon ε E Zeta ζ Z
Eta η E Theta θΘ Iota ι I
Kappa κ K Lambda λΛ Mu µ M
Nu ν N Xi ξΞ Pi πΠ
Rho ρ R Sigma σΣ Tau τ T
Upsilon υΥ Phi φΦ Chi χ X
Psi ψΨ Omega ωΩ

61
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7.1 Algebraic Numbers and Algebraic Integers

Definition 16. algebraic number
We say1 ξ is an algebraic number if it is the root of an equation of the form,

anx
n + an−1x

n−1 + . . . + a1x + a0 = 0, an ≠ 0,

whose coefficients ai are integers.

Example 28.
1√
3

is an algebraic number since it is a root of the polynomial equation

3x2 − 1 = 0. ◇

Definition 17. algebraic integer
We say ξ is an algebraic integer if it is the root of an equation of the form,

xn + an−1x
n−1 + . . . + a1x + a0 = 0,

whose coefficients are integers and whose leading coefficient is 1.

Example 29.
√
−1 is an algebraic integer since it is a root of x2 + 1 = 0.

ρ = 1

2
(−1 + i

√
3) is an algebraic integer since it is a root of x2 + x + 1 = 0. ◇

The three simplest cases of the algebraic integers are what we call,

1. The integers of k(1) : the integers or rational integers Z.

2. The integers of k(i) : the complex or Gaussian integers {a + bi ∣ a, b ∈ Z}

3. The integers2 of k(ρ): {ξ = a + bρ ∣ a, b ∈ k(1), ρ = 1

2
(−1 + i

√
3)}

7.2 The k(ρ) Algebraic Integers

Again note we defined k(ρ) = {a + bρ ∣ a, b ∈ Z, ρ = −1 + i
√

3

2
}

Note ρ2 = (−1 + i
√

3

2
)

2

= −1 − i
√

3

2
, so ρ and ρ2 are complex conjugates.

We begin with a number of definitions.

1ξ=xi pronounced kigh
2ρ = rho (row as in a boat), ξ= xi (kigh rhymes with sigh)
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Definition 18. divisor and divisible
ξ ∈ k(ρ) is divisible by3 η if there exists a ζ such that ξ = ηζ. We call η a divisor of ξ
and write η∣ξ.

Example 30. 3 + 2i∣13 or 3 + 2i is a divisor of 13 since 13 = (3 + 2i)(3 − 2i).

Definition 19. norm
The norm of ξ ∈ k(ρ) is written Nξ and for ξ = a + bρ is defined by,

Nξ = (a + bρ)(a + bρ2)

= (a + b−1 + i
√

3

2
)(a + b−1 − i

√
3

2
)

= a2 − ab + b2

Example 31. The norm of 3 + 2ρ is N(3 + 2ρ) = 9 − 6 + 4 = 7

Note 4.

a) The norm of 1 = 1 + i0 is N1 = 12 − 1 × 0 + 02 = 1

b) For ξ ≠ 0, Nξ = a2 − ab + b2 = (a − b
2
)

2

+ 3

4
b2 implies Nξ ≥ 1 since both squares

are necessarily positive and the smallest values of a, b are 0,±1.

Lemma 38.

ρ + ρ2 = −1 (7.2.1)

ρρ2 = 1. (7.2.2)

Proof.

ρ = −1 + i
√

3

2

⇒ ρ2 = −1 + i
√

3

2
× −1 + i

√
3

2
= −1 − i

√
3

2

⇒ ρ + ρ2 = −1 + i
√

3

2
+ −1 − i

√
3

2
= −1

2
+ −1

2
= −1

⇒ ρρ2 = −1 + i
√

3

2
× −1 − i

√
3

2
= 1 + 3

4
= 1.

Lemma 39.
For all4 α,β ∈ k(ρ) we have N(αβ) = N(α)N(β).

3η = eta, ζ = zeta
4α =alpha, β = beta
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Proof. Let α = a + bρ and β = c + dρ.

N(αβ) = N(a + bρ)(c + dρ)
= N(ac + bdρ2 + (ad + bc)ρ)
= N(ac + bd(−ρ − 1) + (ad + bc)ρ) using (7.2.1)
= N(ac − bd) + (bc + ad − bd)ρ
= (ac − bd)2 − (ac − bd)(bc + ad − bd) + (bc + ad − bd)2

= a2c2 −����2abcd +���HHHb2d2 − abc2 − a2cd + abcd + b2cd + abd2 −���HHHb2d2

+ b2c2 +����2abcd + a2d2 − 2b2cd − 2abd2 + b2d2

= a2(c2 − cd + d2) − ab(c2 − cd + d2) + b2(c2 − cd + d2)
= (a2 − ab + b2)(c2 − cd + d2)
= N(α)N(β)

Definition 20. unity
ε5 is a unity of k(ρ) if ε∣ξ for all ξ ∈ k(ρ). Equivalently, a unity is any integer which
is a divisor of, or divides, 1.

In Z the only unities are ±1 since only ±1 divide all integers. But in k(ρ) there
are more than 2 unities as we will see.

Lemma 40.
The norm of a unity is 1 and any integer whose norm is 1 is a unity.

Proof. First we prove the norm of a unity is 1.
If ε is a unity then ε∣1 hence εη = 1 for some η ∈ k(ρ).
Since N1 = 1 then, by Lemma 39, N(εη) = N1⇒ N(ε)N(η) = 1⇒ N(ε)∣1.
But by Note 2(b), N(ξ) ≥ 1 for all ξ ∈ k(ρ) so N(ε) = 1.

***

Second we prove any integer whose norm is 1 is a unity.
Let ξ = a + bρ ∈ k(ρ) have Nξ = 1.
We defined Nξ = (a + bρ)(a + bρ2)
Hence, labelling ξ̄ = a + bρ2 we have Nξ = ξξ̄. Then Nξ = 1⇒ ξξ̄ = 1.
Hence ξ is a divisor of 1 so by definition ξ is a unity.

Note 5. Since in Note 24 we have Nξ ≥ 1 for all ξ ∈ k(ρ) then if ξ is not a unity we
must have Nξ ≥ 2.

Note 6.

5ε =epsilon, ρ = rho, ξ =xi (kigh), η = eta
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Unities ε = a + bρ in k(ρ) are given by,

Nε = 1⇒ a2 − ab + b2 = (a − b
2
)

2

+ 3

4
b2 = 1

The only solutions of this equation are a = ±1, b = 0 or a = 0, b = ±1 or a = 1, b = 1 or
a = −1, b = −1.
So the unities are:

±1;±ρ;±(1 + ρ) ⇔ ±1;±ρ;±ρ2(using (7.2.1))

Note the positive unities are the roots of x3 − 1 = 0 since

x3 − 1 = (x − 1)(x2 + x + 1) = 0

⇒ x = 1 or x = −1 ±
√
−3

2
= ρ, ρ2.

We may therefore factor x3 − 1 as,

x3 − 1 = (x − 1)(x − ρ)(x − ρ2) (7.2.3)

Lemma 41.
The products and quotients of unities are unities.

Proof. Omitting multiplications by ±1 and using ρ3 = 1 the possible combinations
are:

1 × 1 = 1

ρ × ρ = ρ2

ρ2 × ρ2 = ρ4 = ρ
ρ × ρ2 = 1

1

ρ
= 1

ρ
× ρ

2

ρ2
= ρ

2

ρ3
= ρ2

1

ρ2
= 1

ρ2
× ρ
ρ
= ρ

ρ2

ρ
= ρ

ρ

ρ2
= 1

ρ
= ρ2 as above

Lemma 42.
If α,β are not unities then N(αβ) > 3.
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Proof. From Lemma 40, the norm of a unity is 1 and any integer whose norm is 1 is
a unity. Suppose α,β ∈ k(ρ) are not unities.
Therefore,

Nα ≥ 2 and Nβ ≥ 2⇒ N(αβ) = N(α)N(β) ≥ 4⇒ N(αβ) > 3.

Definition 21. associates
If ε is an unity, the number εξ is said to be an associate of ξ or associated with ξ.

In k(1) = Z the unities are ±1 so we could say ±7 are associated with 7.

Note 7.
The associates of ξ are therefore ±ξ;±ρξ;±ρ2ξ.
The associates of 1 are the unities ±1;±ρ;±ρ2.

Definition 22. primes
A prime π is an integer, not 0 or 1, divisible only by numbers associated with itself
or 1, that is, ±π;±ρπ;±ρ2π. We reserve the letter6 π for primes.

In k(1) = Z we could say a prime is any integer divisible only by the unities ±1
(excluding itself).

Lemma 43.
Any number whose norm is a rational prime is a prime.

Proof. Using proof by the contrapositive we need to prove if a number is not a prime
then its norm is not a prime.
Let ξ ∈ k(ρ) be an integer that is not a prime, say ξ = αβ. Then N(ξ) = N(α)N(β)
must be a composite number and not a prime.

Lemma 44.
λ = 1 − ρ is a prime7.

Proof. N(1 − ρ) = 12 − (1)(−1) + 12 = 3, a rational prime, so by Lemma 43, λ is a
prime.

Lemma 45.
3 is associated with λ2 = (1 − ρ)2.

Proof. We need to show λ2 is 3 multiplied by a unity. By Lemma 38, page 63,
ρ2 = −1 − ρ so λ2 = 1 − 2ρ + ρ2 = 1 − 2ρ − 1 − ρ = −3ρ and −ρ is a unity.

Lemma 46.
λ does not divide 2.

6π = pi, ρ = rho
7λ = lambda
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Proof. Suppose λ∣2 or 2 = λδ for some δ ∈ k(ρ).
Now N2 = N(2 + 0ρ) = 22 − 0 + 0 = 4 but N(λδ) = N(λ)N(δ) = 3N(δ) as shown in
Lemma 44. Hence N(λδ) ≥ 6 since, from Note 5, Nξ ≥ 2 for all ξ not a unity.
This is a contradiction. Hence λ does not divide 2.

We now re-introduce the notation of congruency for any of our sets of algebraic
integers, k(1), k(i) or k(ρ).

Definition 23. congruence
Let m be an algebraic integer in k(1), k(i) or k(ρ). If m divides the difference a− b of
two integers a, b in k(1), k(i) or k(ρ), we say “a is congruent to b modulo m” and
we write,

a ≡ b(mod m)

Note 8. Note that m∣a − b⇒ a − b =mj ⇒ a = b +mj, j ∈ k(1), k(i) or k(ρ), so that,

a ≡ b(mod m) ⇔ a = b + jk, k ∈ k(1), k(i) or k(ρ).

Definition 24. residue
If a ≡ b(mod m), b is called a residue of a modulo m. It is any possible remainder
when a is divided by m.

Example 32.

For example in the ordinary integers, k(1),

23 = 5 × 4 + 3 ⇔ 23 ≡ 3(mod 5)
23 = 5 × 3 + 8 ⇔ 23 ≡ 8(mod 5)
23 = 5 × 2 + 13⇔ 23 ≡ 13(mod 5)
23 = 5 × 1 + 18⇔ 23 ≡ 18(mod 5)

Here the residues are 3,8,13 and 18 and 3 is the preferred least non-negative residue
of 23 modulo 5. Accordingly, we generally write 23 ≡ 3(mod 5) unless we specifically
state otherwise. ◇

Definition 25. incongruence
b, c are said to be incongruent modulo m if b�≡ c(mod m).

Example 33. 3,5 are incongruent modulo 7 since 7 does not divide 5 − 3.

The next congruence lemma applies to Z or the k(1) algebraic integers only.

Lemma 47.
The sum of two integers a, b satisfies a + b ≡ 0,1 or − 1(mod 3).
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Proof. Note x ≡ −1(mod 3) ⇒ x ≡ 2(mod 3) so we need to show a − b ≡ 0,1
or 2(mod 3).
Now the least possible non-negative residue of any integer modulo 3 is either 0,1 or 2
or m ≡ 0,1 or 2(mod 3) for any m ∈ Z.
In other words when any integer is divided by 3 the least non-negative remainder can
only be 0,1 or 2.
Therefore, there are 9 possibilities for the remainder when the sum a+ b is divided by
3 as shown in this table.

a b a + b a + b(mod 3)
3j 3k 3l + 0 0
3j 3k + 1 3l + 1 1
3j 3k + 2 3l + 2 2

3j + 1 3k 3l + 1 1
3j + 1 3k + 1 3l + 2 2
3j + 1 3k + 2 3l + 3 0
3j + 2 3k 3l + 2 2
3j + 2 3k + 1 3l + 3 0
3j + 2 3k + 2 3k + 4 1

So the only possibilities are a + b ≡ 0,1 or 2(mod 3) = −1(mod 3).

Now let us consider congruences involving the k(ρ) integers.

Lemma 48.
All integers8 of ξ ∈ k(ρ) modulo λ fall into one of these three classes,

ξ ≡ 0(mod λ), ξ ≡ 1(mod λ), ξ ≡ −1(mod λ),

where λ = 1 − ρ.

Proof. If ξ = a + bρ ∈ k(ρ) and λ = 1 − ρ then ξ = a + b − bλ ≡ a + b(mod λ)
Since, by Lemma 38,

λ(1 − ρ2) = (1 − ρ)(1 − ρ2) = 1 − (ρ + ρ2) + ρ3 = 1 − (−1) + 1 = 3,

then λ∣3 so we can say9 3 = λω,ω ∈ k(ρ)
Now by Lemma 47 the sum of two integers a, b satisfies a + b ≡ 0,1 or − 1(mod 3).
Then either,

a + b ≡ 0(mod 3) ⇒ a + b = 3l⇒ a + b = lλω⇒ a + b ≡ 0(mod λ) or,

a + b ≡ ±1(mod 3) ⇒ a + b = ±1 + 3l = ±1 + lλω⇒ a + b ≡ ±1(mod λ).

8ξ = xi, λ = lambda, ρ = rho, γ = gamma
9ω=omega



7.3. The Proof of the n = 3 Case 69

7.3 The Proof of the n = 3 Case

We are now equipped to prove the n = 3 case using complex numbers. This is the
“hardest” proof we have met in this book and will be until we reach Chapter 16.

If we can prove we cannot have α3 + β3 + γ3 = 0, α ≠ 0, β ≠ 0, γ ≠ 0 in k(ρ) then
since the rational integers are also in k(ρ), simply let α = x,β = y, γ = z to prove there
are no solutions of x3 + y3 + z3 = 0 in the integers.

Now any factor of two of α,β, γ in α3 +β3 + γ3 = 0 must by Lemma 8, page 30, be
a factor of the third so we can cancel it out and we may suppose,

α3 + β3 + γ3 = 0 where gcd(α,β) = gcd(β, γ) = gcd(α, γ) = 1.

We will precede the proof with three connected lemmas.

Lemma 49.
Let ω = a + bρ be an algebraic integer in k(ρ) and λ be the prime 1 − ρ. If λ ≠ ω then,

ω3 ≡ ±1(mod λ4) ⇔ ω3 = ±1 + βλ4 for some β ∈ k(ρ)

Proof. Since λ ≠ ω, then ω ≠ 0(mod λ).
By Lemma 48 page 68, ω is congruent to one of 0,1,−1(mod λ). Now λ ≠ ω excludes
ω ≡ 0(mod λ), so ω ≡ ±1(mod λ).
We can therefore choose α = ±ω so that α ≡ 1(mod λ) ⇒ α = 1+βλ for some β ∈ k(ρ).
Then,

±(ω3 ∓ 1) = α3 − 1

= (α − 1)(α − ρ)(α − ρ2) by (7.2.3) of Note 6, page 64

= βλ(βλ + 1 − ρ)(βλ + 1 − ρ2), since α = 1 + βλ,
= βλ(βλ + λ)(βλ + 1 − ρ2), since λ = 1 − ρ,
= λ2β(β + 1)(βλ − λρ2),
since 1 − ρ2 = (1 − ρ)(1 + ρ) = λ(1 + ρ) = −λρ2 by Lemma 38, page 63

= λ3β(β + 1)(β − 1 − ρ), again by Lemma 38

So λ3 ∣ ± (ω3 ∓ 1).
Now by Lemma 47, β ≡ 0, 1 or −1(mod λ) so one of the three factors β, β+1, β−1−ρ
is divisible by λ. This is so since the three alternatives are,

(a) β ≡ 0(mod λ) ⇒ λ∣β,

(b) β ≡ −1(mod λ) ⇒ β + 1 ≡ 0(mod λ) ⇒ λ∣β + 1,

(c) β ≡ 1(mod λ) ⇒ β − 1 ≡ 0(mod λ) ⇒ λ∣β − 1⇒ λ∣β − 1 − λρ2

Note we have added −λρ2 since λ∣ − λρ2 as well as λ∣β − 1.
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So, λ4∣ ± (ω3 ∓ 1) and we have,

±(ω3 ∓ 1) ≡ 0(mod λ4) ⇒ ω3 ∓ 1 ≡ 0(mod λ4) ⇒ ω3 ≡ ±1(mod λ4)

.

Note 9. In particular for any three k(ρ) integers α,β, γ we have,

α3 ≡ ±1(mod λ4), β3 ≡ ±1(mod λ4), γ3 ≡ ±1(mod λ4)

if none of α,β, γ are divisible by λ. We use this in the next lemma.

Lemma 50.
If α3 + β3 + γ3 = 0, α ≠ 0, β ≠ 0, γ ≠ 0 then one of α,β, γ is divisible by λ.

Proof. Suppose α3+β3+γ3 = 0 and none of α,β, γ are divisible by λ. Then, by Lemma
4810,

0 = α3 + β3 + γ3 ≡ ±1 ± 1 ± 1(mod λ4) ≡ ±1(mod λ4) or ± 3(mod λ4)

We cannot have 0 ≡ ±1(mod λ4) since for some11 δ ∈ k(ρ),

0 ≡ ±1(mod λ4) ⇒ δλ4 ± 1 = 0⇒ δλ4 = ±1⇒ N(δλ4) = N(±1) = 1

which is a contradiction, since Nλ = 3, (as we saw in Lemma 44, page 66), so that
N(δλ4) > 34 = 81.
Similarly we cannot have 0 ≡ ±3(mod λ4) since δλ4 ± 3 = 0 ⇒ N(δλ4) = N(±3) = 9
but N(δλ4) > 81 as we saw above.
We conclude if α3 + β3 + γ3 = 0, α ≠ 0, β ≠ 0, γ ≠ 0 then one of α,β, γ is divisible by
λ.

What we need to prove.
We may therefore suppose λ∣γ and that γ = λnδ where λ��∣δ and n ≥ 1.
Then λ��∣α and λ��∣β and we have to prove the impossibility of α3 + β3 + λ3nδ3 = 0 where
gcd(α,β) = 1, n ≥ 1, λ��∣α,λ��∣β,λ��∣δ.
We will assume there is a solution to α3 + β3 + ελ3nδ3 = 0 where ε is any unity and
prove a contradiction. Putting ε = 1 gives our result. We prove this more generally in
the next two lemmas.

Lemma 51.
If there is a solution in the algebraic integers12 of k(ρ) to

α3 + β3 + ελ3nδ3 = 0

where gcd(α,β) = 1, n ≥ 1, λ��∣α,λ��∣β,λ��∣δ and ε is any unity, then n ≥ 2.

10Note ±1±1±1 cannot be ±2 since if any term is of opposite sign to the other two then it cancels
with one of them leaving only the third equal to ±1.

11δ = delta
12α = alpha, β = beta, γ = gamma, ξ = xi, ε = epsilon, ξ = xi, δ = delta, λ = lambda
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Proof. Suppose there is a solution to α3 + β3 + ελ3nδ3 = 0. By Lemma 50 page 70,

−ελ3nδ3 = α3 + β3 ≡ ±1 ± 1(mod λ4)
⇒ ελ3nδ3 ≡ ±2(mod λ4) or ελ3nδ3 ≡ 0(mod λ4)

The first case ελ3nδ3 ≡ ±2(mod λ4) is impossible since, by Lemma 46, page 66, λ��∣2
which would be required since,

ελ3nδ3 ≡ ±2(mod λ4)
⇒ ελ3nδ3 = ±2 + ξλ4, ξ ∈ k(ρ)
⇒ λ(−ξλ3 + ελ3n−1δ3) = ±2

⇒ λ∣2.

Hence, ελ3nδ3 ≡ 0( mod λ4) ⇒ ελ3nδ3 = ξλ4 for some ξ ∈ k(ρ), and since λ��∣δ and λ4∣λ3n

then n is at least 4 and certainly n ≥ 2.

We have shown that a solution to α3 + β3 + ελ3nδ3 = 0 requires n ≥ 2. We continue
to focus on values of n, seeking to apply the method of infinite descent.

Lemma 52.
If there is a solution in the algebraic integers of k(ρ) to

α3 + β3 + ελ3nδ3 = 0

for n =m > 1 then there is a solution for n =m − 1, that is,

φ3 + ψ3 + ε1λ3m−3θ3 = 0

for some13 φ,ψ, θ ∈ k(ρ) and ε1 a unity in k(ρ).

Proof. Suppose there is a solution in the algebraic integers of k(ρ) to

α3 + β3 + ελ3nδ3 = 0.

where we again may suppose these three terms are co-prime and specifically λ��∣β. Now
by Lemma 38 on page 63,

(α + ρβ)(α + ρ2β) = α2 + (ρ + ρ2)αβ + ρ3β = α2 − αβ + β2 (7.3.1)

Then we have14,

α3 + β3 + ελ3nδ3 = 0

⇒ −ελ3nδ3 = α3 + β3

= (α + β)(α2 − αβ + β2)
= (α + β)(α + ρβ)(α + ρ2β) by (7.3.1)

= AB∆ say.

13φ = phi,ψ = psi(sigh), θ = theta, λ = lambda, ε = epsilon
14A,B,∆ are the upper case letters of α,β and δ.
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Using Lemma 38 on page 63 and putting λ = 1 − ρ the differences of the factors are,

A −B = α + β − α − ρβ = β(1 − ρ) = βλ
A −∆ = α + β − α − ρ2β = β(1 − ρ)(1 + ρ) = βλρ2

B −∆ = α + ρβ − α − ρ2β = ρβ(1 − ρ) = βλρ

Each of these differences is divisible by λ but not by λ2 since λ��∣β.
Since, by Lemma 51 on page 70 if there is a solution in the algebraic integers of k(ρ)
to α3 + β3 + ελ3mδ3 = 0 we have m ≥ 2, then 3m > 3 so since,

−ελ3mδ3 = (α + β)(α + ρβ)(α + ρ2β) = AB∆, (7.3.2)

means AB∆ is divisible by at least λ4, the three factors,

A = (α + β),B = (α + ρβ),∆ = (α + ρ2β)

cannot all be only divisible by just one λ. One of the factors must be divisible by λ2.
We may suppose it is A = (α + β) since if it were one of the other factors, we could
replace β with one of its associates, either ρβ or ρ2β.

So let15 A = (α + β) = σλ2, σ ∈ k(ρ). Then,

A −B = α + β − α − ρβ = β − ρβ = β(1 − ρ) = βλ
⇒ σλ2 −B = βλ
⇒ B = σλ2 − βλ = λ(σλ − β)

which implies B is divisible by λ but not by λ2. The same argument applies to ∆
being divisible by λ but not by λ2.
We then have, from (7.3.1)

−ελ3mδ3 = AB∆ (7.3.3)

that B and ∆ cancel only one of the λ’s so that A is divisible by λ3m−2.
We then have16,

A = (α + β) = λ3m−2κ1 (7.3.4)

B = (α + ρβ) = λκ2 (7.3.5)

∆ = (α + ρ2β) = λκ3 (7.3.6)

where none of the kappas κ1, κ2, κ3 is divisible by λ.
We claim κ1, κ2, κ3 are mutually prime.
First, if there is any σ such that σ∣κ2 and σ∣κ3 then σ also divides κ2 − κ3 and since,

λκ2 − λκ3 = α + ρβ − α − ρ2β = ρβ(1 − ρ) = βρλ
15σ = sigma,α = alpha, β = beta, ρ = rho,A = Alpha,B = Beta,∆ =Delta.
16κ = kappa
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then by cancellation κ2 − κ3 = ρβ which means, if σ∣κ2 − κ3, that σ∣β.
Also, if σ∣κ2 and σ∣κ3, this would mean σ divides ρκ3 − ρ2κ2. But,

λρκ3 − λρ2κ2 = ∆ρ − ρ2B

= ρ(α + ρ2β) − ρ2(α + ρβ)
= ρα + ρ3β − ρ2α − ρ3β

= ρα(1 − ρ)
= ραλ

so that ρκ3 − ρ2κ2 = ρα showing σ∣α and therefore both α and β which is not allowed
as gcd(α,β) = 1. Hence σ is a unity and gcd(κ2, κ3) = 1. Similarly, gcd(κ1, κ2) = 1 and
gcd(κ1, κ3) = 1.
Substituting from (7.3.3), (7.3.4) and (7.3.5) into (7.3.2) we have,

−ελ3mδ3 = AB∆ = λ3m−2κ1 × λκ2 × λκ3

⇒ −εδ3 = κ1κ2κ3

Hence each of κ1, κ2, κ3 is an associate of a cube, say17 κ1 = ε1θ3, κ2 = ε2φ3

and κ3 = ε3ψ3,so that,

A = α + β = λ3m−2κ1 = ε1λ3m−2θ3 (7.3.7)

B = α + ρβ = λκ2 = ε2λφ3 (7.3.8)

∆ = α + ρ2β = λκ3 = ε3λψ3 (7.3.9)

where θ, φ,ψ have no common factors and are not divisible by λ and ε1, ε2, ε3 are
unities.
Since by Lemma 38 on page 63, 1 + ρ + ρ2 = 0, it follows that multiplying by α + β
gives,

0 = (1 + ρ + ρ2)(α + β)
= α + β + ρ(α + β) + ρ2(α + β)
= α + β + ρα + ρ2β + ρ2α + ρ4β

(where, given ρ3 = 1, we substituted ρ4β for ρβ.)

= α + β + ρ(α + ρβ) + ρ2(α + ρ2β)
= A + ρB + ρ2∆

Substituting (7.3.6), (7.3.7) and (7.3.8) gives,

ε1λ
3m−2θ3 + ε2ρλφ3 + ε3ρ2λψ3 = 0

⇒ ε1
ε2ρλ

λ3m−2θ3 + φ3 + ε3ρ
2λ

ε2ρλ
ψ3 = 0 (dividing by ε2ρλ)

⇒ ε1
ε2ρ

λ3m−3θ3 + φ3 + ε3ρ
ε2
ψ3 = 0

⇒ φ3 + ε4ψ3 + ε5λ3m−3θ3 = 0

17θ = theta,ψ = psi(sigh), φ = phi
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where ε4 =
ε3ρ2

ε2ρ
and ε5 =

ε1
ε2ρ

are also unities as proved in Lemma 41.

Now m ≥ 2, so 3m − 3 ≥ 3 and

φ3 + ε4ψ3 = −ε5λ3m−3θ3

⇒ φ3 + ε4ψ3 ≡ 0(mod λ2)

(in fact λ3.)
But λ��∣φ and λ��∣ψ, so by Lemma L49 page 69,

φ3 ≡ ±1(mod λ2)
ψ3 ≡ ±1(mod λ2)

(in fact λ4.)
Hence,

φ3 + ε4ψ3 ≡ 0(mod λ2) ⇒ ±1 ± ε4 ≡ 0(mod λ2)
where ε4 is ±1,±ρ or ±ρ2.
But neither ±1± ρ nor ±1± ρ2 is divisible by λ2 since each is a unity and therefore an
associate of 1 or λ making division by λ2 impossible.Therefore ε4 = ±1.
If ε4 = 1,

θ3 + ε4ψ3 + ε5λ3m−3θ3 = 0

is an equation of the type required.
If ε4 = −1, we replace ψ with −ψ and

θ3 + ε4(−ψ)3 + ε5λ3m−3θ3 = 0

is an equation of the type required.

Theorem 53. (The n = 3 case)
There are no solutions of α3 + β3 + γ3 = 0, α ≠ 0, β ≠ 0, γ ≠ 0 in k(ρ).

Proof. If α3 + β3 + γ3 = 0, α ≠ 0, β ≠ 0, γ ≠ 0 is possible for any n then by Lemma 52,
page 71, it is possible for n − 1, then again by the lemma for n − 2 and (eventually)
for n = 1 which contradicts Lemma 51, page 70, which was,
“ If there is a solution in the algebraic integers of k(ρ) to

α3 + β3 + ελ3nδ3 = 0

where gcd(α,β) = 1, n ≥ 1, λ��∣α,λ��∣β,λ��∣δ and ε is any unity, then n ≥ 2.”
The contradiction proves there are no solutions of α3 + β3 + γ3 = 0, α ≠ 0, β ≠ 0, γ ≠ 0
in k(ρ) and hence to x3 + y3 = z3 in the integers by putting α = x + 0ρ, etc.

The argument is another example of the method of infinite descent.



Chapter 8

Postprandial Discussion: The
General Case

Let us now discuss the general case of FLT, Fermat’s Last Theorem. The trail that
began with Pythagoras ends in the second half of the 20th century with Taniyama
with Shimura, Frey, Ribet, Wiles and finally Taylor with Wiles.

Theorem 54. (FLT: Wiles)
There are no non-zero solutions of xn + yn = zn, x, y, z ≠ 0, n ≥ 3 in the integers.

Proof. The proof is incredibly difficult but we can get a sense of it.

Elliptic curves are equations of the form,

y2 = x3 + ax2 + bx + c, a, b, c ∈ Z+ ∪ {0}

Gordon Frey1, in 1986, completely transformed FLT into a problem about elliptic
curves. He stated that if there is a solution an + bn = cn to the Fermat equation
xn + yn = zn for some exponent n > 2 then use it to construct the following (Frey)
elliptic curve,

y2 = x(x − an)(x + bn) = g(x) (8.0.1)

Now if f is a polynomial of degree k with r1, r2, . . . , rk as all of its roots, then the
discriminant ∆(f) of f is defined by,

∆(f) = ∏
1≤i<j≤k

(ri − rj)2

1These comments are drawn from an article by Ezra Brown in “The College Mathematics Journal,
Volume 31, May 2000.”
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If f is a monic polynomial2 it turns out that ∆(f) is an integer. The three roots of
the polynomial g(x) on the right side of the Frey curve of (8.1.1) are 0, an, bn. Using
the fact that for odd n,

an − (−bn) = an + bn = cn,

we find,

∆(g) = (0 − an)2(0 − (−b)n)2(an − (−bn))2 = (abc)2n

Frey stated that an elliptic curve with such a discriminant cannot possibly be called
modular (we need not define what that means) bringing the focus to the unproved
Taniyama-Shimura conjecture.
The Taniyama-Shimura conjecture was that every single modular form could be
matched with an elliptic curve. Frey argued that if the Taniyama-Shimura conjecture
is proved to be correct and if his Frey elliptic curve can be proved to be non-modular,
then you would have a contradiction from which you could conclude there is no such
curve, that is, there is no such solution to a Fermat equation, there is no counter-
example to Fermat’s Last Theorem, and so Fermat’s Last Theorem is true.
Wiles actually proved the Taniyama-Shimura conjecture. This sufficed to prove FLT
according to the following argument:

1. If the Taniyama-Shimura conjecture can be proved to be true, then every elliptic
curve must be modular.

2. If the Frey elliptic curve is not modular, then there can be no solutions to FLT.

3. Therefore, Fermat’s Last Theorem is true.

In 1986 Ken Ribet proved Step 2, that Frey’s elliptic curve is not modular.

In 1993 Andrew Wiles gave three lectures in a Cambridge symposium that appeared
to prove the Taniyama-Shimura conjecture. An error was soon found, there was a
crucial missing step.

In 1994, the crucial missing step was proved in “Ring Theoretic properties of cer-
tain Hecke algebras” by Richard Taylor and Andrew Wiles. On the same day, 25th
October 1994, a second manuscript was released, “Modular elliptic curves and Fer-
mat’s Last Theorem” by Andrew Wiles.

The saga of Fermat’s Last Theorem was over.

2A polynomial anx
n + an−1xn−1 + . . . + a1x + a0, ai ∈ Z is monic if an = 1.



Part III

Shopping Excursion II - Calculus
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The development of the theory of Calculus may be regarded as the single most
important achievement in all of mathematics. It is like the discovery of the wheel in
transportation or fire in food preparation.. Prior to its development we were limited to
discrete approximations to our world. We had the numbers, we could count things,
but we could not describe continuous events, a major deficiency since we live in a
world of continuous change.

The development of Calculus took over 400 years spanning 1600 to 1900. It was
initially slowed down by the absence of mass media of communication, specifically
the printing press and publications not just in Latin. Letters between individuals are
primitive technology compared with textbooks for the masses. The sharing of ideas
is essential for the rapid development of our understanding of our universe. But, of
course, sharing can lead to plagiarizing and stealing of ideas before the originator
has fully promulgated them, and in the 400 year period there were instances of these
and some major fights and skull-dougeries. Imagine if the developers had had the
Internet, but that of course is Catch-22 since we would not have the Internet without
Calculus!

The chief developers, depending on your point of view or nationality, were: Kepler,
Descartes, Fermat, Pascal, Newton, Leibnitz, L’Hópital, Bernoulli, Taylor, Maclau-
rin, Euler, Agnesi, Lagrange, Gauss, Cauchy, Green, Stokes, Weierstrass, Riemann,
Kovalesky, Lebesgue.

They are the masters we learn from.



Chapter 9

Calculus and Infinite Series

Many results in number theory require both differential and integral Calculus, results
that took over 400 years to come to fruition. We shall take the shortest path, proving
only what we need, leaving aside a wealth of rich results for your further investigation.
The final result we prove here is usually found about the end of the second semester
of the standard three semester undergraduate course in Calculus.

9.1 What is Calculus?

Calculus may be defined as the study of limits.
Let us consider a famous ancient paradox attributed to Zeno. He argued that an
arrow shot at a target will never reach that target, no matter the distance involved.
Suppose the target is 2 chains away.

First the arrow must travel half the distance or 1 chain with 1 = 1

20
chains to go.

Second the arrow must travel half the remaining 1 chain with
1

2
= 1

21
chains to go.

Third the arrow must travel half the remaining
1

2
chain with

1

4
= 1

22
chains to go.

Fourth the arrow must travel half the remaining
1

4
chain with

1

8
= 1

23
chains to go.

Each time, the arrow continues to travel half the remaining distance
1

2n
with

1

2n+1
to

go.
There will always be half the remaining distance to cover, ergo, the arrow will never
reach the target.

The paradox results from the attempt to use discrete mathematics to describe con-
tinuous motion. We need the concept of infinity.
Since the arrow does reach the target, that is, the arrow does actually travel 2 chains,

then we must agree that, 1 + 1

21
+ 1

22
+ 1

23
+ . . . = 2, where the left side contains an
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infinite number of discrete terms all of the form
1

2n
, n = 0,1,2,3, . . . .

Mathematically we say, “in the limit as n approaches infinity” that ,

1 + 1

21
+ 1

22
+ 1

23
+ . . . + 1

2n
+ . . . = 2

or, in shorthand,

lim
n→∞

n

∑
k=0

1

2k
= lim
n→∞

(1 + 1

21
+ 1

22
+ . . . + 1

2n
) = 2

The study of limits, called Calculus, enables us to model the world of continuous
motion, or continuity in general.

9.2 Branches of Calculus

The first branch is differentiation. For any function f of x, such that y = f(x), this
begins with finding the slope or gradient m of the tangent to its graph at any point
See Figure 1.

x axis

y axis

x

f(x)
m =?

x axis

y axis

a b

A =?

Figure 1. Differentiation Figure 2. Integration

The second is integration. This begins with the calculation of the area A between
the graph of a function (a curve) and an interval [a, b] on the x−axis. See Figure 2
above.
In each case, we will find the solution requires the concept of a limit.
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9.3 Differentiation

9.3.1 Slope or gradient of a line

Definition 26. slope or gradient
The slope or gradient m of the line joining the two points P1(x1, y1), P2(x2, y2) on the
Cartesian plane is defined as1, (see Figure 3),

m = change in y
change in x

= ∆y

∆x
= y2 − y1

x2 − x1

x

y

P2(y1, y2)

∆x = x2 − x1

∆y = y2 − y1

P1(x1, x2)

Figure 3

9.3.2 Slope of Tangent Line to a Curve

Intuitively a tangent line to a curve at a point is a line that “touches” the curve at
that point. But what do we mean by “touches”? How can we draw a tangent?
We know that a line is uniquely specified if we are given two points on it. A tangent
line to y = f(x) at (x, f(x)) on the curve “touches” the curve at a point P (x, f(x)).
What can we use for a second point Q?
We continue to use our intuition. If we choose the second point Q to be a point on
the curve that is “close” to P (x, f(x)), say Q(x+h, f(x+h)) with h very small, then
we can find the slope msec of the secant line PQ joining these two points on the curve.
It is, (see Figure 4),

msec =
y2 − y1

x2 − x1

= f(x + h) − f(x)
x + h − h = f(x + h) − f(x)

h

1We use the uppercase Greek letter Delta, ∆, for “change in”
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x

y

Q

x x + h
f(x)

f(x + h)
P

Figure 4

We easily see from Figure 4 that mtan ≈ msec where mtan is the slope or gradient of
the tangent line at (x, f(x)) and that we can improve the approximation by taking
h smaller and smaller.
Indeed, if h progressively approaches 0, just as the remaining distance for Zeno’s
arrow approached zero, we are intuitively sure that mtan = lim

h→0
msec.

We use the two notationsf ′(x) or
dy

dx
for the slope of the tangent line to the curve

y = f(x) at any point (x, f(x)) = (x, y) or simply the gradient of the curve at (x, f(x))
which we label the derivative of f(x) at the point.
The two notations reflect the parallel development of Calculus in different countries,
specifically in England by Newton and in Germany by Leibnitz. We then define the
gradient of the tangent line at any point as follows.

Definition 27. derivative of a function at a point

We define the derivative f ′(x) or
dy

dx
of a function y = f(x) at the point (x, f(x)) by,

For msec =
f(x + h) − f(x)

h
by f ′(x) = lim

h→0

f(x + h) − f(x)
h

For msec =
∆y

∆x
by

dy

dx
= lim

∆x→0

∆y

∆x

provided the limit exists.

We call f ′(x) = dy

dx
the derivative of y = f(x) with respect to x. If the limit does

exist, we say y = f(x) is differentiable at (x, f(x). We interpret f ′(x) or
dy

dx
as the

gradient of the tangent to f(x) at the point (x, f(x)).
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Example 34. Consider f(x) = x2.

f ′(x) = lim
h→0

f(x + h) − f(x)
h

= lim
h→0

(x + h)2 − x2

h

= lim
h→0

��x2 + 2xh + h2 −��x2

h
= lim
h→0

(2x + h)

= 2x ◇

Example 35. For example the derivative of y = x2 at x = 3 is given by
f ′(x) = 2x⇒ f ′(3) = 2 × 3 = 6. ◇

Note 10. 1. f ′(x)is a function. A we saw in the above example, by substituting
values of x we can find the value of the derivative or the gradient of the curve
at any value of x in the domain of f(x).

2. The value/s of x for which f ′(x) = 0 give us the point/s on the curve where the
tangent is flat or mtan = 0. For a parabola this point is the vertex and is either
a maximum point of the graph or a minimum point. See Figure 5.

x

y

c

mtan = 0

x

y

c

mtan = 0

Minimum at x = c Maximum at x = c

Figure 5

9.3.3 The derivative of y = f(x) at x = a
We can find the derivative of y = f(x) at x = a by first finding the function f ′(x) and
then substituting x = a. We can also proceed more directly by using Figure 6.
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x

y

Q

a x

f(a)

f(x)
P

∆y = f(x) − f(a)
∆x = x − a

Figure 6

To find the gradient of the curve y = f(x) at P (a, f(a) we pick any other point x
on the x−axis that is close to a for the other end Q(x, f(x)) of the secant and then
we need x to approach a so the secant approaches the tangent line at P. Then, from
the diagram,

f ′(a) = lim
x→a

f(x) − f(a)
x − a

Example 36. The gradient of the curve y = x3 at x = 2 is given by,

f ′(2) = lim
x→2

f(x) − f(2)
x − 2

= lim
x→2

x3 − 23

x − 2

= lim
x→2

���
�(x − 2)(x2 + 2x + 4)
���x − 2

= 12

9.3.4 Rules of Differentiation

Theorem 55. Constant Rule.

d

dx
(c) = 0 where c ∈ R or c is a constant.

Proof. Let f(x) = c. Then,

f ′(x) = lim
h→0

f(x + h) − f(x)
h

= lim
h→0

c − c
h

= 0



9.3. Differentiation 85

Example 37.
d

dx
(6) = 0

Theorem 56. Power Rule.

d

dx
(xn) = nxn−1, n ∈ N.

In particular
d

dx
(x) = 1.

Proof. Note (x − a)(xn−1 + xn−2a + xn−3a2 + . . . + xan−2 + an−1) = xn − an.
Let f(x) = xn. Then,

f ′(a) = lim
x→a

f(x) − f(a)
x − a

= lim
x→a

xn − an
x − a

= lim
x→a

n terms
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
xn−1 + xn−2a + . . . + an−2x + an−1

= nan−1

In general, by putting x = a we have
d

dx
(xn) = nxn−1.

Example 38.
d

dx
(x3) = 3x2

Theorem 57. Sum Rule2.

d

dx
(f(x) + g(x) + h(x) + . . .) = f ′(x) + g′(x) + h′(x) + . . . .

Proof. Let y = f(x) + g(x). Adding more terms such as h(x) is done by the same
proof.

dy

dx
= d

dx
(f(x) + g(x))

= lim
h→0

[f(x + h) + g(x + h)] − [f(x) + g(x)]
h

= lim
h→0

f(x + h) − f(x)
h

+ lim
h→0

g(x + h) − g(x)
h

= f ′(x) + g′(x)

2In this proof we assume the lemma lim
h→0

(F+G) = lim
h→0

F+ lim
h→0

G. This lemma and others concerning

the theory of limits we will not prove.
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Example 39.
d

dx
(x4 + x3) = 4x3 + 3x2

Theorem 58. Constant Multiple Rule.

d

dx
(cf(x)) = cf ′(x), c ∈ R

Proof. Let y = cf(x). Then,

d

dx
(cf(x)) = lim

h→0

cf(x + h) − cf(x)
h

= c lim
h→0

f(x + h) − f(x)
h

= cf ′(x)

Note a constant c can be extracted from a limit because it is unaffected by h→ 0.

Example 40.
d

dx
(3x2 + 4x + 1) = 3 × 2x + 4 × 1 + 0 = 6x + 4

Theorem 59. Product Rule.

Provided f(x), g(x) are both differentiable3,

d

dx
(f(x) ⋅ g(x)) = f(x)g′(x) + g(x)f ′(x)

Proof. Let y = f(x)g(x). In what follows we add and subtract the same term and
then form two limits, again extracting a common term. Then,

d

dx
(f(x)g(x)) = lim

h→0

f(x + h)g(x + h) − f(x)g(x)
h

= lim
h→0

f(x + h)g(x + h) − f(x)g(x + h) + f(x)g(x + h) − f(x)g(x)
h

= lim
h→0

f(x + h)g(x + h) − f(x)g(x + h)
h

+ lim
h→0

f(x)g(x + h) − f(x)g(x)
h

= lim
h→ 0

g(x + h) lim
h→0

f(x + h) − f(x)
h

+ f(x) lim
h→0

g(x + h) − g(x)
h

= g(x)f ′(x) + f(x)g′(x)

Example 41.
d

dx
(x3 ⋅ x4) = x3(4x3) + x4(3x2) = 7x6 as expected for

d

dx
(x7).

3Note f ′(x) and
dy

dx
both mean the derivative of y = f(x) at x.
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Theorem 60. Quotient Rule.

Provided f(x), g(x) are both differentiable and g(x) ≠ 0,

d

dx
(f(x)
g(x)) = g(x)f

′(x) − f(x)g′(x)
[g(x)]2

Proof. Let q(x) = f(x)
g(x) ⇒ f(x) = q(x)g(x). By the Product Rule, Theorem 59,

f ′(x) = g′(x)q(x) + q′(x)g(x)

⇒ q′(x) = f
′(x) − g′(x)q(x)

g(x)

=
f ′(x) − g′(x)f(x)

g(x)
g(x)

= g(x)f
′(x) − f(x)g′(x)
[g(x)]2

Example 42.

d

dx
( x2

x − 1
) = (x − 1) ⋅ 2x − x2(1 − 0)

(x − 1)2

= 2x2 − 2x − x2

(x − 1)2

= x2 − 2x

(x − 1)2
◇

Theorem 61. Extended Power Rule.

f(x) = x−n⇒ f ′(x) = −nx−n−1 = −n
xn+1

Proof. Let f(x) = x−n. Then, using the Quotient Rule, Theorem 60,

d

dx
(x−n) = d

dx
( 1

xn
) = x

n × 0 − (1)(nxn−1)
x2n

= −nx−n−1

Example 43.
d

dx
( 1

x3
) = d

dx
(x−3) = −3x−4 = − 3

x4

Note 11. In other words for all x ∈ Z the power rule is simply “put the power down
in front and lower the power by 1.”
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Theorem 62. Chain Rule
If y = f(u) and u = g(x) the composite function y = f(g(x)) has derivative,

dy

dx
= dy
du

⋅ du
dx

or
df(g(x))
dg(x) ⋅ dg(x)

dx

Proof. (Outline only)

Multiplying numerator and denominator by ∆u gives
∆y

∆x
= ∆y

∆u
⋅ ∆u

∆x
.

Now if u = g(x) then as ∆x → 0 we consequently have ∆u → 0, and if y = f(u) then
as ∆u → 0 we consequently have ∆y → 0. So ∆x → 0,∆u → 0 and ∆y → 0 all occcur
together. Hence,

lim
∆x→0

∆y

∆x
= lim

∆u→0

∆y

∆u
⋅ lim

∆x→0

∆u

∆x

⇒ dy

dx
= dy
du

⋅ du
dx

⇔ dy

dx
= df(g(x))

dg(x) ⋅ dg(x)
dx

Example 44. Let us differentiate y = (x2 + 1)6

We can write y = u6, u = x2 + 1 and use,

dy

dx
= dy
du

⋅ du
dx

= 6u5 ⋅ 2x = 12x(x2 + 1)5,

or we can say,

dy

dx
= d(x

2 + 1)6

d(x2 + 1) ⋅ d(x
2 + 1)
dx

= 6(x2 + 1)5 ⋅ (2x) = 12x(x2 + 1)5 ◇

9.4 Antiderivatives

Definition 28. antiderivative
F is the antiderivative of f on the interval (a, b) if F ′(x) = f(x) for all x in (a, b).

Notation 2. ∫ f(x)dx means the antiderivative of the function with respect to the

variable. It is the reverse operation of
d

dx
(f(x)) which means the derivative of the

function f(x) with respect to the variable x. We call ∫ f(x)dx the indefinite integral

of f(x) with respect to the variable x.
We call f(x) the integrand.
We call x the variable of the integration.
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9.4.1 Family of Antiderivatives

We know,

d

dx
(F (x) + c) = d

dx
(F (x)) + 0 = d

dx
(F (x)).

Provided we can find a single antiderivative, F (x), there is therefore not just one
but a family of antiderivatives of any function f(x) given by F (x) + c where c is any
constant, that is c ∈ R.
Thus for any function f(x), given we know a function F (x) such that F ′(x) = f(x),
then ∫ f(x) dx = F (x) + c, c ∈ R so the antiderivative is indefinite and we call it an

indefinite integral.

Definition 29. indefinite integral

If
d

dx
F (x) = f(x), we have ∫ f(x) dx = F (x) + c, c ∈ R and we call F (x) + c the

indefinite integral of f(x) with respect to x.

Example 45. Let’s find the antiderivative of 2x with respect to x.

We know
d

dx
(x2) = 2x. Then ∫ 2x dx = x2 + c, c ∈ R.

Word of Warning
In problems such as that of the previous example, we almost always get a little sloppy
with our notation and mathematical language and simply say “find the integral of
2x” or “integrate 2x” when we really mean “find the indefinite integral of 2x with
respect to x.” As we will soon see, integration is actually a very different concept.

9.4.2 Rules for Indefinite Integration

The rules for indefinite integration are simply the reverse of the rules for differentia-
tion. The first theorem illustrates this clearly.

Theorem 63. Power Rule

∫ xn dx = 1

n + 1
xn+1 + c, n ≠ −1

Proof. By Theorem 56 on page 85,

d

dx
( 1

n + 1
xn+1 + c) = ( 1

n + 1
) ⋅ (n + 1) ⋅ xn+1−1 + 0 = xn

Note 12. In words the power rule is “increase the power of x by 1 and divide by this
new power.”
Of course n = −1 must be excluded but we will deal with this later.
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Example 46. ∫ x3 dx = x
4

4
+ c.

Example 47. ∫
1

x3
dx = ∫ x−3 dx = x

−2

−2
+ c = − 1

2x2
+ c.

In a similar fashion we have the theorems,

a ∫ (f(x) + g(x)) dx = ∫ f(x) dx + ∫ g(x) dx

b ∫ cf(x) dx = c∫ f(x) dx

We reverse the product rule as follows. We can use this formula or rule called
integration by parts to integrate the product of two unlike functions. We will use this
theorem many times in what follows.

Theorem 64. Integration by Parts

∫ u
dv

dx
dx = uv − ∫ v

du

dx
dx

Proof. Let u = u(x) and v = v(x) be two functions of x. If we integrate the product
rule, Theorem 59, page 86, for differentiation namely,

d(uv)
dx

dx = udv
dx

+ vdu
dx

⇔ u
dv

dx
= d(uv)

dx
− vdu

dx

we have,

∫ u
dv

dx dx
= ∫

d(uv)
dx

dx − ∫ v
du

dx
dx

⇒ ∫ u
dv

dx
dx = uv − ∫ v

du

dx
dx

Example 48. Suppose we want to integrate ∫ x ⋅ x3 dx.

Obviously the answer is given by ∫ x ⋅ x3 dx = ∫ x4dx = x
5

5
+ c.

But let’s verify the integration by parts rule.

It says if we put u = x⇒ du

dx
= 1 and also put

dv

dx
= x3 ⇒ v = x

4

4
in
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∫ u
dv

dx
dx = uv − ∫ v

du

dx
dx, we obtain,

∫ x ⋅ x3 dx = x ⋅ x
4

4
− ∫ 1 ⋅ x

4

4
dx

= x
5

4
− x

5

20

= x
5

5
+ c. ◇

Note we are dealing with an indefinite integral so we add on a constant c at the end.

Finally, we can reverse the chain rule
dy

dx
= dy

du
⋅ du
dx

by identifying the u function

and using,

∫
dy

dx
dx = ∫

dy

du
⋅ du
dx

dx⇒ ∫
dy

du
⋅ du
dx

dx = y

Example 49. To find ∫ (x4 + 3x)6(4x3 + 3) dx we let u = x4 + 3x so that

du

dx
= 4x3 + 3⇒ du = (4x3 + 3) dx, and substitute these values4 to obtain,

∫ (x4 + 3x)6(4x3 + 3) dx = ∫ u6 du = u
7

7
+ c = (x4 + 3x)7

7
+ c ◇

Example 50. To find ∫ (3x + 1)4 dx we let u = 3x + 1 so that

du

dx
= 3⇒ du

3
= dx, and substitute these values to obtain,

∫ (3x + 1)4 dx = ∫ u4 du

3
= 1

3 ∫ u4 du = 1

3
⋅ u

5

5
+ c = (3x + 1)5

15
+ c ◇

9.5 Integration

Integration begins with the challenge of finding the area under a curve or graph of a
function f(x) which lies above an interval [a, b] on the x− axis. We initially suppose
the curve is such that f(x) > 0 for x ∈ [a, b], or the graph is always “above” the
x−axis. (see Figure 7)

4We are assuming
du

dx
= h(x) can be separated into du = h(x) dx. We do not discuss that here.
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x

y

a b

A =?

y = f(x)

Figure 7

Definition 30. definite integral, limits of integration, integrand
The area under a curve y = f(x) where f(x) is always positive, and above an interval
[a, b] on the x−axis is called the definite integral of f(x) on the interval [a, b] of the
x−axis.

It is written ∫
b

a
f(x) dx, read as “the integral from a to b of f(x) with respect to x.”

We call a and b the limits of integration and f(x) the integrand.
The “dx” indicates the integration is with respect to the variable x.

9.5.1 Fundamental Theorems of Calculus

Definition 31. area function
Consider a function f(t) defined on an interval [a, x] on the t−axis. We define the
Area Function A(x) by,

A(x) = ∫
x

a
f(t) dt

As Figure 8 shows, the area function is the area under the curve y = f(t) and
above the interval [a, x] . Note it is a function of x, the area increasing as x increases
and decreasing as x decreases.
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t

y

A(x)

a x

Figure 8

Now, we need a theorem we will use several times.

Theorem 65. Squeeze Theorem
Let f, g, h be functions satisfying f(x) < g(x) < h(x) for all x near x = c except
possibly at x = c.
If lim

x→c
f(x) = lim

x→c
h(x) = L then lim

x→c
g(x) = L.

Proof. The informal proof follows from Figure 9. As we approach x = c from either
the left (below) or the right (above) along any one of these three curves we find a
common value of y = L at x = c.

x

y

h(x)

g(x)

c
f(x)

L

Figure 9
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Theorem 66. First Fundamental Theorem of Calculus

The derivative of the area function A(x) =
x

∫
a
f(t) dt with respect to x is f(x), that is,

A′(x) = f(x)

⇔ f(x) = d
dx ∫

x

a
f(t) dt

Proof. Consider Figure 10.

t

y

A(x)

a x x + h

A(x + h)

y = f(t)
f(x)

Figure 10

The area under the curve y = f(t) and above the interval [a, x] is A(x) and the
area above the interval [a, x + h] is A(x + h).
Thus the area above the interval [x,x+h] is A(x+h)−A(x) but it is also approximately
a rectangle of height f(x) and width h so,

A(x + h) −A(x) ≈ h f(x)

In terms of integrals,

A(x + h) −A(x) = ∫
x+h

a
f(t) dt − ∫

x

a
f(t) dt = ∫

x+h

x
f(t) dt ≈ hf(x)

Let m,M be the respective minimum and maximum values of f(x) on [x,x + h].
Clearly, from Figure 11, the areas of the two rectangles and the area under the curve
relate as,

mh ≤ A(x + h) −A(x) ≤Mh,

⇒m ≤ A(x + h) −A(x)
h

≤M
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t

y

x x + h

m

y = f(t)f(x)

h

M

A(x + h) −A(x)

Figure 11

Now as h→ 0, m,M and f(x) all come together or,

lim
h→0

m = lim
h→0

M = lim
h→0

f(x). (9.5.1)

But by the Squeeze Theorem 65 on page 93, since,

m ≤ A(x + h) −A(x)
h

≤M and lim
h→0

m = lim
h→0

M = f(x)

we have, using (9.5.1),

lim
h→0

A(x + h) −A(x)
h

= f(x) ⇔ d

dx
A(x) = f(x)

Substituting for A(x),

d

dx ∫
x

a
f(t) dt = f(x)

Theorem 67. Second Fundamental Theorem of Calculus
Suppose f(x) can be integrated and F (x) is an antiderivative of f(x), that is F ′ = f.

Then,

∫
b

a
f(x) dx = F (b) − F (a)

Proof. Let F (x) be any of the family of antiderivatives of f(x) with respect to x so
that F ′(x) = f(x). Since by the First Fundamental Theorem of Calculus, the area
function obeys A′(x) = f(x), we have,

F (x) = A(x) + c
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Then F (b) − F (a) = [A(b) + c] − [A(a) + c] = A(b) −A(a)
But A(a) = ∫

a

a
f(x) dx = 0 since the area under any curve above the interval [a, a]

is clearly 0.
Hence, F (b) − F (a) = A(b). Then,

A(b) = ∫
b

a
f(x) dx = F (b) − F (a)

Notation 3. When finding a definite integral we find the indefinite integral first and
then substitute a, b which are called the limits of the integration. Accordingly, for
F ′ = f we write,

∫
b

a
f(x) dx = [F (x)]ba = F (b) − F (a)

Note 13. The integration by parts formula in Theorem 64, page 90 becomes for
definite integrals,

∫
b

a
u
dv

dx
dx = [uv]ba − ∫

b

a
v
du

dx
dx

Example 51. Let’s evaluate ∫
10

0
x2 dx which is also the area under the curve y = x2

that lies above the interval [0,10].

∫
10

0
x2 dx = [x

3

3
]

10

0

= 103

3
− 0

3
= 1000

3
◇

Example 52. Let’s evaluate ∫
10

1
x−2 dx which is also the area under the curve y = x−2

that lies above the interval [1,10].

∫
10

1
x−2 dx = [x

−1

−1
]

10

1

= −10−1 + 1 = 9

10
◇

9.5.2 Properties of Definite Integrals

Theorem 68.
When you reverse the limits of integration, you must change the sign of the integral.
That is,

∫
a

b
f(x) dx = −∫

b

a
f(x) dx
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Proof. By the Second Fundamental Theorem of Calculus, if F ′ = f,

∫
a

b
f(x) dx = F (a) − F (b) = −(F (b) − F (a)) = −∫

b

a
f(x) dx

Example 53.

∫
1

2
x2 dx = [x

3

3
]

1

2

= 1

3
− 8

3
= −7

3
, whereas

∫
2

1
x2 dx = [x

3

3
]

2

1

= 8

3
− 1

3
= 7

3
◇

Theorem 69.

∫
a

a
f(x) dx = 0

Proof. This is true since the area to be calculated is zero.

Note we cannot use the Second Fundamental Theorem of Calculus to prove this,

saying ∫
a

a
f(x) dx = F (a) − F (a) = 0, since we used this result to prove the Funda-

mental Theorem - that would be what logicians call a “circular argument.”

Theorem 70.

∫
b

a
(f(x) + g(x)) dx = ∫

b

a
f(x) dx + ∫

b

a
g(x) dx

Proof. By the Second Fundamental Theorem, Theorem 67 on page 95,

∫
b

a
(f(x) + g(x)) dx = (F (b) +G(b)) − (F (a) +G(a)) where F ′ = f,G′ = g

= F (b) − F (a) +G(b) −G(a)

= ∫
b

a
f(x) dx + ∫

b

a
g(x) dx

The theorem is also illustrated from Figure 12 below. The whole area is the sum of
the two smaller areas.
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x

y

a c b

y = f(x)

Figure 12

Theorem 71.

∫
b

a
f(x) dx = ∫

c

a
f(x) dx + ∫

b

c
f(x) dx

Proof. This is obvious from Figure 12.

Where
d

dx
F (x) = f(x), using the Second Fundamental Theorem, Theorem 67 on page

95,

∫
c

a
f(x) dx + ∫

b

c
f(x) dx = F (c) − F (a) + F (b) − F (c)

= F (b) − F (a) = ∫
b

a
f(x) dx

Example 54.

∫
2

−2
(3x2 + 4x) dx = 3∫

2

−2
x2 dx + 4∫

2

−2
x dx

= 3 ⋅ [x
3

3
]

2

−2

+ 4 ⋅ [x
2

2
]

2

−2

= 3(8

3
− −8

3
) + 4(22

2
− (−2)2

2
)

= 16 + 0 = 16 whereas

∫
2

0
(3x2 + 4x) dx = 3 ⋅ [x

3

3
]

2

0

+ 4 ⋅ [x
2

2
]

2

0

= 8 + 8 = 16 and

∫
0

−2
(3x2 + 4x) dx = 3 ⋅ [x

3

3
]

0

−2

+ 4 ⋅ [x
2

2
]

0

−2

= 8 − 8 = 0
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Hence, ∫
2

−2
(3x2 + 4x) dx = ∫

0

−2
(3x2 + 4x) dx + ∫

2

0
(3x2 + 4x) dx ◇

Note 14. The reason why ∫
0

−2
(3x2 + 4x) dx = 0 is clarified by Figure 13 below.

Integrals relating to areas above the x− axis are positive whilst integrals relating to
areas below the x−axis are negative. This is so since if f(x) < 0 for any interval [a, b]
we can write

∫
b

a
f(x) dx as − ∫

b

a
∣f(x)∣ dx

and then ∣f(x)∣ is “above” the x−axis giving
b

∫
a
∣f(x)∣ dx > 0 but the value of the

integral −
b

∫
a
∣f(x)∣ dx will be negative.

So the integrals happen to cancel each other in this case. Of course the area from −2
to 0 is not zero. We need to draw the graph to understand what is happening and
then evaluate the two integrals separately to find,

∫
− 4

3

−2
(3x2 + 4x) dx = +32

27
and ∫

0

− 4
3

(3x2 + 4x) dx = −32

27
.

While the integrals cancel, the area is 2 × 32

27
= 64

27
.

x

y

−2

−4
3

0
● ● ●

Figure 13

9.6 Change of Variables by Substitution

We can evaluate integrals of the type
b

∫
a
f(u(x))u′(x) dx by changing the variable

of integration from x to u, where u is the function of x we can recognize from the
composition of functions f(u(x)). We are actually reversing the change rule. Dia-
grammatically we change from an area under f(u(x)) for the interval a ≤ x ≤ b to an
area under u(x) for the interval u(a) ≤ u ≤ u(b).

Example 55. To evaluate
4

∫
0

√
x2 + x (2x + 1) dx we let u(x) = x2 + x which is the

inner function of the composition
√
x2 + x so that

du

dx
= 2x + 1 which is the other
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function and write du = (2x + 1)dx. We also need to change the limits of integration
from 0 ≤ x ≤ 4 to u(0) ≤ u ≤ u(4) or 0 ≤ u ≤ 20. Then we are evaluating the simple
integral,

∫
20

0
u

1
2 du = 2

3
[u 3

2 ]
20

0
= 2

3
20

3
2

Example 56. (If we assume some trigonometry and calculus knowledge (as given in
Chapter 14) another example is this.)

To evaluate

π
2

∫
0

sin2x cosx dx we let u(x) = sinx which is the inner function of

sin2 x = (sinx)2 so that
du

dx
= cosx which is the other term and write du = cosx dx.

We change the limits from [0, π
2
] to [u(0) = sin 0 = 0, u(π

2
) = sin

π

2
= 1] or [0,1] and

evaluate the integral,
1

∫
0

u2 du = [u
3

3
]

1

0

= 1

3
◇

9.7 Infinite Series

The expression of infinitely differentiable functions as infinite series, due to Taylor
and Maclaurin, is of such significance that it might justifiably be called a third branch
of Calculus alongside differentiation and integration. Let us prove some results for
infinite series ahead of several transcendental functions we will introduce in the next
Interlude, namely, the natural exponential function and two of the trigonometric
functions, sine and cosine.

Definition 32. infinite series
A series or infinite series has the form,

∞
∑
k=1

ak = a1 + a2 + . . . , ak ∈ R

We usually evaluate
∞
∑
k=1

by taking the limit lim
n→∞

n

∑
0
.

We are primarily concerned with infinite series that converge, that is their sum is
an unambiguous finite number.

9.7.1 Convergence of an infinite series

We earlier considered Zeno’s paradox and noted that,

lim
n→∞

(1 + 1

2
+ 1

4
+ . . . + 1

2n
) = 2

. We say the infinite series 1 + 1

2
+ 1

4
+ . . . converges to 2.
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Definition 33. informal definition of convergence
An infinite series converges if it sums to a unique real number, that is, does not sum
to infinity or an ambiguous result.

Example 57.

Given
∞
∑
n=1

1

2n−1
= 1

20
+ 1

21
+ 1

22
+ 1

23
+ . . . = 2 we say the series converges (to 2)

Given
∞
∑
n=1

2n = 2 + 4 + 8 + . . .→∞ we say the series diverges or goes to infinity.

Give
∞
∑
n=1

(−1)n+1 = −1 + 1 − 1 + 1 − 1 + 1 − . . . , whether the final sum is

-1 or +1 is unclear. We say the series does not converge. ◇

9.7.2 The Harmonic Series

Theorem 72.
The harmonic series5

∞
∑
n=1

1

n
= 1

1
+ 1

2
+ 1

3
+ . . .

does not converge.

Proof. We group the terms after 1 so that each final term in a group is of the form
1

2n
.

∞
∑
n=1

1

n
= 1 + (1

2
) + (1

3
+ 1

4
) + (1

5
+ 1

6
+ 1

7
+ 1

8
)

+ (1

9
+ 1

10
+ 1

11
+ 1

12
+ 1

13
+ 1

14
+ 1

15
+ 1

16
) + . . .

≥ 1 + (1

2
) + (1

4
+ 1

4
) + (1

8
+ 1

8
+ 1

8
+ 1

8
)

+ ( 1

16
+ 1

16
+ 1

16
+ 1

16
+ 1

16
+ 1

16
+ 1

16
+ 1

16
) + . . .

≥ 1 + 1

2
+ 1

2
+ 1

2
. . .→∞

Note 15. The alternating (in sign ±) series test for convergence is that the series

a1 − a2 + a3 − a4 + . . . =
∞
∑
k=1

(−1)k+1ak

5If you put water into a series of identical glass cylinders so they are
1

1
,
1

2
,
1

3
, . . . full and tap them

with a rod the sounds they make are in harmony, hence the name.
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converges if lim
n→∞

an = 0.

This is simple to apply. For example if we have the Alternating Harmoic series,

1 − 1

2
+ 1

3
− 1

4
+ . . . + 1

n
+ . . .

we have lim
n→∞

an = lim
n→∞

1

n
= 0, so this series (unlike the Harmonic series) converges.

We will use this fact later but we will not prove the general theorem (but you can
google it!) You will, however, notice that if we group the series as

(1 − 1

2
) + (1

3
− 1

4
) + . . .

that it is a series of positive terms and therefore greater than 0 but it cannot “‘go to
infinity” since

1 − (1

2
− 1

3
) − (1

4
− 1

5
) − . . .

shows we are continually subtracting from 1. Hence a limit near 0 seems a likely
possibility! (It’s actually log 2 = 0.693...)
In any case the alternating harmonic series is bounded by 1 so it converges.

9.7.3 Formal Definition of Convergence

Definition 34. partial sum
With respect to the infinite series,

n

∑
k=1

ak = a1 + a2 + . . . , ak ∈ R

we use the term partial sums for the sum of the first term, the first two terms, the
first three terms and so on and label them thus,

S1 = a1

S2 = a1 + a2

S3 = a1 + a2 + a3

. . .

Sn = a1 + a2 + a3 + . . . + an
Definition 35. convergence of an infinite series
We say an infinite series converges if the sequence of partial sums described in Defi-
nition 34 is approaching some finite number or is bounded.

Example 58. The partial sums of,
∞
∑
n=1

1

2n−1
= 1

20
+ 1

21
+ 1

22
+ 1

23
+ . . . = 1 + 1

2
+ 1

4
+ 1

8
+ . . .

are S1 = 1, S2 = 1
1

2
, S3 = 1

3

4
, S4 = 1

7

8
.

The sequence is bounded by 2, so we say it is a convergent series. ◇
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9.7.4 Geometric Series

An often-met series is the geometric series a+ar +ar2 +ar3 + . . . in which a first term
a is multiplied by r to give the second term and that by r to give the third term and
so on. We first need a lemma.

Lemma 73.

lim
n→∞

rn =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if ∣r∣ < 1

1 if r = 1

∞ if ∣r∣ > 1

Proof. Left to the reader to explore with a calculator. Take say 0.1 and keep multi-
plying it by itself until your calculator cries “uncle!”

Theorem 74. Geometric Series Convergence
The geometric series

S =
∞
∑
n=1

arn = a + ar + ar2 + ar3 + . . .

converges to
a

1 − r if ∣r∣ < 1, else it diverges.

Proof. Consider the partial sum of the first n terms and multiply through by r,

Sn = a + ar + ar2 + ar3 + . . . + arn−1

⇒ rSn = ar + ar2 + ar3 + . . . + arn−1 + arn

Subtracting,

Sn(1 − r) = a − arn⇒ Sn =
a

1 − r −
a

1 − r ⋅ r
n

Taking the limit as n→∞, and using Lemma 73 above,

S = lim
n→∞

Sn = lim
n→∞

a

1 − r − lim
n→∞

a

1 − r ⋅ r
n = a

1 − r if ∣r∣ < 1.

Example 59. 1 + 1

3
+ 1

9
+ 1

27
+ . . . = 1

1 − 1

3

= 3

2
, where r = 1

3
< 1

9.7.5 Tests for Convergence

We can use the result from Theorem 74 to find other tests for convergence of an
infinite series.
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Theorem 75. Ratio Test for Convergence
Let,

∞
∑
k=1

ak = a1 + a2 + a3 + . . .

be a series of positive terms and let r = lim
k→∞

ak+1

ak
. The series converges if r < 1.

Proof. Suppose r = lim
k→∞

ak+1

ak
exists. Then for all large k,

ak+1 ≈ akr and ak+2 ≈ ak+1r and ak+3 ≈ ak+2r, etc.,

giving,

ak+1 ≈ akr and ak+2 ≈ ak+1r = akr2 and ak+3 ≈ ak+2 = akr3, etc.

Thus, as k gets larger, the series from ak onwards is,

ak + ak+1 + ak+2 + ak+3 + . . . ≈ ak + akr + akr2 + akr3 + . . .

which is a convergent geometric series for r < 1.

Theorem 76. Integral Test
Let f be a continuous, positive, non-increasing function on an interval (1,∞).
Suppose the kth term of an infinite series is ak = f(k) for all k ∈ N.
Then the infinite series

∞
∑
k=1

ak converges if and only if the integral
∞
∫
1

f(x) dx converges.

Proof. We use Figure 16.

x

y

1 2 3 4 n
n − 1

an−1

y = f(x)

a1 a2 a3

an

x

y

1 2 3 4 n
n − 1

an−1

y = f(x)

a1 a2 a3

an

Figure 14

If we sum the areas of the rectangles of width 1 in the two diagrams and compare
these with the integral area under the curve we see that,

n

∑
k=2

ak ≤ ∫
n

1
f(x) dx ≤

n−1

∑
k=1

ak
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Suppose that ∫
∞

1 f(x) dx converges to B. Then, since,

Sn = a1 +
n

∑
k=2

ak ≤ a1 + ∫
n

1
f(x) dx ≤ a1 + ∫

∞

1
f(x) dx ≤ a1 +B,

by the definition of convergence of an infinite series, since the sequence of partial

sums is bounded,
∞
∑
k=1
ak converges,

*****

On the other hand, suppose
∞
∑
k=1

ak converges to D.

Then again using,
n

∑
k=2

ak ≤ ∫
n

1
f(x) dx ≤

n−1

∑
k=1

ak,

taking the limit as n→∞, we have,

lim
n→∞∫

n

1
f(x) dx = ∫

∞

1
f(x) dx ≤ lim

n→∞

n−1

∑
k=1

ak =
∞
∑
k=1

ak =D

so that the integral converges.

Theorem 77. p−series test
The series ∞

∑
k=1

1

kp
= 1

k
+ 1

k2
+ 1

k2
+ . . .

converges if p > 1 and diverges if p ≤ 1.

Proof. If p ≥ 0 , the function f(x) = 1

xp
is continuous, positive and non-increasing on

the interval [1,∞] and f(k) = 1

kp
.

Thus, by the integral test, Theorem 76,
∞
∑
k=1

1

kp
converges if and only if

∞
∫
1

f(x) dx
converges to a finite number.
If p > 1,

∫
∞

1

1

xp
dx = ∫

∞

1
x−p dx = [x

−p+1

1 − p ]
∞

1

= 1

∞p−1
⋅ 1

1 − p −
1

1 − p = 1

p − 1

so the integral and therefore the series converges.
If p = 1 the series becomes the harmonic series which, by Theorem 72, page 101, does
not converge.
If p < 1,

∫
∞

1

1

xp
dx = ∫

∞

1
x−p dx = [ x

1−p

1 − p]
∞

1

= 1

∞1−p ⋅
1

1 − p −
1

1 − p = ∞,
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so neither the integral nor the series converges.

Here in saying
1

∞p−1
= 1

∞ , we have been a little loose in our treatment of infinity as

a number and of integrals with an infinite limit, nevertheless the result stands.

Note 16. Of course, you have probably noticed that if p = 1 then the power rule

for integrating x−p cannot be used, since
M

∫
1

1

x
dx makes sense as an integral or area

but cannot be
x0

0
. We need to defer this to our further study of Calculus and an

introduction to the natural logarithm function.

9.8 Another mathematical “no-no”

We insist that the infinite series we are dealing with all converge – why do we do this?
Let’s consider the infinite series

x = 4 + 4 × 5 + 4 × 52 + 4 × 53 + . . . .

What is its sum? We claim the (ridiculous) answer that x = −1. It’s ridiculous since
all the terms in the series are positive numbers.
But let’s “prove” the claim. To prove x = −1 we simply need to prove x + 1 = 0. Let’s
add 1 to both side,

x + 1 = 1 + 4 + (4 × 5) + (4 × 52) + (4 × 53) + . . . .
= 5 + (4 × 5) + (4 × 52) + (4 × 53) + . . . .
= 0 + (5 × 5) + (4 × 52) + (4 × 53) + . . . .
= 0 + 0 + (5 × 52) + (4 × 53) + (4 × 54) + . . . .
= 0 + 0 + 0 + (5 × 53) + (4 × 54) + . . . .
= 0 + 0 + 0 + 0 + (5 × 54) + . . . .
= 0

The problem is that this series does not converge, its partial sums 4,24,124, . . . simply
keep on increasing. This example demonstrates that we cannot work with infinite
series that do not converge. This is another mathematical “no-no” and the reason
why we must first show any infinite series converges (often on some interval only)
before we can work with it to prove another mathematical fact.
For example, the only infinite geometric series we can work with are,

∞
∑
k=0

arn, ∣r∣ < 1.

Later we will work with the Euler zeta function, defined by,

ζ(s) =
∞
∑
n=1

1

ns
, s > 1.
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Of course, eventually someone was going to say “what if

x = 4 + 4 × 5 + 4 × 52 + 4 × 53 + . . . .

can be made to converge?”
Well we have then left real number theory and entered the strange and exotic field of
p− adic number theory. One day you may choose to go there.



Part IV

Degustation – Some Classic Pearls
of Number Theory
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A degustation is a sampling of the chef’s signature creations. It may involve as
many as 12 courses, all to be sampled in moderation! We will sample only four.

The first is the conclusion of the classic theorems of divisibility studied earlier, that
were concluded with the corollary,

If gcd(a, b) = 1 then there exist x, y such that ax + by = 1.

The problem is how to find x, y when we are dealing with large integers. We use
Calculus to find the smallest such x, y.

The second has its roots in Chinese antiquity and is therefore titled the Chinese
Remainder Theorem. It is about congruences, a topic developed by Gauss.

e.g., What number has a remainder of 6 when divided by 11, 7 when divided by 8
and 8 when divided by 13?

The third is the Binomial Theorem that can be used to easily expand binomial ex-
pressions raised to a positive integer power, such as,

(x + y)5 = x5 + 5x4 + 10x3 + 10x2 + 5x + 1

The fourth is Fermat’s Two Squares theorem that primes p of the form p = 4n+1 can
be expressed uniquely as the sum of two squares a, b, that is p = a2 + b2 for some a, b.

e.g.,61 = 4 × 15 + 1 = 52 + 62

We prove the theorem and discover an algorithm to find a,b for any given prime.



Chapter 10

Solving ax + by = 1, gcd(a, b) = 1.

In Chapter 5 we proved that for any two positive integers a, b, gcd(a, b) = 1, there
are integers x, y satisfying the equation ax + by = 1. But how do you find x, y for any
given a, b with gcd(a, b) = 1?

Course: Degustation Plate I
Ingredients
Solutions of the linear Diophantine equation ax + by = 1.
Euclid’s algorithm for finding x, y in ax + by = 1.
Directions
Prove the x,y of ax + by = 1 are not unique.
Use calculus to find an algorithm for the minimal values of x, y.
Mimic the technique of Euclid’s algorithm to develop an algorithm for finding any one
pair x, y.

10.1 Finding all solutions

Theorem 78.
If x0, y0 satisfy ax + by = 1, a, b ∈ Z, where the gcd(a, b) = 1, then all other solutions
are of the form

x0 ∓ bk, y0 ± ak, k ∈ Z

Proof. Suppose ax0 + by0 = 1 and ax + by = 1. Then, subtracting,

(x − x0)a + (y − y0)b = 0

⇒ (x − x0)a = −(y − y0)b
⇒ b∣x − x0 and a∣y − y0

⇒ x − x0 = bj, y − y0 = ak, for some j, k ∈ Z

Hence,

x = x0 + aj, y = y0 + bk (10.1.1)
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Substituting into ax + by = 1 gives,

ax0 + abj + by0 + abk = 1

⇒ abj = −abk since ax0 + by0 = 1,

⇒ j = −k
⇒ y = y0 + ak, x = x0 − bk (from(10.1.1))

where k can be positive or negative or zero. Also,

ax0 + by0 = 1

⇒ ax0 ∓ abk ± abk + by0 = 1

⇒ a(x0 ∓ bk) + b(y0 ± ak) = 1

Then all solutions of ax + by = 1 are of the form x0 ∓ bk, y0 ± ak.

Example 60. For 7x+ 5y = 1 we can find x0 = −7, y0 = 10 by “trial and error”. Then
all solutions are of the form,

x = −7 ∓ 5k, y = 10 ± 7k, k = 0,1,2, . . .

If k = 1 a solution is x = −7 − 5 = −12, y = 10 + 7 = 17 giving 7(−12) + 5(17) = 1.
Also if k = 1 then x = −2, y = 3 giving 7(−2) + 5(3) = 1.
If k = 2 a solution is x = −17, y = 24 giving 7(−17) + 5(24) = 1.
Also if k = 2, we have x = −7 + 10 = 3, y = 10 − 14 = −4 giving 7(3) + 5(−4) = 1. ◇

10.2 Algorithm for finding the minimal solution.

Definition 36. The minimal solution of ax + by = 1 is the solution for which x2 + y2

is a minimum.

The reasoning behind this definition is that x, y lie on the line ax + by = 1. This
line does not pass through the origin but it “almost does,” intercepting the x−axis at

(1

a
,0) and the y−axis at (0,

1

b
) as shown in Figure 15.

x

y

1
b

1
a

(x, y)●

Figure 15
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The smallest combined values of x, y are given by the point (x, y) on the line
ax+by = 1 closest to the origin. The distance from (x, y) on the line ax+by = 1 to the
origin is given by the Pythagorean Theorem. Its square is x2 + y2. So if we want the
distance to be a minimum, then we want its square to be a minimum. Accordingly
we have the following theorem.

Theorem 79.
Given x0, y0 satisfy ax + by = 1, gcd(a, b) = 1, let y = y0 + ak and x = x0 − bk. Then the
minimal solution has k =min(n,n + 1) where,

n ≤ ay0 − bx0

a2 + b2
≤ n + 1, n, n + 1 ∈ Z.

Proof. Given x0, y0 satisfy ax + by = 1, gcd(a, b) = 1, let y = y0 + ak and x = x0 − bk.
We want to minimize x2 + y2 where x = x0 − bk, y = y0 + ak and where k varies as a
discrete variable. In order to use Calculus, we put u = k and consider the continuous
function,

f(u) = (x0 − bu)2 + (y0 + au)2 = (a2 + b2)u2 − (2bx0 − 2ay0)u + x2
0 + y2

0

This is a quadratic function in u, its graph is an upward opening parabola, so it
has a minimum or lowest point. At that point, called the vertex, the tangent is flat
or has gradient 0 so at this point f ′(u) = 0. We proceed accordingly.

f(u) = (a2 + b2)u2 − (2bx0 − 2ay0) + x2
0 + y2

0

⇒ f ′(u) = 2(a2 + b2)u − 2(bx0 − ay0) = 0

⇒ u = bx0 − ay0

a2 + b2

Now this value of u is unlikely to be a whole number since in order to use calculus
we needed k to be a continuous variable.
In order to find a minimal value for y = y0±ak, x = x0∓bk we need to take the nearest

integer value k to u = bx0 − ay0

a2 + b2
. Then by trying each value of y = y0 ± ak, x = x0 ∓ bk

we can easily choose the minimum combination.

Note we can also have y = y0 − ak, x = x0 + bk which gives u = −bx0 − ay0

a2 + b2
.

Example 61. Suppose we somehow found the solution x0 = −995, y0 = 746 satisfying
743x + 991y = 1. Then,

±u = ±bx0 − ay0

a2 + b2
= ±991(−995) + 743(746)

7432 + 9912
= ±1540323

1534130
= ±1−

or a number very close to ±1. So we take k = ±1 in y = y0 +ak, x = x0 − bk. Then, with
k = ±1, the minimal solution is given by either,

k = 1 ∶ x0 − b = −995 − 991 = −1986 and y0 + a = 746 + 743 = 1489 or,

k = −1 ∶ x0 + b = −995 + 991 = −4 and y0 − a = 746 − 743 = 3
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So we take k = −1, giving

−4 × 743 + 3 × 991 = 1

which is much “nicer” than,

−995 × 743 + 746 × 991 = 1

We still need a method of finding one value of the pair x0, y0. The usual method
is to use the Euclidean Algorithm and then reverse its steps.

Theorem 80. Euclidean Algorithm
Let a, b ∈ Z. If we apply the Division Algorithm Theorem 13, page 39, repeatedly,

a = q1b + r1 (10.2.1)

b = q2r1 + r2 (10.2.2)

r1 = q3r2 + r3 (10.2.3)

. . . (10.2.4)

we must come to a finite end since the degree of the remainders is becoming smaller
and smaller, so we end with,

rn−3 = qn−1rn−2 + rn−1 (n − 1)
rn−2 = qnrn−1 + rn (n)
rn−1 = qn+1rn + rn+1 (n + 1)

and rn+1 = 0.
Then the last non-zero remainder rn = gcd(a, b).

Proof. From equation (n + 1), we have

rn−1 = qn+1rn + rn+1

Since rn+1 = 0 we see rn ∣ rn−1, say, rn−1 = c rn. Substituting into equation (n) gives,

rn−2 = cqnrn + rn = rn[cqn + 1]

so that rn ∣ rn−2, say rn−2 = drn.
But then from equation (n − 1) we see rn ∣ rn−3 since

rn−3 = dqn−1rn + crn = rn[dqn−1 − c],

and so on all the way back to equations (10.2.1), (10.2.2) which show rn ∣ b and finally,
rn ∣ a so that rn is a common divisor of a and b.

*****
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To show it is the greatest common divisor, suppose h is any other common divisor
of a and b. Then by equation (10.2.1) , h ∣ r1, by equation (10.2.2) h ∣ r2 and so on
all the way down the chain of equations till we reach h ∣ rn making rn the greatest
common divisor, that is, gcd(a, b) = rn.

Let’s consider how to use the Euclidean Algorithm to find a solution to ax+by = 1
when gcd(a, b) = 1. Clearly if we choose a, b ∈ Z so that gcd(a, b) = 1 then we don’t
need the Euclidean Algorithm to find their gcd. But we do need its steps to solve
ax + by = 1. Let’s see how this works.

Example 62. We choose a = 9551, b = 1087, and apply the Division Algorithm re-
peatedly.

9551 = 1087 ⋅ 8 + 855 (10.2.5)

1087 = 855 ⋅ 1 + 232 (10.2.6)

855 = 232 ⋅ 3 + 159 (10.2.7)

232 = 159 ⋅ 1 + 73 (10.2.8)

159 = 73 ⋅ 2 + 13 (10.2.9)

73 = 13 ⋅ 5 + 8 (10.2.10)

13 = 8 ⋅ 1 + 5 (10.2.11)

8 = 5 ⋅ 1 + 3 (10.2.12)

5 = 3 ⋅ 1 + 2 (10.2.13)

3 = 2 ⋅ 1 + 1 (10.2.14)

2 = 1 ⋅ 1 + 1 (10.2.15)

1 = 1 + 0 (10.2.16)

Since the last non-zero remainder is 1, then we have verified gcd(9551,1087) = 1.
But now let’s solve 9551x + 1087y = 1. We simply reverse the above steps like this,
each time substituting for the remainder,

1 = 3 − 2(1)from (10.2.14)
= 3 − (5 − 3) = 2(3) − 5 from (10.2.13)
= 2(8 − 5) − 5 = 2(8) − 3(5) from (10.2.12)
= 2(8) − 3(13 − 8) = 5(8) − 3(13) from (10.2.11)
= 5(73 − 13(5)) − 3(13) = 5(73) − 28(13) from (10.2.10)
= 5(73) − 28(159 − 73(2)) = 61(73) − 28(159) from (10.2.9)
= 61(232 − 159) − 28(159) = 61(232) − 89(159) from (10.2.8)
= 61(232) − 89(855 − 232(2)) = 328(232) − 89(855) from (10.2.7)
= 328(1087 − 855) − 89(855) = 328(1087) − 417(855) from (10.2.6)
= 328(1087) − 417(9551 − 8(1087)) = 3664(1087) − 417(9551) from (10.2.5)
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giving the solution,

3664 × 1087 − 417 × 9551 = 1 ◇

Note 17. We can express the above 2-step process in one step as follows.
Consider ax+by = 1, gcd(a, b) = 1. Assume a > b, and by the Division Algorithm write,

a = bk1 + c1, k1 > 0, c1 < b. (10.2.17)

Subsituting into ax + by = 1 gives,

(bk1 + c1)x + by = 1⇒ c1x + b(k1x + y) = 1 (10.2.18)

Since c1 < b, again by the Division Algorithm, we can write,

b = k2c1 + c2, k2 > 0, c2 < c1 (10.2.19)

Substituting (10.2.19) into (10.2.18) gives,

c1x + (k2c1 + c2)(k1x + y) = 1 (10.2.20)

c1(x + k1k2x + k2y) + c2(k1x + y) = 1 (10.2.21)

Since c2 < c1,

c1 = k3c2 + c3, k3 > 0, c3 < c2 (10.2.22)

Substituting (10.2.22) into (10.2.21) gives,

(k3c2 + c3)(x + k1k2x + k2y) + c2(k1x + y) = 1

c2(k3x + k1k2k3x + k2k3y + k1x + y) + c3(x + k1k2x + k2y) = 1

Since the values of ci are getting smaller and smaller, we can continue in this way
until some ci = 1. We would then have,

ci(cx + dy) +C(ex + fy) = 1, ci = 1

We would then solve the equations,

cx + dy = C + 1

ex + fy = −1

to obtain values of x0, y0 such that ax0 + by0 = 1.
Finally we can find the minimal solution by using Theorem 79, page 112.
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Example 63. Let’s solve the linear equation 81x + 73y = 1 for x, y. We proceed as
follows,

81x + 73y = 1

(73 + 8)x + 73y = 1

8x + 73(x + y) = 1

8x + (9 × 8 + 1)(x + y) = 1

8(10x + 9y) + (x + y) = 1

We solve,

x + y = 9 (10.2.23)

10x + 9y = −1 (10.2.24)

as follows,
(10.2.24) − (10.2.23) × 9 gives x = −82

and by substituting into (10.2.24) we have y = 91. Hence

73 × 91 − 81 × 82 = 1.

The minimal solution is,
x0 ∓ bk, y0 ± ak, k ∈ Z

where k is the closest integer to one of,

± ∣bx0 − ay0

a2 + b2
∣ = ± ∣(73)(−82) − (81)(91)

812 + 732
∣ = ±13357

11891
= ±1.12

We take k = −1 and we have,

x0 − bk = −82 + 73 = −9, y0 + ak = 91 − 81 = 10

to give the minimal solution,

10 × 73 − 9 × 81 = 1 ◇

Example 64. Let’s make a start on the example for solving 9551x + 1087y = 1.

1 = 9551x + 1087y

= (8 × 1087 + 855)x + 1087y

= 855x + 1087(8x + y)
= 855x + (855 + 232)(8x + y)
= 855(9x + y) + 232(8x + y)
= (3 × 232 + 159)(9x + y) + 232(8x + y)
= 159(9x + y) + 232(35x + y)
= . . . for you to continue

= (2223x + 253y) + 2(3664 + 417y)
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We solve,

3664x + 417y = −1

2223x + 253y = 3

to find x = −1504, y = 13215, concluding,

1087 × 13215 − 9551 × 1504 = 1

which is different to the prior solution of,

1087 × 3664 − 9551 × 417 = 1

But let’s go to the minimal solution via,

± ∣bx0 − ay0

a2 + b2
∣ = ± ∣−(1087)(−1504) + (13215)(9551)

95512 + 10872
∣ ± = 127,851,313

92,403,170
= ±1.4

Taking k = −1 and giving x0 = −1504 + 1087 = −417, y + 0 = 13215 − 9551 = 3664 we
find,

1087 × 3664 − 9551 × 417 = 1 ◇



Chapter 11

The Chinese Remainder Theorem

We now consider a classic pearl of number theory, the Chinese Remainder Theorem
(CRT) that has its roots in antiquity. It was the method, recorded by the Chinese
mathematician Sun-Tzu, reputably used by Chinese generals to count their huge
armies – “Line up in lines of 11 (count the leftovers), line up in lines of 10 (count the
leftovers), and finally, line up in lines of 9 (count the leftovers),” then, “Sun-Tzu, do
your thing!”.

Course: Degustation Plate II
Ingredients
Congruences
Solution of linear congruences
Directions
Use the solution of linear congruences to prove the CRT.
Generalize the CRT.
For fun, find what day of the week you were born on.

11.1 Congruences

Let us recall the previous definition of congruences and let’s just deal with the posi-
tive integers.

Definition 37. congruence
Let m be a positive integer. If m divides the difference a− b of two integers, we say“a
is congruent to b modulo m” and we write a ≡ b(mod m).

Note that m∣a − b⇒ a − b =mk for some k ∈ Z so that,

a ≡ b(mod m) ⇔ a = b +mk,k ∈ Z.
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Definition 38. residue
If a ≡ b(mod m), b is called a residue of a modulo m. It is any possible remainder
when a is divided by m.

Example 65.

23 = 5 × 4 + 3⇔ 23 ≡ 3(mod 5)
23 = 5 × 3 + 8⇔ 23 ≡ 8(mod 5)
23 = 5 × 2 + 13⇔ 23 ≡ 13(mod 5)
23 = 5 × 1 + 18⇔ 23 ≡ 18(mod 5)

In this example, 3,8,13,18 are residues and 3 is the least non-negative residue of
23(mod 5). ◇

The Chinese Remainder Theorem deals with finding a least non-negative solution
to a system of congruences such as,

x ≡ 3(mod 5) and x ≡ 4(mod 7)

The least non-negative solution will be less than 5 × 7 = 35.
By trial and error on the numbers 1 to 35, the solution of these two congruences is
easily found as x = 18. But what if we had several equations in the system, such as,

x ≡ 3(mod 5), x ≡ 4(mod 7), x ≡ 11(mod 19), x ≡ 61(mod 77)

We would need Sun-Tzu’s theorem.

11.2 Chinese Remainder Theorem

Theorem 81. Chinese Remainder Theorem
Let m1,m2, . . . ,mr be positive integers that are relatively prime in pairs, that is
gcd(mi,mj) = 1 if mi ≠mj for all mi,mj ∈ {m1,m2, . . . ,mr}.
Then for any integers a1, a2, . . . , ar the r simultaneous congruences,

x ≡ ai(mod mi), i = 1,2, . . . , r

have a common solution and any two solutions are congruent modulo the product,

m =
r

∏
i=1

mi =m1m2⋯mr

The solution is

x0 = ( m
m1

) b1a1 + ( m
m2

) b2a2 + . . . + ( m
mr

) brar

where each bi is the solution of the linear congruence

(m
mi

) bi ≡ 1(modmi)
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Proof. Let m1,m2, . . . ,mr be positive integers that are relatively prime in pairs, that
is gcd(mi,mj) = 1 if mi ≠mj for all mi,mj ∈ {m1,m2, . . . ,mr}.
Let m =

r

∏
i=1
mi =m1m2⋯mr. Then gcd(m

mi

,mi) = 1 for all i.

By the Theorem 153, page 237, Solution of Linear Congruences, there exist integers
bi such that,

(m
mi

) bi ≡ 1(modmi)

We define,

x0 = ( m
m1

) b1a1 + ( m
m2

) b2a2 + . . . + ( m
mr

) brar

Then since m =m1m2⋯mi⋯mj⋯mr we have mi∣
m

mj

for all i ≠ j.
Thus,

x0 =
m

mi

biai +mi

r

∑
k=1,k≠i

m/mi

mk

bkak ⇒ x0 ≡
m

mi

biai(mod mi) for all i.

But (m
mi

) bi ≡ 1(mod mi) or
m

mi

bi = 1 + kmi, k ∈ Z Thus,

x0 ≡ (m
mi

) biai(mod mi)

⇒ x0 =
m

mi

biai + jmi, j ∈ Z

= (1 + kmi)ai + jmi

= ai +mi(kai + j)
≡ ai(mod mi) for all i ∶ 1 ≤ i ≤ r

Thus,

x0 = ( m
m1

) b1a1 + ( m
m2

) b2a2 + . . . + ( m
mr

) brar

is a common solution of all the congruences.

*****

Now we show any two solutions are congruent modulo m.
If both x0 and y0 are common solutions of all the congruences, then,

x0 ≡ ai(mod mi) ⇔ x0 = ai + kmi for some k ∈ Z.
y0 ≡ ai(mod mi) ⇔ y0 = ai + jmi for some j ∈ Z.

implies by subtraction, and using l = k − j,

x0 − y0 = lmi⇔ x0 ≡ y0(mod mi).
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Since no two of the mi have a common factor, all of mi must divide x0 − y0 which
means their product,

m∣x0 − y0 ⇔ x0 ≡ y0(mod m).
That is, any two solutions are congruent modulo m.

Example 66. Let’s solve the system of linear congruences,

x ≡ 2(mod 9)
x ≡ 4(mod 10)
x ≡ 8(mod 11)

To form

x0 = ( m
m1

) b1a1 + ( m
m2

) b2a2 + . . . + ( m
mr

) brar

we note,

m1 = 9,m2 = 10,m3 = 11, a1 = 2, a2 = 4, a3 = 8

m = 9 × 10 × 11 = 990

m

m1

= 990

9
= 110,

m

m2

= 990

10
= 99,

m

m3

= 990

11
= 90

Also by trial and error we have the solutions,

110b1 ≡ 1(mod 9) ⇒ 108b1 + 2b1 ≡ 1(mod 9) ⇒ 2b1 ≡ 1(mod 9) ⇒ b1 = 5,

99b2 ≡ 1(mod 10) ⇒ 90b2 + 9b2 ≡ 1(mod 10) ⇒ 9b2 ≡ 1(mod 10) ⇒ b2 = 9,

90b3 ≡ 1(mod 11) ⇒ 88b3 + 2b3 ≡ 1(mod11) ⇒ 2b3 ≡ 1(mod 11) ⇒ b3 = 6.

Then,

x0 = ( m
m1

) b1a1 + ( m
m2

) b2a2 + . . . + ( m
mr

) brar

= 110 × 5 × 2 + 99 × 4 × 9 + 90 × 4 × 6

= 8974

is a solution of the system. The smallest positive solution is

y0 ≡ x0(mod m) ≡ 8984(mod 990) = 74

It is easy to check that 74(mod 9) ≡ 2, 74(mod 10) ≡ 4, 74(mod 11) ≡ 8.

11.3 Generalization of the Chinese Remainder The-

orem

We can sometimes remove the restriction that the mi are relatively prime in pairs,
that is, gcd(mi,mj) = 1 if mi ≠mj.
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Theorem 82. Generalized CRT
The simultaneous congruences,

x ≡ ai(mod mi), i = 1,2, . . . , r

have a common solution if and only if,

ai − aj ≡ 0(mod gcd(mi,mj)), for all i, j = 1,2, . . . , r,

in which case the solution is unique congruent modulo the product,

r

∏
i=1

mi =m1m2⋯mr.

Proof. Suppose the system

x ≡ ai(mod mi), i = 1,2, . . . , r

has a solution.
First, if mi∣x−ai then each factor of mi divides x−ai. In particular gcd(mi,mj)∣x−ai.
Then for all pairs i, j since,

x ≡ ai(mod gcd(mi,mj)) and x ≡ aj(mod gcd(mi,mj))

by subtraction we have,

ai − aj ≡ 0(mod gcd(mi,mj))

*****

Conversely, suppose

ai − aj ≡ 0(mod gcd(mi,mj)) for all i, j ∈ {1.2, . . . , r}.

Now if m has the prime factorization m = pe1i pe22 ⋯p
ek
k where p1, p2, . . . , pk are distinct

primes and the ei ∈ N, then for all integers a, b if a ≡ b(mod m) then
a ≡ b(mod peii ) for all i = 1,2, . . . , k. This is true since,

a ≡ b(mod m) ⇒m∣a − b
⇒ pe1i p

e2
2 ⋯p

ek
k ∣a − b

⇒ peii ∣a − b for all i = 1,2, . . . , k

Using this result we can replace each congruence x ≡ ai(mod mi) with a finite set of
congruences of the form x ≡ ai(mod pe) where pe ranges over all the prime factoriza-
tions of mi.
Our intent is to apply the Chinese Remainder Theorem to this new set of congru-
ences, but these moduli are not necessarily co-prime since some primes may divide
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several mi. We can use the hypothesis to solve this possibility.
For a given prime p let us choose i such that this mi is the one divisible by the highest
power of p, say pe. Then if pf ∣mj we have f ≤ e and pf ∣gcd(mi,mj) and hence by our
hypothesis pf ∣ai − aj.
Thus ai ≡ aj(mod pf) so the congruence x ≡ ai(mod pe), if true, will imply
x ≡ ai(mod pf) and hence x ≡ aj(mod pf).
So we can discard all the congruences x ≡ aj(mod pf) for this prime p from our set
of congruences with the single exception of the congruence x ≡ aj(mod pe) involving
the highest power of p since this congruence implies the others.
If we do this for each prime p we are left with a finite set of congruences of the form
x ≡ aj(mod pe) involving distinct and therefore co-prime primes p so that we can
apply the Chinese Remainder Theorem and claim these congruencers have a common
solution which is obviously the solution of the original set of congruences.
The proof of uniqueness is similar to that for the Chinese Remainder Theorem.

Example 67. Let’s consider finding a solution for this system,

x ≡ a1(mod 23 × 3)
x ≡ a2(mod 32 × 5)
x ≡ a3(mod 2 × 52)

where

m1 = 24, m2 = 45, m3 = 50

and

gcd(m1,m2) = 3 ≠ 1, gcd(m2,m3) = 5 ≠ 1, gcd(m1,m3) = 2 ≠ 1.

Under what conditions can we expect to find a solution of this system of linear con-
gruences?
Now,

x ≡ a1(mod 23 × 3) ⇒ x = a1 + 23 × 3k⇒ x ≡ a1(mod 23) and x ≡ a1(mod 3)
x ≡ a2(mod 32 × 5) ⇒ x = a2 + 32 × 5k⇒ x ≡ a2(mod 32) and x ≡ a2(mod 5)
x ≡ a3(mod 2 × 52) ⇒ x = a3 + 2 × 52k⇒ x ≡ a3(mod 2) and x ≡ a3(mod 52)

Now x ≡ a1(mod 23) ⇒ x ≡ a1(mod 2). But we also have x ≡ a3(mod 2). By sub-
traction we must have a1 − a3 ≡ 0(mod 2). The same applies to the other pairs mod
the same number, so altogether we have,

a1 − a3 ≡ 0(mod 2)
a1 − a2 ≡ 0(mod 3)
a3 − a2 ≡ 0(mod 5)
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Hence there can only be a solution of our system if a1, a2 and a3 are (carefully) chosen
so that,

a1 = a2 + 3i

a2 = a3 + 5k

a3 = a1 + 2j

There are infinite number of choices nevertheless so let’s choose

a2 = 7, a1 = 7 + 3 = 10, a3 = 7 + 5 = 12

so that we also have a3 − a1 = 2. So we solve the system,

x ≡ 10(mod 24)
x ≡ 7(mod 45)
x ≡ 9(mod 50)

which, following Theorem 82, we reduce to moduli of the highest power of each prime
to give,

x ≡ 10(mod 23)
x ≡ 7(mod 32)
x ≡ 12(mod 52)

Then, following Theorem 81 on page 119, we have

m1 = 8,m2 = 9,m3 = 25,m = 1800,
m

m1

= 225,
m

m2

= 200,
m

m3

= 72

Still following Theorem 81 we need to solve
m

mi

bi ≡ 1(mod mi) specifically,

3352b1 ≡ 1(mod 23) ⇒ (8 ∗ 28 + 1)b1 ≡ 1(mod 8) ⇒ b1 = 1

2352b2 ≡ 1(mod 9) ⇒ (198 + 2)b2 ≡ 1(mod 9) ⇒ 2b2 ≡ 1(mod 9) ⇒ b2 = 5

2332b3 ≡ 1(mod 25) ⇒ (50 + 22)b3 ≡ 1(mod 25) ⇒ 22b3 ≡ 1(mod 25) ⇒ b3 = 8

Accordingly the solution to our system is given by substituting into,

x0 = ( m
m1

) b1a1 + ( m
m2

) b2a2 + . . . + ( m
mr

) brar to give

x0 = 32 ⋅ 52 ⋅ 1 ⋅ 10 + 23 ⋅ 52 ⋅ 7 ⋅ 5 + 23 ⋅ 32 ⋅ 12 ⋅ 8 = 16162 ≡ 1762(mod 1800) = 1762

which satisfies

1762 ≡ 7(mod 45) ≡ 10(mod24) ≡ 12(mod50) ◇
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11.4 What Day of the Week was It?

Suppose we want to find what day of the week was a particular day in the 20th or
21st century (maybe your birthday!).
We use congruences modulo 7. We code the days as,

Saturday 0

Sunday 1

Monday 2

Tuesday 3

Wednesday 4

Thursday 5

Friday 6

We use January 1, 1900 which fell on a Monday as our reference point.
Any other day in January, 1900 is the date plus 1 (January month code) modulo 7.
For example, January 19th is 19 + 1(mod 7) ≡ 6 or a Friday.
Each month following January adds on a different number of days. We simply code
them accordingly modulo 7. The month codes are,

January 1
February 31 + 1(mod 7) ≡ 4

March 28 + 4(mod 7) ≡ 4
April 31 + 4(mod 7) ≡ 0
May 30 + 0(mod 7) ≡ 2
June 31 + 2(mod 7) ≡ 5
July 30 + 5(mod 7) ≡ 0

August 31 + 0(mod 7) ≡ 3
September 31 + 3(mod 7) ≡ 6

October 30 + 6(mod 7) ≡ 1
November 31 + 1(mod 7) ≡ 4
December 30 + 4(mod 7) ≡ 6

For the ordinary years we add another 1 since 365(mod 7) ≡ 1.
For leap years, since 366(mod 7) ≡ 2, we need to add another 1 (to the 1 already
counted).
Finally, if we go into the 21st century, we do not need a correction for the year 2000
which was a leap year. (It’s 1800, 1900, 2100, etc. that are not leap years).
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Example 68. What day of the week was June 1st, 1941?
Remember our base is January 1st, 1900.

Number of leap years is the nearest integer less than or equal to 41/4,

written [41

4
] = 10 ≡ 3(mod 7). 3

Number of ordinary years was 41 ≡ 6(mod 7) 6
Month code of June 5
Date 1
Total 15

Since 15(mod 7) ≡ 1, June 1st, 1941 was a Sunday. ◇

Example 69. What day of the week was November 14th, 2012?
Remember our base is January 1, 1900.

Number of leap years is the nearest integer less than or equal to 112/4,

written [112

4
] = 28 ≡ 0(mod 7). 0

Number of ordinary years was 112 ≡ 0(mod 7) 0
Month code of November 4
Date is 14 ≡ 0(mod 7) 0
Total 4

Since 4(mod 7) ≡ 4, November 14th, 2012 is a Wednesday. (it’s actually for me, as I
write this, today!) ◇



Chapter 12

Binomial Theorem

Course: Degustation Plate III
Ingredients
Definitions of factorials, binomial coefficients
Mathematical Induction
Diirections
Prove the lemma behind Pascal’s Triangle
Prove the Binomial Theorem by induction.

The Binomial Theorem is the general formula for expanding,

(x + y)n, n ∈ N

into a series of terms. Of course,

(x + y)1 = x + y
(x + y)2 = x2 + 2xy + y2

and, with not too much effort, we can multiply out,

(x + y)3 = x3 + 3x2y + 3xy2 + y3

But there is too much further effort involved in this approach. We need a formula.
Note first, however, that in each of the n = 1,2,3 cases, the terms begin with xn and
then each successive term has one less x and one more y until we finish with yn. So
we just need a formula for the coefficients of each term.

127
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12.1 Pascal”s Triangle

The French mathematician Blaise Pascal discovered a simple triangle that churns out
the coefficients of each term in (x+ y)n. Each number in a line is obtained by adding
together the two numbers to its left and right on the line above it. For the ends,
where there isn’t a number on the left/right, just use 0.

1 1
1 2 1

1 3 3 1
1 4 6 4 1

1 5 10 10 5 1
1 6 15 20 15 6 1

The first number greater than 1 in each line tells you the value of n you are dealing
with. For example,

(x + y)5 = x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5

It’s nice and easy for small values of n but we need more! We start with definitions
and a lemma.

Definition 39. factorial
For n ∈ Z+ ∪ 0, “factorial n” or “n factorial” is written n! and is defined as,

n! = n(n − 1)(n − 2)⋯1.

We could also define n! recursively by,

n! = n(n − 1)! beginning with 0! = 1.

Example 70. Using the recursive definition it is easy to calculate successive values
of n!

0! = 1; 1! = 1 × 0! = 1; 2! = 2 × 1! = 2; 3! = 3 × 2! = 6;

4! = 4 × 3! = 24; 5! = 5 × 4! = 120; 6! = 6 × 5! = 720; 7! = 7 × 6! = 5040; . . .

20! = 2.4329020 × 1018

The factorial function increases extremely rapidly in value as n increases as this

example shows. It therefore follows that lim
n→∞

f(n)
n!

= 0 for almost all functions f(n).
We will use this fact several times. ◇

Definition 40. binomial coefficient

For n, k ∈ N ∪ {0}, the binomial coefficient (n
k
), spoken as “n choose k” is defined by,

(n
k
) = n!

(n − k)!k!
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Example 71. (7

4
) = 7!

3! × 4!
= 7 ⋅ 6 ⋅ 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1

3 ⋅ 2 ⋅ 1 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 = 35

In a course in either combinatorics or introductory probability theory, you would
find that the number of ways of choosing 4 objects from a collection of 7 objects is

(7

4
) = 35, hence the way we say the binomial coefficient – “7 choose 4”.

Lemma 83.
The number of ways of choosing k objects from n objects is clearly the same as the
number of ways of choosing n − k objects from n objects, since in each case we are
simply separating the objects into a group of k objects and a group of n − k objects.
That is we claim,

(n
k
) = ( n

n − k).

Proof. Note k = n − (n − k),

(n
k
) = n!

(n − k)!k!
= n!

(n − (n − k))!(n − k)! = ( n

n − k)

The reason why Pascal’s Triangle works is due to the following lemma.

Lemma 84.

( n

n − k) + (n
k
) = (n + 1

k
)

Proof.

( n

k − 1
) + (n

k
) = n!

(n − k + 1)!(k − 1)! +
n!

(n − k)!k!

= n!

(n − k)!(k − 1)! (
1

n − k + 1
+ 1

k
)

= n!

(n − k)!(k − 1)! (
��k + n − ��k + 1

k(n − k + 1) )

= (n + 1)!
(n − k + 1)!k!

= (n + 1

k
)



130 Chapter 12. Binomial Theorem

12.2 Binomial Theorem

In the following proof we manipulate finite sums. Note that the summation index in
a sum is a “dummy index”. That is, the symbol we use to sum it is irrelevant. For
example,

20

∑
i=o
k2 =

20

∑
j=0

j2 = 12 + 22 + . . . + 202

Accordingly, for example, we can replace j in,

9

∑
j=1

xj−1 = x0 + x1 + . . . + x8

with k = j − 1 to give,
8

∑
k=0

xk = x0 + x1 + . . . + x8

Theorem 85. Binomial Theorem
The expansion of the product of the n terms in (x + y)n is,

(x + y)n = (n
0
)xn + (n

1
)xn−1y + (n

2
)xn−2y2 + . . . + ( n

n − 1
)xyn−1 + (n

n
)yn

=
n

∑
k=0

(n
k
)xn−kyk

Proof. We use the method of mathematical induction and Lemma 84.
Let S(n) be the statement that,

(x + y)n = (n
0
)xn + (n

1
)xn−1y + (n

2
)xn−2y2 + . . . + (n

n
)yn =

n

∑
k=0

(n
k
)xn−kyk

Then the S(1) statement

(x + y)1 = (1

0
)x1 + (1

1
)y1 = 1!

1!0!
x + 1!

0!1!
y = x + y

is true.
Assume S(n) is true. We want to prove S(n + 1) is true, that is,

(x + y)n+1 =
n+1

∑
k=0

(n + 1

k
)xn−k+1yk
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Now,

(x + y)n+1 = (x + y)(x + y)n = x(x + y)n + y(x + y)n

= x
n

∑
k=0

(n
k
)xn−kyk + y

n

∑
k=0

(n
k
)xn−kyk

where we used S(n) is true and substituted for (x + y)n.

=
n

∑
k=0

(n
k
)xn−k+1yk +

n

∑
k=0

(n
k
)xn−kyk+1

We put j = k in the first sum and j = k + 1 in the second sum,

=
n

∑
j=0

(n
j
)xn−j+1yj +

n+1

∑
j=1

( n

j − 1
)xn−j+1yj

We separate out the first term in the first sum and the last term in the second sum

= (n
0
)xn+1 +

n

∑
j=1

(n
j
)xn−j+1yj +

n

∑
j=1

( n

j − 1
)xn−j+1yj + (n

n
)yn+1

We combine the sums noting 1 = (n
n
) = (n + 1

n + 1
) and 1 = (n

0
) = (n + 1

0
)

and alter j to k.

= (n + 1

0
)xn+1 +

n

∑
k=1

{(n
k
) + ( n

k − 1
)}xn−k+1yk + (n + 1

n + 1
)yn+1

We apply Lemma 84 page 129,

= (n + 1

0
)xn+1 +

n

∑
k=1

(n + 1

k
)xn−k+1yk + (n + 1

n + 1
)yn+1

We put the first and last terms back into the sum and obtain,

(x + y)n+1 =
n+1

∑
k=0

(n + 1

k
)xn−k+1yk

This concludes the proof.

Example 72.

(x + y)6

= (6

0
)x6y0 + (6

1
)x5y1 + (6

2
)x4y2 + (6

3
)x3y3 + (6

4
)x2y4 + (6

5
)x1y5 + (6

6
)x0y6

= 6!

0!6!
x6 + 6!

1!5!
x5y + 6!

2!4!
x4y2 + 6!

3!3!
x3y3 + 6!

4!2!
x2y4 + 6!

5!1!
xy5 + + 6!

6!0!
y6

= x6 + 6x5y + 15x4y2 + 20x3y3 + 15x2y4 + 6xy5 + y6
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Fermat’s Two Squares Theorem

We now prove that every prime of the form 4n + 1 can be expressed as the sum of
two squares in a unique way. We will do this by using a subset of the complex num-
bers called Gaussian integers. We start with the set of definitions relating to these
numbers. The development is similar to that for k(ρ) in Chapter 7 and k(1) = Z in
Chapter 5. The final approach is due to Dedekind.

Course: Degustation Plate IV
Ingredients
The theory of Gaussian integers, their sum, product, norm, complex conjugates, units,
primes
Directions
Prove the lemmas for the theory of Gaussian integers.
Prove the parallel chain of theorems for Gaussian integers: Division algorithm, Eu-
clidean Algorithm for finding gcd(m,n), Solutions of Linear Diophantine equations,
Euclid’s lemma on primes, Fundamental Theorem of Arithmetic.
Prove Wilson’s theorem.
Prove an integer prime p ≡ 1(mod 4) is not a prime in Gaussian integers.
Prove Fermat’s two squares theorem p = a2 + b2 if p ≡ 1(mod 4).
Prove a, b are unique for any prime p ≡ 1(mod 4).
Develop an algorithm for finding a,b and apply it to an example.

13.1 Gaussian Integers

Definition 41. Gaussian integers
The set of Gaussian integers, denoted Z[i], spoken as “Z append i,” is the set,

Z[i] = {a + bi ∣ a, b ∈ Z, i =
√
−1}

Definition 42. sum and product of Gaussian integers
Let a + bi, c + di ∈ Z[i].

132
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As expected, using i2 = −1, we define their sum and product by,

(a + bi) + (c + di) = (a + c) + (b + d)i
(a + bi)(c + di) = (ac − bd) + (ad + bc)i

Definition 43. magnitude
The magnitude ∣z∣ of a Gaussian integer z is defined to be,

∣z∣ =
√
a2 + b2 ⇒ ∣z∣2 = a2 + b2

Definition 44. norm
Let z = a = bi ∈ Z[i].

We define the norm N(z) of z by,

N(z) = a2 + b2

If z is a Gaussian integer, then ∣z∣2 = N(z).
We could interpret the norm of z as its magnitude defined as the distance from the
point (a, b) in the complex number plane to the origin.

Note 18. For z = a+bi, N(z) = a2+b2 with a, b ∈ Z means N(z) ≥ 1 since the smallest
values of N(z) are given by a = ±1, b = 0 or vice versa.

Definition 45. complex conjugate
The complex conjugate of z = a + bi ∈ Z[i] is z̄ = a − bi.

13.1.1 Properties of Gaussian Integers

We continue with a set of lemmas generating the important properties of Gaussian
integers. Essentially we describe the Gaussian integers in a parallel manner to how
we described the ordinary integers.

Lemma 86.
Let r, s be Gaussian integers. Then,

N(rs) = N(r)N(s)

Proof. Let r = a + bi, s = c + di. Then,

N(rs) = N((ac − bd) + (ad + bc)i)
= (ac − bd)2 + (ad + bc)2

= a2c2 −����2abcd + b2d2 + a2d2 + b2c2 +����2abcd

= (a2 + b2)(c2 + d2)
= N(r)N(s).
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Lemma 87.
Let r = a + bi, s = c + di. Then,

rs = r̄s̄

Proof.
rs = (ac − bd) + (ad + bc)i⇒ rs = (ac − bd) − (ad + bc)i

Whereas,
r̄s̄ = (a − bi)(c − di) = (ac − bd) − (ad + bc)i = rs

Lemma 88.
Let z ∈ Z[i]. Then,

N(z) = zz̄

Proof. Let z = a + bi. Then,

zz̄ = (a + bi)(a − bi) = a2 − b2i2 = a2 + b2 = N(z)

Definition 46. division of Gaussian integers
Let a, d ∈ Z[i]. We say d divides a, written d∣a, if there exists a q ∈ Z[i] such that
a = qd.

Example 73. 3 − i ∣ 10 since 10 = (3 − i)(3 + i).

Lemma 89. Linear Combination Lemma
Let d,m,n, x, y ∈ Z[i]. If d∣x, d∣y then d∣mx + ny.

Proof.
d∣x⇒ x = dd1 for some d1 ∈ Z[i].
d∣y⇒ y = dd2 for some d2 ∈ Z[i].
Then, mx + ny =mdd1 + ndd2 = d(md1 + nd2) ⇒ d ∣ mx + ny.

In the ordinary integers there are only two numbers that have multiplicative in-
verses1 that are integers, namely ±1. Each is its own multiplicative inverse since
1 × 1 = 1 and (−1) × (−1) = 1. Note the magnitude of both 1 and −1 is 1. In the
Gaussian integers there will turn out to be four units.

Definition 47. unit
Gaussian integers that have multiplicative inverses in the Gaussian integers are called
units. That is, u ∈ Z[i] is a unit if there exists a z ∈ Z[i] such that u × z = 1.

1a has multiplicative inverse b if ab = 1.
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Lemma 90.
The only units in Z[i] are ±1,±i and if u is a unit then N(u) = 1.

Proof. Note N(1) = N(−1) = (±1)2 + 02 = 1 and N(i) = N(−i) = 02 + (±1)2 = 1.
First,
1 is a unit since it has the multiplicative inverse z = 1 making 1 ⋅ z = 1
−1 is a unit since it has the multiplicative inverse z = −1 making −1 ⋅ z = 1
i is a unit since it has the multiplicative inverse z = −i making i ⋅ z = 1
−i is a unit since it has the multiplicative inverse z = i making −i ⋅ z = 1

Second, suppose there is another unit u ∈ Z(i).
Let z be such that u ⋅ z = 1.
Then, N(uz) = N(1) = 1⇒ N(z)N(u) = 1⇒ N(u)∣1.
But N(a + bi) = a2 + b2 so apart from a + bi = 0 + 0i we must have N(a + bi) ≥ 1.
Thus if N(u)∣1 we must have N(u) = 1.
So if u = a + bi then N(u) = a2 + b2 = 1 which is only possible if a = ±1, b = 0 or
a = 0, b = ±1.
Accordingly the only units in Z[i] are ±1,±i each with a norm of 1.

Third, suppose u is a unit. Then there is a v such that uv = 1.
Then N(uv) = N(1) = 1⇒ N(u)N(v) = 1⇒ N(u) = 1 since N(z) ≥ 1 for all z ∈ Z[i]
as discussed in Note 4 on page 63.

In Z we could define a prime p as a positive integer that is not a positive unit
(not 1) and is such that if p = ab then either a = 1 or b = 1. We do the same in the
Gaussian integers, except here there are 4 units.

Definition 48. prime
Let p ∈ Z[i]. We say p is prime2 if for all a, b ∈ Z, p = ab implies either a is a unit or
b is a unit.

Example 74.

(a) 5 is not prime in Z[i] since 5 = (1 + 2i)(1 − 2i)..

(b) 1 + 3i is not prime in Z[i] since 1 + 3i = (1 − i)(−1 + 2i).

(c) 5 + 4i is prime in Z[i] as shown by this argument.
First, N(5 + 4i) = 42 + 52 = 41.
Suppose 5 + 4i = ab, a, b ∈ Z[i].
Then, N(5 + 4i) = N(ab) = N(a)N(b) = 41 which is a prime number in Z.
Then either N(a) = 1 or N(b) = 1, so one of a, b is a unit and by Definition 48,
5 + 4i is prime. ◇

2While we say 5 is a prime in Z we say 5 + 4i is prime in Z[i] (as we show in the next example),
omitting the “a”.
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The proof that 5 + 4i is prime in Z[i] relied upon that fact that 41 is a prime in Z.
This suggests a general lemma.

Lemma 91.
Let z ∈ Z[i]. If N(z) is a prime in the ordinary integers Z then z is prime in Z[i].

Proof. Let z = a + bi.
Let N(z) = a2 + b2 = p say where p is a prime in Z.
Suppose z = cd, c, d ∈ Z[i].
Then N(z) = N(c)N(d) = p implies either N(c) = 1 or N(d) = 1.
So one of c, d is a unit making z prime in Z[i].

In the ordinary integers, two numbers a, b are relatively prime if gcd(a, b) = 1, that
is, they have no common divisors greater than 1.
In the Gaussian integers Z[i] the unit 1 in Z is replaced by any of the four units
±1,±i in Z[i].

Definition 49. relatively prime
Let a, b ∈ Z[i]. We say a, b are relatively prime in Z[i] if the only d ∈ Z[i] such that
d∣a and d∣b is a unit.

In Chapter 5, we proved a chain of theorems about integers, namely,

Division → Linear → Euclid’s → Fundamental → Fundamental
Theorem Diophantine Lemma Properties Theorem

Equations of of
ax + by = 1 Primes Arithmetic

↑
Euclidean
Algorithm

We will prove a similar chain of theorems for the Gaussian Integers. We start
with two lemmas about distances, one for rationals and the integers, a parallel one
for complex numbers and Gaussian integers.

Obviously, on the real line, every real number is within
1

2
of an ordinary integer.

Gaussian integers, however, lie on the complex plane, so how far apart can they be?
We expect the Pythagorean theorem to appear when we calculate distances.

Lemma 92.
Let x ∈ Q. Then there is an n ∈ Z such that,

∣x − n∣ ≤ 1

2

Proof.
We use Corollary 14 page 40 of the Division Algorithm of the ordinary integers in the
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form,

“If a, b ∈ N, there exist integers n, r such that a = nb + r, ∣r∣ ≤ b
2
.”

In particular, if we divide a by b we can always have a remainder ∣r∣ ≤ b
2
.

Let x = a
b
, a, b ∈ Z, b ≠ 0. Then,

x = a
b
= nb + r

b
= n + r

b
, ∣r∣ ≤ b

2

⇒ x − n = r
b
, ∣r∣ ≤ b

2

⇒ ∣x − n∣ = ∣r
b
∣ ≤ 1

2

Lemma 93.

Every complex number is within
1√
2
=

√
2

2
of a Gaussian integer, that is, for all z ∈ C

there exists a q ∈ Z[i] such that ∣z − q∣ ≤
√

2

2
.

Proof. Let z = a
b

where a = s + ti, b = u + vi ∈ Z[i], b ≠ 0. Then,

z = a
b

= s + ti
u + vi ⋅

u − vi
u − vi

= su + tv
u2 + v2

+ itu − sv
u2 + v2

= x + iy, x, y ∈ Q, say.

By Lemma 92, there exist integers m,n such that,

∣x − n∣ ≤ 1

2
and ∣y −m∣ ≤ 1

2

⇒ (x − n)2 ≤ 1

4
and (y −m)2 ≤ 1

4

Consider, using z = x + iy,

z − (n +mi) = (x − n) + i(y −m)

giving,

∣z − (n +mi)∣2 = (x − n)2 + (y −m)2 ≤ 1

4
+ 1

4
= 1

2

So there exists a q such that ∣z − q∣ ≤ 1√
2

namely q = n +mi.
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Theorem 94. Division Algorithm of Gaussian Integers
Let a, b ∈ Z[i], b ≠ 0. Then there exist q, r ∈ Z[i] such that,

a = qb + r,N(r) < N(b).

Proof.
Let a, b ∈ Z[i], b ≠ 0.

Let z = a
b
⇒ a = zb.

Let r = a − qb⇒ a = qb + r where q is chosen so that ∣z − q∣ ≤
√

2

2
. Then,

∣r∣ = ∣a − qb∣ = ∣zb − qb∣ = ∣(z − q)b∣ = ∣(z − q)∣∣b∣ ≤
√

2

2
∣b∣ < ∣b∣

We conclude since3 N(r) = ∣r∣2,N(b) = ∣b∣2 that N(r) < N(b).

Example 75.
Let a = 27 − 23i and b = 8 + i. We want to write the equation,

a = bq + r,N(r) < N(b).

for a, b, q, r ∈ Z[i].
We divide a by b in the usual manner, using the complex conjugate of b to make the
denominator an integer, thus,

a

b
= ab̄
bb̄

= (27 − 23i)(8 − i)
(8 + i)(8 − i) = 193

65
− 211i

65

It is generally the case, as we find here, that the answer
193

65
− 211i

65
∉ Z[i] since

Z[i] = {a + bi ∣ a, b ∈ Z}.
We proceed as follows keeping in mind that we need N(r) < N(b) = 65.

We choose the closest integers to
195

65
≈ 2.97 and

−211

65
≈ −3.25 namely 3,−3 and write

a = bq + r as,
27 − 23i = (8 + i)(3 − 3i) + r

Since (8 + i)(3 − 3i) = 27 − 21i we have r = 27 − 23i − 27 + 21i = −2i and we note
N(r) = N(−2i) = 4 and N(b) = N(8+ i) = 65 so that N(r) < N(b). We conclude that,

27 − 23i = (8 + i)(3 − 3i) − 2i

There are of course an infinite number of values of c, d, e, f satisfying

27 − 23i = (8 + i)(c + di) + (e + fi)

but this choice always has N(r) < N(b). ◇
3If z = a + bi then N(z) = a2 + b2 but also ∣z∣ =

√
a2 + b2 so N(z) = ∣z∣2
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13.2 Major Theorems for Gaussian Integers

13.2.1 Euclidean Algorithm in Gaussian Integers

Theorem 95.
Suppose we want to find gcd(a, b) for two Gaussian integers a, b with b ≠ 0. We
apply the Division Theorem to divide a by b. If the remainder is not 0, then we
continue dividing the previous step’s divisor by its remainder. When a remainder of
0 is obtained, STOP. The gcd(a, b) is the last non-zero remainder. The algorithm
results in the following system of equations,

a = q1b + r1 N(r1) < N(b) (13.2.1)

b = q2r1 + r2 N(r2) < N(r1) (13.2.2)

r1 = q3r2 + r3 N(r3) < N(r2) (13.2.3)

. . . (13.2.4)

rn−3 = qn−1rn−2 + rn−1 N(rn−1) < N(n) (13.2.5)

rn−2 = qnrn−1 + rn N(rn) < N(rn−1) (13.2.6)

rn−1 = qn+1rn + 0 (13.2.7)

The gcd(a, b) is rn, the last non-zero remainder.

Proof. By (13.2.7), rn∣rn−1, say rn−1 = k1rn.
Substituting into (13.2.6), we have rn−2 = qnk1rn + rn so rn∣rn−2, say rn−2 = k2rn.
Substituting into (13.2.5), we have rn−3 = qn−1k2rn + k1rn so rn∣rn−3.
Continuing in this way back up the system of equations we find rn∣b and finally, in
(13.2.1) that rn∣a.
Hence rn is a common dividsor of a and b.
To prove it is the greatest common divisor we suppose some other common divisor d
divides both a and b, say a = j1d, b = j2d for some j1, j2 ∈ Z[i].
Substituting into (13.2.1) we have

j1d = q1j2d + r1 ⇒ r1 = j1d + q1j2d = d(j1 + q1j2)

so d∣r1, say r1 = j3d. Substituting into (13.2.2),

j2d = q2j3d + r2 ⇒ d∣r2.

Back down the system of equations we proceed in this way to reach via (13.2.7) that
d∣rn. Hence rn is the gratest common divisor of a, b.

Example 76. Let’s find gcd(a, b) where a = 11 + 3i, b = 1 + 8i. We have, using the
division process illustrated in Example 75 above,

11 + 3i = (1 + 8i)(1 − i) + 2 − 4i

1 + 8i = (2 − 4i)(−1 + i) − 1 + 2i

2 − 4i = (−1 + 2i)(−2) + 0



140 Chapter 13. Fermat’s Two Squares Theorem

Hence gcd(11 + 3i,1 + 8i) = −1 + 2i. So these two Gaussian integers are not relatively
prime.
Let’s repeat the process for 32 + 9i and 4 + 11i.

32 + 9i = (4 + 11i)(2 − 2i) + 2 − 5i

4 + 11i = (2 − 5i)(−2 + i) + 3 − i
2 − 5i = (3 − i)(1 − i) − i
3 − i = (−i)(1 + 3i) + 0

The last non-zero remainder is −i which is a unit, so gcd(11 + 3i,4 + 11i) is a unit
and they are relatively prime. ◇

Theorem 96. Gaussian Linear Diophantine Equation
Let a, b ∈ Z[i]. The equation ax + by = 1 has a solution x, y ∈ Z[i] if and only if a, b
are relatively prime, that is gcd(a, b) = ±1 or ± i.

Proof. Suppose there exist x, y ∈ Z[i] such that ax + by = 1. We need to show a, b are
relatively prime.
Let d ∈ Z[i] be a common factor of a and b. Since d∣a and d∣b,, by Lemma 89 on page
134, d∣ax + by. So d∣1 and hence d is a unit. Therefore, by definition, a and b are
relatively prime.

*****

Conversely, suppose a, b are relatively prime.
We need to show there exist an x, y ∈ Z[i] such that ax + by = 1.
Consider the set S of all linear combinations of a and b,

S = {ax + by ∣ x, y ∈ Z[i]}

It follows from the Well-Ordering Principle4 that there exists a nonzero element d ∈ S
of smallest norm, say d = ad1 + bd2.
By the Division Algorithm, Theorem 94, page 139, there exist Gaussian integers q, r
such that,

a = qd + r,N(r) < N(d)
Since,

r = a − qd = a − q(ad1 + bd2) = a(1 − qd1) + b(−qd2)
then r is a linear combination of a and b so r ∈ S.
But d has the smallest norm of nonzero elements of S, so since N(r) < N(d) then we
must have r = 0.
Thus,

a = qd + r = qd⇒ d∣a.
4The Well-Ordering Principle applied to Gaussian integers states any finite set of Gaussian inte-

gers has a “smallest” element, defined as an element with least norm.
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By a similar argument d∣b.
Since a and b are relatively prime then d is a unit.
Since d ∈ S there exist Gaussian integers x, y such that ax + by = d.
Since d is a unit, it has a multiplicative inverse d−1 ∈ Z[i]. Multiplication by d−1 yields,

axd−1 + byd−1 = dd−1 = 1

Hence (xd−1, yd−1) is a solution of ax + by = 1.

Lemma 97. Gaussian Euclid’s Lemma
Let d,m,n ∈ Z[i] be such that d,m are relatively prime so d��∣m. If d∣mn then d∣n.

Proof. If gcd(d,n) is a unit then by Theorem 96 on page 140,there exists an x, y such
that

dx + ny = 1⇒mdx +mny =m.
Now d∣mn means mn = dk for some k ∈ Z[i]. Hence substituting,

mdx + kdy =m⇒m = d(mx + ky) ⇒ d∣m.

Theorem 98. Fundamental Property of Gaussian Primes
Let p be prime in the Gaussian integers and let a, b ∈ Z[i]. If p∣ab then p∣a or p∣b.

Proof. We use a proof by contradiction.
Assume p��∣a and p��∣b.
Now, by definition, we know a, p are relatively prime in Z[i] if for all d ∈ Z[i]

d∣a and d∣p⇒ d is a unit.

Since p is prime, only units divide it and since p��∣a it follows that p, a are relatively
prime.
Thus p∣ab and p��∣a so by the Lemma 97, page 141, p∣b.
This contradicts the assumption, and we conclude p∣a or p∣b.

Theorem 99. Fundamental Theorem of Gaussian Arithmetic
Every non-zero Gaussian integer can be written as a unique (up to order and units)
product of Gaussian primes.

Proof. Suppose a factorization into a product of primes does not always exist. Take x
to be a Gaussian integer with smallest norm N(x) which is not a product of primes.
Then x is not a prime so let x = ab where a, b must each have a smaller norm than x
given N(x) = N(a)N(b).
So, by the assumption on x both a, b must be a product of primes. But then x = ab
must also be a product of primes so we have a contradiction.

*****
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To prove uniqueness, suppose x is the Gaussian integer with smallest norm that has
two different expressions as a product of primes thus,

x = p1p2⋯pn = q1q2⋯qm

Using Theorem 98 above either p1∣q1 or p1∣q2q3⋯qm. If p1 ��∣q1 then either p1∣q2 or
p1∣q3⋯qm. We must eventually have p1∣qk for some k.
Because p1 is a prime then qk is p1 times a unit. Then we can cancel them out and
we get a new x with two different expressions and a smaller norm, which contradicts
our choice of the original x.

13.3 Fermat’s Two Squares Theorem

We are ready to tackle our major theorem through a series of theorems.

Theorem 100.
Let n ∈ N. If n ≡ 3(mod 4) there do NOT exist a, b ∈ Z such that n = a2 + b2.

Proof. Either a ≡ 0(mod 4) or a ≡ 1(mod 4) or a ≡ 2(mod 4) or a ≡ 3(mod 4).
Then a2 ≡ 0(mod 4) or a2 ≡ 1(mod 4) and so is b2.
Then a2 + b2 ≡ 0(mod 4) or a2 + b2 ≡ 1(mod 4) or a2 + b2 ≡ 2(mod 4).
Hence there do NOT exist a, b ∈ Z such that a2 + b2 = n if n ≡ 3(mod 4).

We do not need the following corollary. But it is a good exercise!

Corollary 101.
Let p ∈ N. If p ≡ 3(mod 4) then p is prime as a Gaussian integer.

Proof. Exercise!

We now prove the other possible primes p ≡ 1(mod 4) cannot be prime as Gaus-
sian integers. First we need a theorem and a lemma. We will later prove the famous
theorem due to Wilson in Chapter 22. Here we are content to simply understand it.

Theorem 102. (Wilson’s Theorem)
Let p ∈ N. Then p is prime if and only if,

(p − 1)! ≡ 1(mod p).

Discussion

For the prime p = 7 consider the numbers 1,2,3,4,5, and 6. We will operate on
them using multiplication mod 7, that is when we multiply any two of them we apply
mod 7 to the result, taking the smallest non-negative solution. For example we don’t
write 4 × 5 = 20 but 4 × 5(mod 7) ≡ 6.
The numbers 1,2,3,4,5,6 fall into two groups.
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The numbers 1 and 6 when multiplied by themselves mod 7 both become 1, that is
1 × 1 ≡ 1(mod 7) and 6 × 6 = 36 ≡ 1(mod 7).
The other numbers 2,3,4,5 can be grouped so that their multiple is also 1(mod 7),
specifically,

2 × 4(mod 7) ≡ 1 and 3 × 5(mod 7) ≡ 1.

We say each of the numbers 1,2,3,4,5,6 has a unique inverse mod 7.
If you do this analysis for any odd prime (try it with 17), you find the same thing
happens. The first and last numbers are their own inverses. Each of the others pairs
up with a different one so that their multiple mod 17 is 1.
To prove Wilson’s Theorem we need to prove this is true for all odd primes p, that
is 1, p− 1 are their own inverses and 2,3, . . . , p− 2 have unique inverses distinct from
themselves.
Given that is true, then (p−2)! = (p−2)(p−3)⋯2 can be rearranged so that the pairs
of inverses a, b are together. So since each pair5 satisfies ab(mod p) ≡ 1, we have,

(p − 2)! ≡ 1(mod p)
⇒ (p − 1)(p − 2)! ≡ (p − 1)(mod p)

⇒ (p − 1)! ≡ −1(mod p)

End of Discussion.

Lemma 103.
Let a prime p be such that p ≡ 1(mod 4). Then there exists an x ∈ Z such that,

x2 ≡ −1(mod p).

Proof.

(p − 1)! = 1 × 2 × 3 ×⋯ × (p − 1)

= [1 × 2 × 3 ×⋯ × (p − 1)
2

] × [(p + 1)
2

×⋯ × (p − 2) × (p − 1)]

The first bracket of terms are simply,

1 ≡ 1(mod p)
2 ≡ 2(mod p)
. . .

p − 1

2
≡ p − 1

2
(mod p)

5If ab ≡ 1(mod 7) and cd ≡ 1(mod 7) then their product abcd ≡ 1(mod 7). This is so since
ab = 1 + 7k, cd = 1 + 7j ⇒ abcd = 1 + 7l, l = k + j + 7kj.
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while the second bracket of terms modulo p repeat the first terms but with negative
values, thus,

p − 1 ≡ −1(mod p)
p − 2 ≡ −2(mod p)

. . .

p + 1

2
≡ −p − 1

2
(mod p)

So multiplying all the terms together we conclude,

(p − 1)! ≡ (−1)
p − 1

2 [(p − 1

2
)!]

2

(mod p)

Assume p ≡ 1(mod 4) ⇒ p = 1 + 4k, k ∈ Z. Let x = (p − 1

2
)!

Note (−1)
p − 1

2 = (−1)
4k + 1 − 1

2 = 1. Then, by Wilson’s Theorem 102,

(p − 1)! ≡ [(p − 1

2
)!]

2

(mod p)

⇒ [(p − 1

2
)!]

2

≡ −1(mod p)

So, if p ≡ 1(mod 4) there exists an x ∈ Z such that x2 ≡ −1(mod p),
namely x = (p − 1

2
)!

Example 77. Let p = 5. Then x = (5 − 1

2
)! = 2 so that x2 = 4 ≡ −1(mod 5).

Theorem 104.
If a prime p satisfies p ≡ 1(mod 4) then p is not prime as a Gaussian integer.

Proof. Since by Lemma 103, p ≡ 1(mod 4) implies there exists an x ∈ Z such that
x2 ≡ −1(mod p), we have,

x2 ≡ −1(mod 4) ⇒ x2 = −1 + kp, k ∈ Z
⇒ x2 + 1 = kp
⇒ (x − i)(x + i) = kp
⇒ p∣(x − i)(x + i) in Z[i].

Suppose p is prime as a Gaussian integer. By Theorem 99, page 141, p∣x− i or p∣x+ i
Thus there exists an m + ni such that

p(m + ni) = x + i or p(m + ni) = x − i.
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Equating the imaginary parts,

pn = 1 or pn = −1

This implies p is a unit and that contradicts the hypothesis that p is prime in Z[i].
So p is not prime as a Gaussian integer.

Theorem 105. (Fermat’s Two Squares Theorem)
Let p be an odd prime number. Then there exist a, b ∈ N such that p = a2 + b2 if and
only if p ≡ 1(mod 4).

Proof. Let p be an odd prime number.
Suppose there exist a, b ∈ N such that p = a2 + b2.
Then, by Theorem 100, page 142 above p�≡ 3(mod 4) so we must have p ≡ 1(mod 4).

*****

Conversely, assume p ≡ 1(mod 4).
By Theorem 104 above, p is not prime in Z[i].
Thus there exist y, z ∈ Z[i] such that p = yz with both N(y),N(z) > 1.
Now N(p) = N(y)N(z) so p2 = N(y)N(z) which is only possible if N(y) = p and
N(z) = p.
But if N(y) = p then since y = a + bi for some a, b, making N(y) = a2 + b2, we have
p = a2 + b2.

Theorem 106. Uniqueness of Fermat’s Two Squares Theorem
Let p be an odd prime such that p ≡ 1(mod 4). Then p can be expressed as a sum of
two squares in a unique way, up to order (a2 + b2 = b2 + a2).

Proof. Let p be an odd prime such that p ≡ 1(mod 4).
Suppose there exist a, b, c, d ∈ Z such that,

p = a2 + b2 and p = c2 + d2.

We want to show a2 = c2 and b2 = d2 or a2 = d2 and b2 = c2.
Now we can factor p in two different ways as,

p = (a + bi)(a − bi) and p = (c + di)(c − di)

Since the norm,

N(a + bi) = a2 + b2 = p

then by Lemma 91 on page 136, a+bi must be prime as a Gaussian integer. Similarly,
the numbers a − bi, c + di, c − di are all prime as Gaussian integers. Thus,

p = (a + bi)(a − bi) and p = (c + di)(c − di)
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are two ways to factor p as a product of prime Gaussian integers.
By the Fundamental Theorem of Gaussian Arithmetic, Theorem 98, page 141, these
two factorizations must be the same up to order and units. In particular,

a + bi = c + di or a + bi = u(c − di)

for some unit u.
The possibilities are,

a + bi = ±1(c + di) ⇒ a = ±c, b = ±d⇒ a2 = c2, b2 = d2 or

a + bi = ±i(c − di) ⇒ a = ±d, b = ±c⇒ a2 = d2, b2 = c2

where we equated real and imaginary parts. So a2 + b2 is unique for each 4k + 1
prime.

13.4 Finding a, b for a given p.

We will discuss group theory in Chapter 24. For the present we will simply say a
group is a set of numbers together with an operation such as addition or multiplication
subject to certain conditions or axioms.

13.4.1 Two Finite Groups

Definition 50. The additive group Zp
The group Zp is formed from the integers Z by applying mod p to every integer n ∈ Z.
Accordingly,

Zp = {0,1,2, . . . , p − 1}
since when any n is divided by p the least positive remainders are 0,1,. . . ,p-1.
Associated with the group Zp is the operation of addition modulo p so that if a, b ∈ Zp
then we operate to get,

a + b ≡ c(mod p)
where c ∈ Zp.

Example 78. Z7 = {0,1,2,3,4,5,6} together with the operation of addition mod 7.
So we have for example,

4 + 5 ≡ 2(mod 7), 2 ∈ Z7. ◇

Definition 51. The multiplicative group Z∗
p

We define the set Z∗
p by

Z∗
p = {1,2,3, . . . , p − 1}

or Zp−{0}. Associated with this group is the operation “multiplication mod p” by which
we mean that whenever we multiply any two positive integers we always apply mod p



13.4. Finding a, b for a given p. 147

to the result. The significance of the “*” is to indicate integers divisible by p have
been excluded when Z∗

p is formed from Z. The removal of the element 0, originating
from any integer divisible by p, is due to the fact 0 does not have a multiplicative
inverse and we need our group Z∗

p to have inverses as we shall see.

Example 79. Z∗
5 = {1,2,3,4} and 3 × 4 ≡ 2(mod 5). If we are working within Z∗

5 we
simply say 3 × 4 = 2. ◇

13.4.2 Primitive roots or generators

Definition 52. primitive root
Some of the elements of Z∗

p are called primitive roots or generators, meaning that if
we repeatedly multiply them by themselves, applying mod p each time, then we obtain
all the other elements of the group.

Example 80. Z∗
5 = {1,2,3,4} is generated by 3 since under repeated multiplication

we have,

3 ≡ 3(mod 5)
3 × 3 ≡ 9(mod 5) ≡ 4(mod 5)

3 × 3 × 3 ≡ 27(mod 5) ≡ 2(mod 5)
3 × 3 × 3 × 3 ≡ 81(mod 5) ≡ 1(mod 5)

3 × 3 × 3 × 3 × 3 ≡ 243(mod 5) ≡ 3(mod 5)

Thereafter we just get repetition of 1,2,3,4 such as,

318 = (34)432 ≡ 14 × 9(mod 5) ≡ 4(mod 5)

where we used the result above of 81 = 34 ≡ 1(mod 5).

Only some of the elements are primitive roots. For example, 2 is not a generator
of Z∗

5 since

2 ≡ 2(mod 5)
2 × 2 ≡ 4(mod 5)

2 × 2 × 2 ≡ 8(mod 5) ≡ 3(mod 5)
2 × 2 × 2 × 2 ≡ 16(mod 5) ≡ 1(mod 5)

2 × 2 × 2 × 2 × 2 ≡ 32(mod 5) ≡ 2(mod 5)

so the element 5 is not generated. ◇
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Definition 53. order of a group element.
The order of an element a of the group Z∗

p is the smallest power n such that
an ≡ 1(mod p). If the smallest power is all the way up to p−1 we say a has maximum
order.

Example 81. In Z∗
5 since

41 = 4(mod 5); 42 ≡ 1(mod 5)

we conclude the order of 4 is 2. But as we saw in the previous example of the powers
of 3 and 2 only 34 ≡ 1(mod 5), so 3 has order 4 which is p − 1 = 5 − 1 = 4 so 3 has
maximum order. ◇

Note 19.
Clearly any primitive root or generator must have maximum order to be able to produce
p− 1 elements, just as 3 did in Z∗

5. That is, if g is a generator or primitive root then,

gp−1 ≡ 1(mod p) but gj�≡ 1(mod p), if j ≠ p − 1

Note this means,

g
p−1
2 ≡ −1(mod p)

since we cannot also have g
p−1
2 ≡ 1(mod p)

Example 82. In Z∗
5 we have 3

5−1
2 = 32 ≡ 4(mod 5) ≡ −1(mod 5), so 3 is a generator

of Z∗
5. ◇

13.4.3 Finding a, b

With that knowledge let’s now proceed to find a, b for p = a2 + b2, p ≡ 1(mod p). In
the proof of the Two Squares Theorem 105, page 145, we had p = yz where y = a+ bi.
So to find a, b we simply need to factor p in Z[i].
By Lemma 103 on page 143, we know there is an x satisfying x2 ≡ −1(mod p). Then,

x2 + 1 = kp⇒ (x + i)(x − i) = kp = k(a2 + b2) = k(a + bi)(a − bi)

Now in the proof of the Uniqueness Theorem 106, page 145, we showed a + bi, a − bi
are primes in Z[i].
Then (x + i)(x − i) = k(a + bi)(a − bi) means one of a ± bi divides x + i. They cannot
both divide x + i since we are then left with k = x − i but k is an integer.
Then that value of a ± bi is the gcd(x + i, p) since both of a ± bi divide p. So to find
a, b we need to find gcd(x + i, p). First we must find x.

Suppose d
p−1
2 ≡ −1(mod p). Let x = d p−14 ⇒ x2 = d p−12 so x satisfies x2 ≡ −1(mod p).

Now d
p−1
2 ≡ −1(mod p) means dp−1 ≡ 1(mod p) so d has order p − 1 in Z∗

p but, more

importantly, d
p−1
2 ≡ −1(mod p) means d is a primitive root or has maximum possible
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order in Z∗
p. So we actually need to find a primitive root d in Z∗

p and set x = d p−14 .

We can do6 that by letting d = 2,3,5,7,11, . . . or successive primes, until we find

a value of d such that d
p−1
2 ≡ −1(mod p).

Once we have found a primitive root we can compute x and then gcd(x + i, p), by
using the Gaussian Euclidean Algorithm, Theorem 95, page 139.

Example 83. Consider the prime number 193 ≡ 1(mod 4) where
p − 1

2
= 96.

We look in 2,3,5,7,11, . . . for a value of d such that d96 ≡ −1(mod p).

296(mod 193) ≡ 1

396(mod 193) ≡ 1

596(mod 193) ≡ 192 or − 1

So 5 is a primitive root of Z∗
193.

Then x is given by

5
192
4 (mod 193) ≡ 112.

We now find gcd(112+ i,193) using the construct from the Gaussian Euclidean Algo-
rithm,

a = q1b + r1 N(r1) < N(b) (13.4.1)

b = q2r1 + r2 N(r2) < N(r1) (13.4.2)

r1 = q3r2 + r3 N(r3) < N(r2) (13.4.3)

. . . (13.4.4)

rn−3 = qn−1rn−2 + rn−1 N(rn−1) < N(n) (13.4.5)

rn−2 = qnrn−1 + rn N(rn) < N(rn−1) (13.4.6)

rn−1 = qn+1rn + 0 (13.4.7)

With a = 193 and b = 112 + i we have,

193 = (112 + i)q1 + r1

So we divide7 to find,
193

112 + i =
112

65
− 1

65
i

6There is a very powerful computational program called “gp Pari” available free on the internet.
It takes a few minutes to download but is well worth the trouble for a number theorist. Once you
have downloaded it then run it to get the gp prompt. Type, for example, Mod(2 uparrow 96,193),
to find 296(mod 193). Of course it has an accompanying user manual!

7To find
193

112 + i in gp Pari, type (193+0∗I)/(112+1∗I) to get the immediate response
112

65
− 1

65
∗I.
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For the right side we take the nearest complex number with whole integers, namely
2 − 0i = 2, put q1 = 2 and construct,

193 = (112 + i) × 2 − 31 − 2i

which is (13.4.1) above. Similarly, to find 112 + i = q2(−31 − 2i) + r2 we calculate,

112 + i
−31 − 2i

= −18

5
+ 1

5
i

and choose q2 = −4 + 0i so we construct (13.4.2) above as,

112 + i = (−31 − 2i)(−4) − 12 − 7i

Finally
−31 − 2i

−12 − 7i
= 2 − i with a remainder of 0, so for (13.4.7) we find,

−31 − 2i = (−12 − 7i)(2 − i) + 0

so the gcd(112 + i,193) = −12 − 7i giving by gcd(x + i, p) = a + bi, the result,

193 = 122 + 72.

Finally we note we have also found the factors of 193 in k(i) since,

(12 + 7i)(12 − 7i) = 193



Part V

Shopping Excursion III
Exponential and Trigonometric

Functions
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In Chapter 14 we introduce the natural exponential function and two of the
trigonometric functions, sine and cosine. We find their derivatives.

In Chapter 15 we are introduced to a major breakthrough theorem in mathematics,
the proof that many functions can be expressed as an infinite series. We find those
series for our new functions.



Chapter 14

Calculus of Exponential and
Trigonometric Functions

Ingredients
Definition of exponential functions in general.
Definition of natural exponential function in particular.
Definitions of angles, degrees, radians, unit circle.
Definitions of the trigonometric functions sine and cosine.
Directions
Find the derivative of ex.
Prove the addition identities for sine and cosine functions.
Find the derivatives of the sine and cosine functions.

14.1 The Natural Exponential Function

Definition 54. exponential function
An exponential function is of the form f(x) = bx, b > 1, x ∈ R.

Example 84. Some exponential functions are f(x) = 2x, f(x) = 3−x, f(x) = πx.

14.1.1 Graphs of exponential functions

The graphs of all exponential functions bx with x > 0 pass through (0,1) and they all
have the same basic shape, climbing exponentially for x > 0 and having the negative
x−axis as an asymptote. See Figure 16.
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x

y

3x

1

2x

Figure 16

14.1.2 Natural Exponential Function

Definition 55. natural exponential function
The natural exponential function f(x) = ex is the exponential function whose gradient
at (0,1) is exactly 1.

Note 20. The slopes of the secant lines of 2x,3x between x = 0 and x = 0.1 are
approximately the same as the slope of the tangent lines to these two functions at

(0,1). (See Figure 17 below for an example) By using m = y2 − y1

x2 − x1

and a calculator,

these two tangent line slopes are approximately 0.7 and 1.1 respectively. Accordingly,
since ex has slope 1, we estimate e is between 2 and 3. It is actually 2.71828 . . . as we
shall prove in a later chapter.

14.1.3 Derivative of the Natural Exponential Function

Theorem 107.
The derivative of f(x) = ex is f ′(x) = ex.

Proof. Consider a point (h, eh) near the origin on the graph of f(x) = ex. See Figure
17.
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x

y

ex

h

(0,1)

(h, eh) m = 1

Figure 17

From the diagram, for the tangent at (0,1) we have,

mtan = lim
h→0

msec = lim
h→0

eh − 1

h − 0

By our definition of f(x) = ex, mtan = 1 so that,

lim
h→0

eh − 1

h
= 1

Then,

d

dx
(ex) = lim

h→0

f(x + h) − f(x)
h

= lim
h→0

ex+h − ex
h

= ex (lim
h→0

eh − 1

h
)

= ex

Note 21.
ex may be defined as the unique function whose derivative is itself.

14.2 The Trigonometric Functions

14.2.1 Angle

The standard way to draw an angle on the Cartesian plane is to draw two rays or
half-lines out from the origin.
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(0,0)

terminal side

initial side

θ
x

(0,0)

terminal side

initial side

−θ
x

Figure 18A: Positive Angles Figure 18B: Negative Angles

One of the rays is the positive x−axis. We call this the initial side of the angle. The
other is called the terminal side. The terminal side starts also on the positive x−axis
and rotates counterclockwise to form positive angles (Figure 18A) and clockwise to
form negative angles (Figure 18B).

14.2.2 Degree

Definition 56. degree
If the terminal side rotates counterclockwise to finish on the positive y−axis we mea-
sure the angle as 90 degrees or 900. See the first diagram below. All other angles are
some multiple, positive or negative, of 900.

Example 85. This leads to the following examples of angles measured in degrees.

(0,0)

y

900

x

y

1800

x

y

2700

x

y

3600

x

y

−900
x

y

−450
x

Figure 19

Angles can be formed by more than one rotation. Hence we have:
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405○

−450○

Figure 20

14.2.3 Radian

If we draw a circle of radius r centered at the origin, its circumference is 2πr. We use
the symbol s for the length of an arc of the circle.

Definition 57. radian
An angle of measure one radian is the angle subtended1 at the origin of a circle of
radius r by an arc of the circle of length r. See Figure 21.

r

1
x

y

s = r
2π

x

y

s = 2πr

Angle of 1 radian Angle of 2π radians

Figure 21

Algebraically, this means the arc length s, radius r and angle θ in radians are related
by,

s = rθ⇒ θ = s
r
,

1“Subtended” means formed by the rays drawn from the ends of the arc to the center
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since if s = 2r, θ = 2 radians, if s = 3r, θ = 3 radians, and so on.

If we take one complete revolution, then the arc length is simply the circumference

of the circle, that is, s = 2πr. Then θ = s
r
= 2πr

r
= 2π radians or the angle subtended

by the whole circle at the center is 2π radians. See Figure 21.

Similarly, given the area πr2 of a whole circle subtended by an angle of 2π radi-

ans at the center may be written as
1

2
r2(2π) it is easy to see the area of the sector of

a circle subtended by an angle θ at the center is given by

A = 1

2
r2θ

14.2.4 Radians and Degrees

Since the angle subtended by the whole circle at the center is also 3600 it follows that,

2π radians = 3600

⇒ 1 radian = 1800

π

⇒ 10 = π

180
radians.

The common angles are related as follows. Note, when we write an angle in radians,
we normally omit the word “radians”, that is π = π radians.

Degrees 00 300 450 600 900 1800 2700 3600

Radians 0
π

6

π

4

π

3

π

2
π

3π

2
2π

14.2.5 Trigonometric Functions

We define the trigonometric functions on a unit circle.

Definition 58. unit circle
A unit circle on the Cartesian plane is a circle of radius 1 centered at the origin (0,0).

Definition 59. sine, cosine and tangent functions
To define the trigonometric functions, we take a number line (−∞,+∞), place its 0
point on the unit circle’s (1,0) point and wrap its positive half around the unit circle
in a counter-clockwise sense and its negative half in a clockwise sense. Then every
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real number may be found somewhere on this “wrapped” unit circle.

Let θ be any real number and P (x, y) be the point on the wrapped unit circle
corresponding to an angle θ subtended at the origin by the arc AP where A = (1,0).
See Figure 22.

1

Qx

y
θ

●

● ●●
x

y

A(1,0)O(0,0)(−1,0)

(0,1)

(0,−1)

P (x, y)

Figure 22

We define the trigonometric functions sine, cosine and tangent2 by,

sin θ = y, cos θ = x, tan θ = sin θ

cos θ
= y
x
, (x ≠ 0.)

Accordingly we can label the point P (x, y) as P (cos θ, sin θ) as in Figure 23.

x

y

1

θ

P (cos θ, sin θ)

Figure 23

2We do not use the tangent function in this book.
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Theorem 108. (Pythagorean Identity)

sin2 θ + cos2 θ = 1

Proof. Apply the Pythagorean theorem to the triangle POQ in Figure 22 to obtain,

x2 + y2 = 1⇒ sin2 θ + cos2 θ = 1.

14.2.6 Important Values of the Trigonometric Functions

We note from Figure 22 that the terminal rays for θ = 0,
π

2
, π,

3π

2
,2π finish at

(0,0), (0,1), (−1,0), (0,−1) and (0,0) respectively. So we have,

θ 0
π

2
π

3π

2
2π

sin θ 0 1 0 −1 0

cos θ 1 0 −1 0 1

Note 22. We note values of sin θ and cos θ are not limited to 0 ≤ θ ≤ 2π. In particular
as we increase the angles on the unit circle in either a clockwise or anti-clockwise
sense, we find sinkπ = 0 for all k ∈ Z and coskπ = ±1 depending on whether k is even
or odd.

14.3 Right Triangle Trigonometry

A major application of trigonometry is in the solution of right-angle triangles. This
means, given some of the sides and angles, find the others. We can label any right-
angle triangle as shown in Figure 24, the labels opposite and adjacent being with
reference to the acute angle θ.

opposite
hypotenuse

adjacent
θ900
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Figure 24

We can then superimpose this triangle on the unit circle as shown in Figure 25.

1

Qx

y
θ

●

● ●

●

●
x

A

B

Opposite

Hypotenuse

Adjacent

y

O

P (x, y)

Figure 25

The triangles OPQ and OAB are similar triangles. They have the same angles
θ,900 − θ,900 and therefore their corresponding sides are in the same ratio. Then,

y

1
= opposite AB

hypotenuse OA
⇒ sin θ = opposite

hypotenuse
x

1
= adjacent OB

hypotenuse OA
⇒ cos θ = adjacent

hypotenuse
y

x
= opposite AB

adjacent OA
⇒ tan θ = opposite

adjacent

-

Example 86. Let’s find the trigonometric values of the angle θ in the triangle shown
in Figure 26.

4

3
θ900

Figure 26
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By the Pythagorean Theorem, the hypotenuse =
√

32 + 42 = 5.
We also have Adjacent = 3 and Opposite = 4. The values are,

sin θ = 4

5
, cos θ = 3

5
, tan θ = 4

3

14.4 Some Important Trigonometric Identities

Theorem 109.

sin θ = cos(π
2
− θ) (14.4.1)

cos θ = sin(π
2
− θ) (14.4.2)

Proof. From the triangle in Figure 27,

C A

B

a
c

b
θ

π
2 − θ

Figure 27

we have:

sin θ = cos(π
2
− θ) since both equal c

a

cos θ = sin(π
2
− θ) since both equal b

a

We can prove these identities for general θ ∈ R by positioning the angles θ and
π

2
− θ in the unit circle.

Theorem 110.

sin(−θ) = − sin θ (14.4.3)

cos(−θ) = cos θ (14.4.4)

Proof. Since sin θ and cos θ are the y and x coordinates respectively of the angle θ’s
terminal ray’s intersection with the unit circle it is obvious from Figure 28 that by
comparing the x and y coordinates of A and B,

sin(−θ) = − sin θ

cos(−θ) = cos θ
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x

y

A(cos θ, sin θ)

B(cos(−θ), sin(−θ))

θ
−θ

●

●

Figure 28

Theorem 111. (Addition Formulas)
If A,B are any two angles, we prove the Addition formulas,

sin(A +B) = sinA cosB + cosA sinB (14.4.5)

sin(A −B) = sinA cosB − cosA sinB (14.4.6)

cos(A +B) = cosA cosB − sinA sinB (14.4.7)

cos(A −B) = cosA cosB + sinA sinB (14.4.8)

Proof. We obtain Figure 30 from Figure 29 by repositioning the arc RS so that S is
at (1,0).

x

y

(1,0)
B

S(cosB, sinB)R(cosA, sinA)

A
A −B

●●

●●
x

y

Q(1,0)

P (cos(A −B), sin(A −B))

A −B

●

●

Figure 29 Figure 30

Clearly PQ = RS ⇒ PQ2 = RS2.
Using the distance formula, P1P 2

2 = (x2−x1)2+(y2−y1)2 and the Pythagorean Identity
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sin2 θ + cos2 θ = 1 we have,

PQ2 = RS2

⇒ [cos(A −B) − 1]2 + sin2(A −B) = [cosA − cosB]2 − [sinA − sinB]2

⇒ cos2(A −B) − 2 cos(A −B) + 1 + sin2(A −B)
= cos2A − 2 cosA cosB + cos2B + sin2A − 2 sinA sinB + sin2B

⇒ −2 cos(A −B) + �2 = −2 cosA cosB − 2 sinA sinB + �2
⇒ cos(A −B) = cosA cosB + sinA sinB

Putting B = −B and using Theorem 110, page 162, that sin(−x) = − sinx and
cos(−x) = cosx we have,

cos(A +B) = cosA cosB − sinA sinB

Using (14.4.1) and (14.4.2) we have,

sin(A +B) = cos(π
2
− (A +B))

= cos((π
2
−A) +B)

= cos(π
2
−A) cosB + sin(π

2
−A) sinB

= sinA cosB + cosA sinB

Replace B with −B to obtain the final result,

sin(A −B) = sinA cosB − cosA sinB

14.5 Derivatives of the Sine and Cosine Functions

We first prove the following limits.

Theorem 112.

(a) lim
x→0

sinx

x
= 1

(b) lim
x→0

cosx − 1

x
= 0

Proof. (a) Consider the unit circle in Figure 31.
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t

y

C(1,0)
x

B
A

1

DO

Figure 31

By definition sinx = AD, cosx = OD. By the similar triangles OAD and OBC,

BC

1
= AD
OD

= sinx

cosx

Now for the triangles OAD,OBC and the sector OAC,

Area△OAD < Area ⪦ OAC < Area△OBC

⇒ 1

2
⋅ sinx ⋅ cosx < 1

2
⋅ 12 ⋅ x < 1

2
⋅ 1 ⋅ sinx

cosx

⇒ cosx < x

sinx
< 1

cosx

Now lim
x→0

cosx = lim
x→0

1

cosx
= 1 so by the Squeeze Theorem 65, page 93, we have,

lim
x→0

x

sinx
= 1

(b) We have,

lim
x→0

1 − cosx

x
= lim
x→0

1 − cosx

x
⋅ 1 + cosx

1 + cosx

= lim
x→0

1 − cos2 x

x(1 + cosx)

= lim
x→0

sin2 x

x(1 + cosx)

= lim
x→0

sinx

x
⋅ lim
x→0

sinx

1 + cosx

= 1 ⋅ 0

1 + 1
= 0
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Theorem 113. (Derivatives of sine and cosine functions)

d

dx
(sinx) = cosx

d

dx
(cosx) = − sinx

Proof. We use the definition of the derivative and Theorems 111 and 112.

d

dx
(sinx)

= lim
h→0

sin(x + h) − sinx

h

= lim
h→0

sinx cosh + cosx sinh − sinx

h

= lim
h→0

sinx(cosh − 1)
h

+ lim
h→0

cosx sinh

h

= − sinx lim
h→0

1 − cosh

h
+ cosx lim

h→0

sinh

h
= − sinx ⋅ 0 + cosx ⋅ 1
= cosx

d

dx
(cosx)

= lim
h→0

cos(x + h) − cosx

h

= lim
h→0

cosx cosh − sinx sinh − cosx

h

= lim
h→0

cosx(cosh − 1) − sinx sinh

h

= lim
h→0

cosx
cosh − 1

h
− lim
h→0

sinx
sinh

h
= cosx ⋅ 0 − sinx ⋅ 1
= − sinx



Chapter 15

Taylor Series and Roots of Unity

15.1 Mean Value Theorem

The mean value theorem of Calculus states that if a line segment is drawn joining the
end points of a smooth curve then there is at least one point (c, f(c)) on the curve
where the tangent at that point and the line segment are parallel or have the same
slope. The diagram below illustrates the theorem. If the line segment has a slope of
zero then there are an infinite number of such points with x−coordinate c. Otherwise,
the number of c points depends upon the number of maximum and minimum points
between the two end points.

c−1 1 2 3 4 5 6

1

2

3

4

5

6

7

8

Figure 32

Let us now consider a general theorem that can be used to express “nice” or smooth
functions as a polynomial-type infinite series called, after their discoverer, Taylor
Series.
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15.2 Taylor Series

Definition 60. smooth function
A smooth function at a point is a function that can be differentiated an infinite

number of times at that point. That is we can differentiate the function as many
times as we like and all the derivatives exist.

Example 87.
f(x) = ex is smooth for all x since f ′(x) = f ′′(x) = f ′′′(x) = . . . = ex.

f(x) = sinx is smooth for all x since f ′(x) = cosx, f ′′(x) = − sinx, f ′′′(x) = − cosx,
f 4(x) = sinx and these four just keep on repeating in the same order.

f(x) = √
x exists at x = 0 but is not smooth there since all the derivatives have

a power of x in the denominator, thus f ′(x) = 1

2
√
x
, etc., which do not exist at

x = 0. ◇
Theorem 114.
Suppose a smooth function has the representation f(x) = c0 + c1x + c2x2 + . . . for all
values of x near 0. Then,

cn =
f (n)(0)
n!

for all n ∈ Z+ ∪ {0}

Proof.

f(x) = c0 + c1x + c2x
2 + c3x

3 + c4x
4 + . . . + cnxn + . . .

f ′(x) = 1!c1 + 2c2x + 3c3x
2 + 4c4x

3 + . . . + ncnxn−1 + . . .
f ′′(x) = 2!c2 + 3 ⋅ 2c3x + 4 ⋅ 3c4x

2 + . . . + n(n − 1)cnxn−2 + . . .
f ′′′(x) = 3!c3 + 4 ⋅ 3 ⋅ 2c4x + . . . + n(n − 1)(n − 2)cnxn−3 + . . .

⋮

Substituting x = 0 into these equations yields,

c0 = f(0), c1 =
f ′(0)

1!
, c2 =

f ′′(0)
2!

, c3 =
f ′′′(0)

3!
, c4 =

f (4)(0)
4!

, . . .⇒ cn =
f (n)(0)
n!

Theorem 115.
Suppose a function is smooth for all points in an interval about x = 0. Then for all x
in that interval, we can write,

f(x) = f(0) + f
′(0)
1!

x + f
′′(0)
2!

x2 + f
′′′(0)
3!

x3 + . . . + f
(n)(0)
n!

xn +Rn(x),

where the remainder Rn(x) =
f (n+1)(c)
(n + 1)! x

n+1 and c is some point between x and 0.
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Proof. Define,

Rn(x) = f(x) − f(0) −
f ′(0)

1!
x − f

′′(0)
2!

x2 − f
′′′(0)
3!

x3 − . . . − f
(n)(0)
n!

xn (15.2.1)

Define,

g(t) = f(x) − f(t) − f
′(t)
1!

(x − t) − f
′′(t)
2!

(x − t)2 − f
′′′(t)
3!

(x − t)3

− . . . − f
(n)(t)
n!

(x − t)n −Rn(x)
(x − t)n+1

xn+1

where we regard x as a constant and t as the variable. Then substituting t = x we
have,

g(x) = f(x) − f(x) − f
′(x)
1!

(x − x) − f
′′(x)
2!

(x − x)2 − f
′′′(x)
3!

(x − x)3

− . . . − f
(n)(x)
n!

(x − x)n −Rn(x)
(x − x)n+1

xn+1

= 0

and,

g(0) = f(x) − f(0) − f
′(0)
1!

x − f
′′()x)
2!

x2 − f
′′′(0)
3!

x3

− . . . − f
(n)(0)
n!

xn −Rn(x)
xn+1

xn+1

= Rn(x) −Rn(x) by (15.2.1)

= 0

Since g(x) = g(0) = 0, making the slope of the line segment joining them equal to 0, by
the Mean Value Theorem1 there is a point on the curve with x−coordinate c ∈ [0, x]
such that g′(c) = 0. Now, using the product and chain rules,

g′(t) = 0 −���f ′(t) −
��

��
�
��f ′′(t)

1!
(x − t) +

�
�
�f ′(t)

1!
−����

���
�XXXXXXXX

f ′′′(t)
2!

(x − t)2 +
��

��
�
��f ′′(t)

1!
(x − t) − . . .

− f
n+1(t)
n!

(x − t)n +
���

���
���

�XXXXXXXXXX

fn+1(t)
(n − 1)!(x − t)

n−1 +Rn(x)
(n + 1)(x − t)n

xn+1

= −f
n+1(t)
n!

(x − t)n +Rn(x)
(n + 1)(x − t)n

xn+1

1The mean value theorem states that for any continous curve g(x) joining two points A,B with
x−coordinates x = a, x = b there is a point (c, g(c)) on the curve such that a ≤ c ≤ b and the slope of
the curve at this point, (c, g(c)), is the same as the slope of the line segment joining A and B, that

is, g′(c) = g(b) − g(a)
b − a . – see Figure 32.
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Then, substituting t = c and using g′(c) = 0 we have,

g′(c) = −f
(n+1)(c)
n!

(x − c)n +Rn(x)
(n + 1)(x − c)n

xn+1
= 0

⇒Rn(x)
(n + 1)(x − c)n

xn+1
= f

(n+1)(c)
n!

(x − c)n

⇒Rn(x) =
f (n+1)(c)
(n + 1)n!

xn+1

⇒Rn(x) =
f (n+1)(c)
(n + 1)! x

n+1

Theorem 116. (Taylor’s Theorem)
Let f(x) be a smooth function for all points in an interval (−r, r) about 0. The Taylor
series defined by

f(0) + f
′(0)
1!

x + f
′′(0)
2!

x2 + f
′′′(0)
3!

x3 + . . . + f
(n)(0)
n!

xn + . . . ,

converges to f(x) on the interval (−r, r) as n→∞ if and only if,

lim
n→∞

Rn(x) = 0 where Rn(x) =
f (n+1)(c)
(n + 1)! x

n+1

and c is some point between x and 0.
That is, we have

f(x) = f(0) + f
′(0)
1!

x + f
′′(0)
2!

x2 + f
′′′(0)
3!

x3 + . . . + f
(n)(0)
n!

xn + . . . ,

for any point x in (−r, r) if and only if,

lim
n→∞

f (n+1)(c)
(n + 1)! x

n+1 = 0

for some point c between x and 0.

Proof. Assume

lim
n→∞

Rn(x) = lim
x→∞

f (n+1)(c)
(n + 1)! x

n+1 = 0

We want to show that

f(0) + f
′(0)
1!

x + f
′′(0)
2!

x2 + f
′′′(0)
3!

x3 + . . . + f
(n)(0)
n!

xn + . . . ,
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converges to f(x) as n→∞. Let,

pn(x) = f(0) +
f ′(0)

1!
x + f

′′(0)
2!

x2 + f
′′′(0)
3!

x3 + . . . + f
(n)(0)
n!

xn

Note the Taylor series is lim
n→∞

pn(x). Then since by Theorem 115 above,

f(x) = f(0) + f
′(0)
1!

x + f
′′(0)
2!

x2 + f
′′′(0)
3!

x3 + . . . + f
(n)(0)
n!

xn +Rn(x),

we have here,

pn(x) = f(x) −Rn(x)
⇒ lim

n→∞
pn(x) = lim

n→∞
f(x) − lim

n→∞
Rn(x) = f(x) − 0

⇒ f(x) = lim
n→∞

pn(x) = f(0) +
f ′(0)

1!
x + f

′′(0)
2!

x2 + f
′′′(0)
3!

x3 + . . . + f
(n)(0)
n!

xn + . . .

***

Conversely, assume the Taylor series converges to f(x) on (−r, r), that is,

f(x) = lim
x→∞

pn(x).

Then again with pn(x) = f(x) −Rn(x),
0 = f(x) − lim

n→∞
pn(x) = lim

n→∞
(f(x) − pn(x)) = lim

n→∞
Rn(x)

15.3 Taylor Series of the Exponential Function

Theorem 117.
The Taylor series for the natural exponential function is,

ex = 1 + x + x
2

2!
+ x

3

3!
+ . . . + x

n

n!
+ . . . =

∞
∑
n=0

xn

n!

Proof. Let f(x) = ex. Then the nth derivative f (n)(x) = ex for all n and
f (n)(0) = e0 = 1 for all n. Then the general Taylor series,

f(x) = f(0) + f
′(0)
1!

x + f
′′(0)
2!

x2 + f
′′′(0)
3!

x3 + . . . + f
(n)(0)
n!

xn + . . . ,

gives,

ex = 1 + x + x
2

2!
+ x

3

3!
+ . . . + x

n

n!
+ . . . =

∞
∑
n=0

xn

n!
,

since,

lim
n→∞

Rn(x) = lim
n→∞

fn+1(c)
(n + 1)!x

n+1 = lim
n→∞

ec

(n + 1)!x
n+1 = 0

since the factorial in the denominator is approaching infinity much more rapidly that
the numerator.
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15.4 Taylor Series for Sine and Cosine Functions

Theorem 118.
For all values of x,

sinx = x − x
3

3!
+ x

5

5!
− x

7

7!
+ . . . =

∞
∑
n=1

(−1)n+1 x2n−1

(2n − 1)!

cosx = 1 − x
2

2!
+ x

4

4!
− x

6

6!
+ . . . =

∞
∑
n=0

(−1)n x2n

(2n)!
Proof. Let,

f(x) = sinx

⇒ f ′(x) = cosx

⇒ f ′′(x) = − sinx

⇒ f ′′′(x) = − cosx

⇒ f (4)(x) = sinx

Clearly this pattern repeats every four derivatives. Then we have these four terms
repeated,

f(0) = 0, f ′(0) = 1, f ′′(0) = 0, f ′′′(0) = −1.

Thus,

f(x) = f(0) + f
′(0)
1!

x + f
′′(0)
2!

x2 + f
′′′(0)
3!

x3 + . . . + f
(n)(0)
n!

xn + . . . ,

gives

sinx = x − x
3

3!
+ x

5

5!
− x

7

7!
+ . . . =

∞
∑
n=1

(−1)n+1 x2n−1

(2n − 1)!

provided lim
n→∞

Rn = lim
n→∞

f (n+1)(c)
(n + 1)! = 0. But f (n+1)(c) is one of ± sin c,± cos c which take

values between −1 and +1. So we have,

−1 ≤ f (n)(c) ≤ +1⇒ − xn+1

(n + 1)! ≤ f
(n)(c) xn+1

(n + 1)! ≤
xn+1

(n + 1)!

Now both of lim
n→∞

± xn+1

(n + 1)! = 0 since2 (n + 1)! → ∞ much much more rapidly than

does the numerator xn+1.
Hence,

lim
n→∞

Rn = lim
n→∞

f (n+1)(c)
(n + 1)! = 0.

2Strictly speaking we should invoke the Squeeze Theorem, which says if at a given point a function
is squeezed between two other functions both approaching the same limit at that point then it must
also be approaching that same limit at that point.
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We could repeat this argument for cosx but it is easier to use
d sinx

dx
= cosx. So, if

we differentiate sinx = x − x
3

3!
+ x

5

5!
− x

7

7!
+ . . . with respect to x, we obtain,

cosx = 1 − x
2

2!
+ x

4

4!
− x

6

6!
+ . . . =

∞
∑
n=0

(−1)n x2n

(2n)!

15.5 Euler’s Formulas

We reach two of the most famous and most useful equations in the whole of mathe-
matics. The second one is wonderful, combining two transcendental numbers with a
complex number to produce an integer!

Theorem 119. (Euler)

eix = cosx + i sinx, where i =
√
−1

eπi = −1

Proof.

ex = 1 + x + x
2

2!
+ x

3

3!
+ . . . + x

n

n!
+ . . .

⇒ eix = 1 + ix + (ix)2

2!
+ (ix)3

3!
+ (ix)4

4!
+ (ix)5

5!
+ (ix)6

6!
+ (ix)7

7!
+ (ix)8

8!
+ . . .

= 1 + ix − x
2

2!
− ix

3

3!
+ x

4

4!
+ ix

5

5!
− x

6

6!
− ix

7

7!
+ x

8

8!
+ . . .

= 1 − x
2

2!
+ x

4

4!
− x

6

6!
+ x

8

8!
+ . . . + i(x − x

3

3!
+ x

5

5!
− x

7

7!
+ . . .)

= cosx + i sinx

Put x = π, then,

eπi = cosπ + i sinπ = −1 + i ⋅ 0 = −1

Here are two examples of the usefulness of these results.

Corollary 120. (De Moivre’s Formula)

(cosx + i sinx)n = cosnx + i sinnx
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Proof.

(cosx + i sinx)n = (eix)n = ei(nx) = cosnx + i sinnx

Corollary 121. Complex Formulas for sinx and cosx.

sinx = e
ix − e−ix

2i

cosx = e
ix + e−ix

2

Proof.

eix = cosx + i sinx
⇒ e−ix = ei(−x) = cos(−x) + i sin(−x) = cosx − i sinx

Add and subtract the two equations to obtain,

sinx = e
ix − e−ix

2i
(15.5.1)

cosx = e
ix + e−ix

2
(15.5.2)

15.6 Roots of Unity

Complex numbers are defined by C = {a + bi ∣ a, b ∈ R, i =
√
−1}.

Now the solution of x2 − 1 = 0⇒ x2 = 1 is x = ±1. We say ±1 are the second roots of
unity.
We can also solve, say, x4 − 1 = 0 ⇒ x4 = 1 by noting (eπi)4 = (−1)4 = 1 so that one
solution is clearly x = eπi.
However, since this is an equation of degree 4, we expect 4 solutions. They are,

x = e 2kπi
4 , k = 1,2,3,4 or x = e 2πi

4 , x = e 4πi
4 , x = e 6πi

4 , x = e 8πi
4 ,

since,

x4 = (e 2kπi
4 )

4
= (e2kπi) = (eπi)2k = (−1)2k = 1

The numbers x = e 2πi
4 , x = e 4πi

4 , x = e 6πi
4 , x = e 8πi

4 , are called the 4th roots of unity.

Definition 61. roots of unity
The nth roots of unity are the solutions of the equation xn = 1. They are

e
2kπi
n , 0 ≤ k ≤ (n − 1).



Part VI

Exotic Tastings

Using Infinite Series
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A Tasting Plate is an assembly of the chef’s signature appetizers to be taken prior
to the main course. We will consider three such.

The first concerns the numbers e and π that occur so frequently in mathematics.
They are not “normal” numbers, but how strange are they?

The second concerns summing finite series. Way back in Chapter 2 we proved

1 + 2 + 3 + . . . + n = n(n + 1)
2

We want to extend this to find formulas for,

12 + 22 + 32 + . . . + n2

and further sums of sequences of the higher powers of the natural numbers. On the
way we meet the interesting Bernoulli numbers which crop up in many places in
mathematics just as do e and π.

The third concerns the zeta function ζ(s) which also crops up quite frequently and is
the subject of a great deal of mathematical research. In our introduction to it we will
find how to sum sequences of higher powers of the inverses of the natural numbers,
namely the values of,

ζ(s) =
∞
∑
n=1

1

ns

for s = 2k where k is a natural number.

First e and π.

The numbers e and π occur often in all of mathematics. Each of them is irrational
and each is also transcendental. We will need trigonometry and calculus to prove this
statement.

A rational number is of the form
a

b
where a, b ∈ Z and b is not zero. Irrational

numbers are not able to be expressed as
a

b
. We have already proved by contradiction

that
√

2 is not a rational number. The proofs that e and π are irrational are also
proved by contradiction. We can approach e directly through the Taylor/Maclaurin
series of ex. The proof for π is more circuitous – we use a polynomial in x−π and then
an integral that uses the sine and cosine functions where we know sinπ = 0, cosπ = −1.

A transcendental number is a real number that is not algebraic. A real number is
algebraic if it is the root of a polynomial with integer coefficients, that is a root of,

f(x) = a0x
n + a1x

n−1 + . . . + an−1x + an, a0 ≠ 0, ai ∈ Z
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for some n ∈ N. Specifically, if α is an algebraic number then, for some n and some
a′is,

f(α) = a0α
n + a1α

n−1 + . . . + an−1α + an = 0

So a transcendental number is not the root of a polynomial with integer coefficients.

While the integers are obviously algebraic since if α ∈ Z, then α is a root of

f(x) = x − α, and the rationals are also obviously algebraic since if α = a

b
∈ Q then

α is a root of f(x) = bx − a, the picture gets a little cloudier as we deal with the

irrationals. Clearly
√

2 is algebraic since it is a root of f(x) = x2 − 2 but

√
6 −

√
2

3
is

not obviously the root of a polynomial equation.

One question is whether exact values of all algebraic numbers can be found. For
example, f(x) = x5 − 4x4 + x3 − 2x2 + x − 7 must equal zero for some value of x since
its graph crosses the x−axis. But finding that algebraic number exactly is almost
impossible. Since it is a fact that the graph of any polynomial with integer coeffi-
cients that is of odd degree must cross the x−axis, there are an infinite number of
algebraic numbers, the vast majority of which cannot be determined. This means the
real number line on which we can put all the integers and fractions is crowded with
algebraic numbers, they are actually the majority.

What we are interested in for this chapter is other numbers on the real number line
that are not algebraic. The first two are e and π. Proving they are transcendental
and not algebraic means proving we can never construct for any n, the equations,

a0e
n + a1e

n−1 + . . . + an−1e + an = 0, a0 ≠ 0, ai ∈ Z
a0π

n + a1π
n−1 + . . . + an−1π + an = 0, a0 ≠ 0, ai ∈ Z

This is obviously more difficult that proving they are not of the form
a

b
. This is

difficult chapter, particularly the proof that π is transcendental.



Chapter 16

The Numbers e and π

Course: Tasting Plate I
Ingredients
Definitions of irrational, algebraic and transcendental numbers
Calculus
Calculus of Exponential and Trigonometric Functions
Directions
Prove e, π are irrational numbers.
Prove e, π are transcendental numbers.

16.1 e and π are irrational

16.1.1 e is irrational

Theorem 122. (Joseph Fourier)
The exponential number e is irrational where we define ex as the exponential function
whose gradient at (0,1) is 1.

Proof.

Using the Taylor/Maclaurin series of ex, Theorem 114, page 168, namely ex =
∞
∑
n=0

xn

n!
with x = 1 we have,

e =
∞
∑
n=0

1

n!
= 1

1
+ 1

2
+ 1

6
+ 1

24
. . . = 2.71828 . . .

We use contradiction, so suppose e = a
b
, a, b ∈ Z+, gcd(a, b) = 1.

Since e = 2.71828 . . . is not an integer, then b > 1. Define,

x = b!(e −
b

∑
n=0

1

n!
) (16.1.1)

178
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Substitute e = a
b

to give,

x = b!(a
b
−

b

∑
n=0

1

n!
) = a(b − 1)! −

b

∑
n=0

b!

n!

Now, a(b − 1)! is an integer. Since n ≤ b then

b!

n!
= b(b − 1)⋯(n)(n − 1)⋯1

n(n − 1)(n − 2)⋯1

is also an integer for all possible values of n. Therefore x is an integer.
We now prove 0 < x < 1 so x cannot be an integer, which is a contradiction to the

finding that x is an integer based on supposing e = a
b
, so e is irrational.

First we prove x > 0.

Substitute e =
∞
∑
n=0

1

n!
into the definition of x in (16.1.1) to give,

x = b!(
∞
∑
n=0

1

n!
−

b

∑
n=0

1

n!
)

= b!( 1

0!
+ 1

1!
+ . . . + 1

b!
+ 1

(b + 1)! +
1

(b + 2)! + . . .) − ( 1

0!
+ 1

1!
+ . . . + 1

b!
)

= b!( 1

(b + 1)! +
1

(b + 2)! + . . .)

= b!
∞
∑
n=b+1

1

n!
(16.1.2)

which is always positive, hence x > 0.

Second we prove x < 1.

Noting in our derivation in (16.1.2) of x = b!
∞
∑

n=b+1

1

n!
that we now have n ≥ b + 1 and

writing n = b + (n − b) we have,

b!

n!
= b(b − 1)(b − 2)⋯1

1 ⋅ 2⋯ ⋅ (b − 1)(b)(b + 1)(b + 2) ⋅ ⋯n

= 1

(b + 1)(b + 2)⋯(b + (n − b))

where the denominator has (n − b) factors each of the form
1

b + r .

Now
1

b + r <
1

b + 1
for all r such that 1 < r ≤ n − b so that,

b!

n!
< 1

(b + 1)n−b
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Then,

x =
∞
∑
n=b+1

b!

n!
<

∞
∑
n=b+1

1

(b + 1)n−b

Changing the index of summation to k = n − b⇒ k = 1 when n = b + 1, gives,

x <
∞
∑
k=1

1

(b + 1)k

This is a geometric series with first term a = 1

b + 1
and common ratio r = 1

b + 1
< 1,

hence its sum is
a

1 − r giving,

x <
1

b + 1

1 − 1

b + 1

= 1

b
< 1⇒ x < 1.

Together, these two results show 0 < x < 1 so x cannot be an integer and the suppo-

sition that e = a
b

is false.

e is therefore an irrational number.

16.1.2 π is irrational

Theorem 123. (Niven)
The number π is irrational where π is the ratio of the circumference of a circle to its
diameter. Equivalently, π is the angle (in radians) in the unit circle whose terminal
ray ends at (−1,0).

Proof. We again proceed to prove a contradiction.

We assume π = p
q
, p, q ∈ Z+, gcd(p, q) = 1.

Consider the n functions,

fn(x) =
1

n!
qnxn(π − x)n, n ∈ N (16.1.3)

= 1

n!
qnxn (p

q
− x)

n

(16.1.4)

= 1

n!
xn(p − qx)n (16.1.5)

Note:

(i) fn is a polynomial of degree 2n and, by the Binomial Theorem 85, page 130, all
its coefficients are fractions of integers divided by n!

(ii) fn(x) > 0 if 0 < x < π since, (see (16.1.4)), x < p
q
⇒ p − qx > 0.
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(iii) fn(0) = fn(π) = 0.

(iv) The maximum value Mn of fn(x) on the interval [0, π] is,

Mn = fn (
π

2
) = 1

n!
qn (π

2
)

2n

(16.1.6)

which we now prove by Calculus. We need to find the maximum and minimum
values where the slope is zero or f ′n(x) = 0 and to do this we apply the product
and chain rules to (16.1.5).

f ′n(x) =
1

n!
[nxn−1(p − qx)n + xn ⋅ n(p − qx)n−1(−q)]

= nx
n−1(p − qx)n−1

n!
(p − qx − qx)

= nx
n−1(p − qx)n−1

n!
(p − 2qx)

Then f ′(n) = 0 if x = 0 or x = p
q
= π or x = p

2q
= π

2
.

Since fn(0) = fn(π) = 0 and fn(x) > 0 if 0 < x < π then x = 0, π are minimum

points and x = π
2

is a maximum on the interval [0, π] as shown in Figure 33.

x

y

fn(x)
Mn

0 ππ
2

Figure 33

Substituting, x = π
2

into (16.1.2) we have the maximum value,

Mn = fn (
π

2
)

= 1

n!
(π

2
)
n

(p − qπ
2
)
n

= 1

n!
(π

2
)
n

(πq
2

)
n

, since p = πq

= 1

n!
qn (π

2
)

2n
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(v) We note,

lim
n→∞

Mn = lim
n→∞

fn (
π

2
) = 1

n!
qn (π

2
)

2n

= 0

since n! grows much more rapidly than qn (π
2
)

2n

.

Let us proceed with the proof that π is irrational.
Since lim

n→∞
Mn = 0, as n gets larger Mn gets smaller and is eventually zero. Hence,

there must be some large value of n for which Mn <
1

2
.

Define In by,

In = ∫
π

0
fn(x) sinx dx

Since both fn(x) and sinx are positive on [0, π], the graph of fn(x) sinx is above the
x− axis and their integral is positive, thus In > 0. See Figure 34.

x

y

π

y = fn(x) sinx

0

Mn

In

Figure 34

On the other hand, if the maximum of a function on an interval is Mn then the
rectangle of height Mn on the base [0, π] is obviously greater than the area under the
graph of the function fn(x) sinx on [0, π] (see Figure 34) then,

In = ∫
π

0
fn(x) sinx dx

< ∫
π

0
Mn sinx dx =Mn[−cosx]π0 =Mn(−(−1) − (−1)) = 2Mn

Thus if we take n large enough so that Mn <
1

2
then 0 < In < 1.

Similar to the proof of the irrationality of e we proceed to prove the contradiction to

π = p
q

by proving that In is an integer.
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In what follows we will repeatedly differentiate one function using the product and
chain rules and after that repeatedly integrate another function using integration by
parts. So to fully understand this you need to be skilled in these procedures – the
standard Calc II course.

Let us assume x is large and repeatedly differentiate fn(x) by using the product
and chain rules, Theorem 60, page 87 and Theorem 62, page 88 respectively.

fn(x) =
qn

n!
xn(π − x)n

f ′n(x) =
qn

n!
[nxn−1(π − x)n − nxn(π − x)n−1]

f ′′n (x) =
qn

n!
[n(n − 1)xn−2(π − x)n − n2xn−1(π − x)n−1

− n2xn−1(π − x)n−1 + n(n − 1)xn(π − x)n−2]

f ′′′n (x) = q
n

n!
[n(n − 1)(n − 2)xn−3(π − x)n + terms in xr(π − x)s

(−1)3n(n − 1)(n − 2)xn(π − x)n−3]

Note in all these derivatives, as in fn(x) itself, each term contains an x and a π − x
and therefore they are all zero at x = 0 or x = π.
Note also that each differentiation causes the power of the x in the first term and the
power of the π − x in the last terms to go down by 1. So eventually, as we continue
to differentiate, we reach a value of m = n and have,

f
(m)
n (x) = q

n

n!
[n!(π − x)n + terms in xr(π − x)s + (−1)nn!xn]

with no x in the first, and no π − x in the last, terms.Then,

f
(m)
n (0) = q

n

n!
n!πn = pn

f
(m)
n (π) = q

n

n!
(−1)nn!πn = (−1)npn

and both of these are integers.
For m > n say m = n + t,

f
(m)
n (x) = qn d

t

dxt
[(π − x)n + terms in

xr(π − x)s
n!

+ (−1)nxn
n!

]

and either the repeated differentiation leads to 0 or there are remaining terms in x
and/or π − x. In either case when we substitute x = 0 or x = π, the resulting power of

π = p
q

will be less than n (the power of qn) so the denominator cancels out and both

f
(m)
n (0) and f

(m)
n (π) will be integers.

We now integrate,

In = ∫
π

0
fn(x) sinx dx
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repeatedly by parts 2n + 1 times.1

First, in the integration by parts formula,

∫
b

a
u
dv

dx
dx = [uv]ba − ∫

b

a
v
du

dx
dx

put u = fn(x) ⇒
du

dx
= f ′n(x) and

dv

dx
= sinx⇒ v = − cosx to give,

In = ∫
π

0
fn(x) sinx dx

= [−fn(x) cosx]π0 + ∫
π

0
f ′n(x) cosx dx

= ∫
π

0
f ′n(x) cosx dx

since what we call the boundary term,

[−fn(x) cosx]π0 = −fn(π) cosπ + fn(0) cos 0 = 0

given both fn(0) and fn(π) are 0 as shown above.

Continuing on, let u = f ′n(x) ⇒
du

dx
= f ′′n (x) and

dv

dx
= cosx⇒ v = sinx to give,

In = [f ′n(x) sinx]π0 − ∫
π

0
f ′′n (x) sinx dx

= −∫
π

0
f ′′n (x) sin dx

since again, due to sin 0 = sinπ = 0, the boundary term,

[−fn(x) sinx]π0 = −fn(π) sinπ + fn(0) sin 0 = 0 − 0 = 0

As we continue to m ≥ n the boundary terms are successively of the forms,

[f (m)n (x) sinx]π0 = 0 since sin 0 = sinπ = 0

or
[f (m)n (x) cosx]π0

which is an integer since cos 0 = 1, cosπ = −1, f
(m)
n (0) ∈ Z, f (m)n (π) ∈ Z as shown above

in the differentiation step.
After integrating 2n+1 times, the remaining integral contains f

(2n+1)
n (x) which is zero

since fn(x) is a polynomial of degree 2n and each differentiation lowers the power by
1.
We conclude In is an integer, which completes the contradiction, showing π is irra-
tional.

1See Theorem 64, page 90.
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16.2 e and π are Transcendental Numbers.

In both proofs we make use of the following results.

Lemma 124.
If,

I(t) = ∫
t

0
et−xf(x) dx = et∫

t

0
e−xf(x) dx

where t ∈ C and f(x) is a polynomial of degree n with complex number coefficients,
then,

I(t) = et
n

∑
j=0

f (j)(0) −
n

∑
j=0

f (j)(t)

Proof. Using repeated integration by parts, first with u = f(x), dv
dx

= e−x, we have,

I(t) = et∫
t

0
e−xf(x) dx

= et ([−e−xf(x)]t0 + ∫
t

0
e−xf ′(x) dx)

= et (−e−tf(t) + f(0) + ∫
t

0
e−xf ′(x) dx)

Put u = f ′(x), dv
dx

= e−x in the integral,

= −f(t) + etf(0) + et[−e−xf ′(x)]t0 + et∫
t

0
e−xf ′′(x) dx

= etf(0) − f(t) + et (−e−tf ′(t) + f ′(0)) + et∫
t

0
e−xf ′′(x) dx

= etf(0) − f(t) − f ′(t) + etf ′(0) + et∫
t

0
e−xf ′′(x) dx

= et
1

∑
j=0

f (j)(0) −
1

∑
j=0

f (j)(t) + et∫
t

0
e−xf ′′(x) dx

Put u = f ′′(x), dv
dx

= e−x in the integral,

= et
1

∑
j=0

f (j)(0) −
1

∑
j=0

f (j)(t) + et[−e−xf ′′(x)]t0 + et∫
t

0
e−xf ′′′(x) dx

= et
1

∑
j=0

f (j)(0) −
1

∑
j=0

f (j)(t) − f ′′(t) + etf ′′(0) + et∫
t

0
e−xf ′′′(x) dx

= et
2

∑
j=0

f (j)(0) −
2

∑
j=0

f (j)(t) + et∫
t

0
e−xf ′′′(x) dx

The first two sums will continue to build as will the order m for f (m)(x) under the
integral sign. Note the order of f (m)(x) is one more than the upper number in the
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sums. If the degree of f(x) is n then when this upper number reaches n + 1 we will
have f (n+1)(x) = 0 in the integral. We conclude,

I(t) = et
n

∑
j=0

f (j)(0) −
n

∑
j=0

f (j)(t)

We now write f(x) as a polynomial of degree n in x,

f(x) =
n

∑
j=0

ajx
j

We define,

f̄(x) =
n

∑
j=0

∣aj ∣xj

where clearly f(x) ≤ f̄(x) since all the coefficients of f̄(x) have been made positive,
whereas those of f(x) may be positive or negative. We proceed to prove,

Lemma 125.

∣I(t)∣ ≤ ∣t∣e∣t∣f̄(t) (16.2.1)

Proof. (general idea)

I(t) =
t

∫
0

et−xf(x) dx represents the area under the curve et−xf(x) on the interval

[0, t]. On some sub-intervals et−xf(x) may be positive, on others negative so I(t)
may actually be negative if for more of the sub-intervals the graph of et−xf(x) is
below the x−axis than above it. If we replace et−xf(x) with ∣et−xf(x)∣ , then we can
write, (where we actually invoke the Triangle Inequality of Lemma 26 on page 55),

∣I(t)∣ = ∣∫
t

0
et−xf(x) dx∣ ≤ ∣∫

t

0
∣et−xf(x)∣ dx∣

We are now dealing on the right with an area all above the x−axis. In turn this
area is contained within a box of width ∣t∣ and height the maximum value of ∣et−xf(x)∣
for which,

∣et−xf(x)∣ = ∣et−x∣ ∣f(x)∣ ≤ ∣t∣ max{∣et−x∣} max{∣f(x)∣} ≤ ∣t∣∣e∣t∣f̄(t)∣

Accordingly,

∣I(t)∣ ≤ ∣t∣e∣t∣f̄(t)
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Note 23. The Extended Product Rule
Before we consider the proof of the theorem that e is transcendental, let us consider
the product rule for differentiating the product of more than two functions. Writing
d

dx
f(x) = f ′(x), etc., and leaving out the variable x, we proved,

y = fg⇒ y′ = fg′ + gf ′

where y, f, g are all functions of an independent variable, whether x or t or other.
Then,

y = fgh = f(gh) ⇒ y′ = f(gh)′ + ghf ′ = fgh′ + fhg′ + ghf ′.
In general, the product of n functions will have n such terms in its derivative,

y = f1f2⋯fn⇒ y′ = (f2f3⋯fn)f ′1 + (f1f3⋯fn)f ′2 + . . . + (f1f2⋯fn−1)f ′n

The second derivative y′′ = y(2) is the derivative of n products of n functions. It will
therefore have n2 terms in its derivative, y′′′ = y(3) will have n3 terms and so on.
Given the rapid growth of the number of terms in the higher order derivatives, the key
ingredient in the transcendence proof for e is the use of a function for which almost all
of these terms are zero for selected values of the independent variable x. The function
is due to Hermite.

16.2.1 e is transcendental.

Theorem 126.
The natural exponential number e is transcendental.

Proof. We again use contradiction. Assume e is a root of the polynomial,

g(x) = b0 + b1x . . . + brxr, br ≠ 0, bi ∈ Z, n ∈ N.

That is assume,

g(e) = b0 + b1e . . . + brer = 0 (16.2.2)

Let p be a prime larger than the larger of r and ∣b0∣, that is p >max{r, ∣b0∣}.
Define (this is the key ingredient),

f(x) = xp−1(x − 1)p(x − 2)p⋯(x − r)p

With

I(t) = et
n

∑
j=0

f (j)(0) −
n

∑
j=0

f (j)(t)

as derived in Lemma 124, consider,

J = b0I(0) + b1I(1) + . . . + brI(r) =
r

∑
j=0

bjI(j)
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Using the assumption in (16.2.2) we will prove ∣J ∣ → ∞ but also ∣J ∣ < ∞ and this
contradiction, which assumes g(e) = 0 will prove e is transcendental.

First, the contribution to J of the first sum et
n

∑
j=0
f (j)(0) of I(t) is,

b0e
0
n

∑
j=0

f (j)(0) + b1e
1
n

∑
j=0

f (j)(0) + . . . + brer
n

∑
j=0

f (j)(0)

= (b0e
0 + b1e

1 + . . . + brer)
n

∑
j=0

f (j)(0)

= 0

since we have in (16.2.2) assumed e is a root of g(x). Thus, the contributions to J
from I(t) are due only to,

I(t) = −
n

∑
j=0

f (j)(t)

and we have,

J = b0I(0) + b1I(1) + . . . + brI(r)

= −b0

n

∑
j=0

f (j)(0) − b1

n

∑
j=0

f (j)(1) − . . . − br
n

∑
j=0

f (j)(r)

= −
r

∑
k=0

n

∑
j=0

bkf
(j)(k)

Let us now separate out the k = 0 term.

J = −b0

n

∑
j=0

f (j)(0) −
r

∑
k=1

n

∑
j=0

bkf
(j)(k)

The degree of f(x) = xp−1(x − 1)p(x − 2)p⋯(x − r)p is,

n = p − 1 +
r times

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
p + p + . . . + p = rp + p − 1,

hence since each differentiation lowers the power by one, the derivatives f (j)(x) = 0
for j > n = rp + p − 1.
Now by repeated differentiation of xp−1 and xp we have,

d(p−1)

dx(p−1) (x
p−1) = (p − 1)! (16.2.3)

d(p)

dx(p)
(x − s)p = p! for 1 ≤ s ≤ r. (16.2.4)

Let us first consider b0

n

∑
j=0
f (j)(0). We write,

f(x) = xp−1h(x) where h(x) = (x − 1)p(x − 2)p⋯(x − r)p
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Then, differentiating twice,

f ′(x) = (p − 1)xp−2h(x) + xp−1h′(x)
f ′′(x) = (p − 1)(p − 2)xp−3h(x) + (p − 1)xp−2h′(x) + (p − 1)xp−2h(x) + xp−1h′′(x)

If we continue to differentiate then we arrive at,

f (p−1)(x) = (p − 1)!h(x) +
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
terms with x a factor +xp−1h(p−1)(x)

Then,

f (p−1)(0) = (p − 1)!h(0)
= (p − 1)!(−1)p(−2)p⋯(−r)p

= (p − 1)!(−1)rp(r!)p

Since p > r and p > p − 1 then f (p−1)(0) is not divisible by p.
Now the terms with x a factor contain the successive derivatives of h(x) from h′(x)
to h(p−1)(x) so they contain the derivatives of orders 1 to p−1 of each (x−s)p. But the
complete elimination of any factor of the form (x−s)p requires at least differentiation
of order p as shown by (16.2.4). Therefore f (p−1)(s) = 0 for 1 ≤ s ≤ r. Hence,

n

∑
j=0

b0f
(j)(0) = b0 (0 + 0 + . . . + f (p−1)(0) +

n

∑
j=p
b0f

(j)(0))

= b0 ((p − 1)!(−1)rp(r!)p +
n

∑
j=p
f (j)(0))

The same argument applies to
n

∑
j=p
f (j)(0) and to the second sum of

r

∑
k=1

n

∑
j=0
bkf (j)(k) of

J. Each term in f (j)(x) will contain all the factors (x − s), 1 ≤ s ≤ r unless j = p in
which case the term then contains p!
Then for any given value of s, f (j)(s) consists of all zero terms except for the one
containing the factor p!
Accordingly, apart from the leading term b0(p − 1)!(−1)rp(r!)p every other non zero
term in J is divisible by p!
Thus since p > ∣b0∣, we see that J is an integer divisible by (p − 1)! but not by p! In
other words,

∣J ∣ ≥ (p − 1)!

***

On the other hand, since,

f(x) =
n

∑
j=0

ajx
j ⇒ ¯f(x) =

n

∑
j=0

∣aj ∣xj
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then if all the coefficients of f(x) = xp−1(x − 1)p(x − 2)p⋯(x − r)p are made positive,
we must have,

f̄(j) = jp−1(j + 1)p(j + 2)p⋯(j + r)p for 0 ≤ j ≤ r,

Then since, given j ≤ r, each of the terms on the right side is less than 2r we have,

f̄(j) ≤ (2r)rp+p−1 = (2r)n (16.2.5)

Then J =
r

∑
j=0
bjI(j) gives us,

∣J ∣ ≤
r

∑
j=0

∣bj ∣∣I(j)∣

≤
r

∑
j=0

∣bj ∣∣jetf̄(j)∣ by (16.2.1) of Lemma 125

≤
r

∑
j=0

∣bj ∣∣j∣∣ej ∣ × (2r)n by (16.2.5)

≤ c(2r)n

since the finite sum
r

∑
j=0

∣bj ∣∣j∣∣ej ∣ is just some constant c.

But we cannot also have ∣J ∣ ≥ (p− 1)! where p is a prime as large as we like since the
factorial rapidly outgrows the exponent terms in p. This gives the contradiction that
establishes that e is transcendental and concludes the proof.

16.2.2 π is transcendental

The proof that π is a transcendental number is considerably more difficult and requires
much more background. Its proof requires some advanced results from Abstract
Algebra.

Definition 62. We first distinguish between an algebraic number and an algebraic
integer. Each is the root of a polynomial,

g(x) =
n

∑
k=0

bkx
k = b0x

n + b1x
n−1 + . . . + bn

with integer coefficients but for an algebraic integer, the leading coefficient b0 must
equal 1. We call such polynomials monic.

The proof uses the following lemmas on algebraic numbers and integers.

Lemma 127.
If α,β are algebraic numbers then so are α ± β,αβ and α/β. Specifically, if π is an
algebraic number, then since i is a root of g(x) = x2 + 1 making i algebraic, then so is
πi.
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Lemma 128.
If α is an algebraic number with minimal (meaning least possible degree) polynomial

g(x) =
n

∑
k=0

bkxk then b0α is an algebraic integer.

Lemma 129.
If α is an algebraic integer and α is a rational number (α ∈ Q) then α must be an
integer (α ∈ Z.)

The proof also uses the fundamental theorem of elementary symmetric polyno-
mials in several variables. A symmetric polynomial is one left unchanged by any
permutation of its variables. For example if,

f(x, y, z) = x2 + y2 + z2 + 3xyz

then if we interchange x and y, then f(x, y, z) is unchanged, making it a symmetric
polynomial. An understanding and proof of the fundamental theorem of symmetric
functions requires significant abstract algebra. We will invoke the fundamental theo-
rem twice without saying what it is or proving it.
First Lemma 127, renamed as,

Lemma 130.
If π is algebraic then so is πi, i =

√
−1.

Proof. If π is algebraic then f(π) = 0 for some polynomial

f(x) =
n

∑
k=0

akx
n−k, ak ∈ Z

We claim g(x) = f(ix)f(−ix) is also a polynomial with integer coefficients. The proof

of this is by induction on n where we put fn(x) =
n

∑
k=0

akxn−k.

Basic Step: Let n = 1. Then,

f1(x) = a0x + a1

⇒ g1(x) = f1(ix)f1(−ix)
= (a0ix + a1)(−a0ix + a1)
= a0x

2 + a1x
2

which is a polynomial with integer coefficients.

Supposition Step: Suppose,

gn(x) = fn(ix)fn(−ix)

= (
n

∑
k=0

ak(ix)n−k)(
n

∑
k=0

ak(−ix)n−k)
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is a polynomial with integer coefficients.

Induction Step: We want to show

gn+1(x) = fn+1(ix)fn+1(−ix)

= (
n+1

∑
k=0

ak(ix)n+1−k)(
n+1

∑
k=0

ak(−ix)n+1−k)

is a polynomial with integer coefficients. But this is true since,

(
n+1

∑
k=0

ak(ix)n+1−k)(
n+1

∑
k=0

ak(−ix)n+1−k)

= (
n

∑
k=0

ak(ix)n−k + an+1)(
n

∑
k=0

ak(−ix)n−k + an+1)

= fn(ix)fn(−ix) + a2
n+1 +

n

∑
k=0

an+1ak ((ix)n−k + (−ix)n−k)

= fn(ix)fn(−ix) + a2
n+1 +

n

∑
k=0

an+1akx
n−kin−k (1 + (−1)n−k)

and terms having a factor in−k are either free of i when n − k is even or
1 + (−1)n−k = 1 − 1 = 0 when n − k is odd.
Finally we note that,

g(iπ) = f(−π)f(π) = f(−π) ⋅ 0 = 0

and therefore iπ is algebraic.

Theorem 131.
The number π is transcendental.

Proof. We again use a proof by contradiction.
Suppose θ = iπ is algebraic with r the degree of its minimal polynomial g(x).
Since g(θ) = 0 then one factor of g(x) is x − θ.
The r factors are x − θj where θ1, θ2, . . . , θr are the complex conjugates of θ and one
of which is θ.
Let b be the leading coefficient of g(x).
Since eθ = eπi = −1 then 1 + eθj = 0 for some j and therefore,

(1 + eθ1)(1 + eθ2)⋯(1 + eθr) = 0 (16.2.6)

⇒ 1 + (eθ1 + eθ2 + . . . + eθr) + (eθ1eθ2 + eθ1eθ3 + . . . + eθ1eθr) + . . . = 0 (16.2.7)

⇒ 1 +
r

∑
j=1

eθj +
r

∑
j,k=1
j≠k

eθj+θk +
r

∑
i,j,k=1
1≠j≠k

eθi+θj+θk + . . . + e
r

∑
j=1

θj
= 0 (16.2.8)
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The left side of (16.2.6)contains 2r terms so the left side of (16.2.8) contains 2r terms
all of the form eφ where

φ = ε1θ1 + ε2θ2 + . . . + εrθr in which εj = 0 or1,

many of which are zero.
Let φ1, φ2, . . . , φn be the n non-zero terms so that there are 2r − n zero terms. Then
with q = 2r − n,

q + eθ1 + eθ2 + . . . + eθr = 0 (16.2.9)

We now introduce the Hermite-like polynomial. The remainder of the proof is very
similar to that of the proof that e is transcendental and will be dealt with more
concisely when it uses results already proved in that proof.
Let p be a large prime and let,

f(x) = bnpxp−1(x − φ1)p(x − φ2)p⋯(x − φn)p

By the fundamental theorem of elementary symmetric functions and Lemmas 128
and 129, f(x) is a polynomial in x with integer coefficients. (This is the unproven
step)
With the function I(t) as in Lemma 124, page 185, define,

J = I(φ1) + I(φ2) + . . . + I(φn)

From Lemma 124,

I(t) = et
n

∑
j=0

f (j)(0) −
n

∑
j=0

f (j)(t)

We deduce that with q as in (16.2.9),

J = −q
m

∑
j=0

f (j)(0) −
m

∑
j=0

n

∑
k=1

f (j)(φk), m = (n + 1)p − 1. (16.2.10)

Now the sum over k is a symmetric polynomial in bφ1, bφ2, . . . , bφn with integer
coefficients and is therefore a symmetric polynomial with integer coefficients in the
2r numbers

bφ = b(ε1θ1 + ε2θ2 + . . . + εrθr).
Hence, by the fundamental theorem of elementary symmetric functions, this sum is
an (ordinary) rational number. Also, Lemmas 128 and 129 imply that the sum is
further an (ordinary) integer, that is, J ∈ Z.
(The remainder of the proof, giving the contradiction, is very similar to that for the
corresponding J in the proof for e and the details are therefore omitted.)
Since f (j)(φk) = 0 for j < p we deduce that the double sum in the above expression
(16.2.5) for J is an ordinary integer divisible by (p − 1)!.
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Further, if p is sufficiently large, then f (p−1)(0) is not divisible by p. If also p > q,
then,

∣J ∣ ≥ (p − 1)!

On the other hand, using the upper bound we obtained for ∣I(t)∣, we have,

∣J ∣ ≤
n

∑
k=1

∣φk∣e∣φk ∣f̄(∣φk∣) ≤ c1c
p
2

for some constants c1, c2. This contradiction completes the proof.

16.3 Finding π

Let’s pause after that for some light relief. How can we find the actual value of π?
It’s is easy to see that π is about 3.14. By definition π is the ratio of the circumference

C of a circle to its diameter d or π = C
d
. So if we take a circle (say made of string) of

diameter 1 or radius
1

2
then its circumference is π. To find π we simply need to cut

the circle and spread it out on a number line with its left end on 0 and read off the
value under its right end.

r = 1
2

0 1 2 3
●● π

4−1
∣ ∣ ∣ ∣ ∣

But how can we find a much better value of π, something like 3.14159265359? Well,

one way is we put x = 1

2
and sin

π

2
= 1 in Equation (19.2.6) which we derive in Chapter

19, namely,
sinπx

πx
=

∞
∏
r=1

(1 − x
2

r2
)

to give,

sin
π

2
π

2

= 2

π
=

∞
∏
r=1

(1 − 1

(2r)2
)

⇒ π = 2
∞
∏
r=1

(1 − 1

(2r)2
)

⇒ π = 2

(1 − 1

4
)(1 − 1

16
)(1 − 1

36
) . . .
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Keeping things simple, you can set this up on an Excel spreadsheet putting say

1 to 20,000 in the first column, start the second column with
2

1 − 1

4

and add in the

successive 1− 1

(2r)2
terms in the denominator as you progress down the second. You

will see the value of π builds extremely slowly like this.

r π
1 2.8
19 3.1
493 3.14

1,331 3.141
8,447 3.1415
20,000 3.14155

The “cut the circle” exercise above shows π converges but its convergence is extremely
slow. There are other series giving values of π. One is the Gregory Series for the
infinite series of the inverse tan function, namely

tan−1 x = x − x
3

3
+ x

5

5
− x

7

7
+ . . .

where with x = 1 we have tan−1 x = π
4

so

π = 4(1 − 1

3
+ 1

5
− 1

7
+ . . .)

but this series converges much more slowly than the one we developed above based

on
sinπx

πx
. It needs 5 billion terms to give 10 decimal places accurately. At 40,000

terms it gives π = 3.141543 which is still not as accurate as the
sinπx

πx
series at 20,000

terms. You can see how math can be quite competitive!



Chapter 17

Bernoulli Numbers and Sum of a
Finite p-series

Our goal in this chapter is to sum a finite series such as 12 + 22 + 32 + . . . + n2 or in
general the p-series,

1p + 2p + . . . + np, p = 1,2,3, . . .

We will find, for example, that,

13 + 23 + 33 + . . . + 1003 = 1004

4
+ 1003

2
+ 1002

4
= 25,502,500

It turns out that the sum of these finite series can be expressed in what is called a
“closed form” or a single formula. This formula involves a famous sequence of num-
bers called Bernoulli numbers, named after their discoverers, the Bernoulli brothers.

Course: Tasting Plate II
Ingredients
Calculus of the natural exponential function.
Taylor series for ex

Definition of Bernoulli numbers
Directions
Define and develop the theory of Bernoulli numbers.
Find the formula for the sum of a finite p-series and give examples.

17.1 Bernoulli Numbers

Definition 63. Bernoulli numbers
The Bernoulli numbers Bn are defined as the coefficients in the expansion,

x

ex − 1
= B0 +

B1

1!
x + B2

2!
x2 + B3

3!
x3 + . . . (17.1.1)

196
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Consider,
x

ex − 1
= x

x + x
2

2!
+ x

3

3!
+ . . .

where we applied the Taylor series for ex derived in Theorem 117, page 171.
Let’s (drearily) perform the long division to express the right side as,

B0 +
B1

1!
x + B2

2!
x2 + B3

3!
x3 + . . .

We begin,

1 − 1

2
x + 1

12
x2 + . . .

x + x
2

2
+ x

3

6
+ x

4

24
+ x5

120
+ . . .)x

x + x
2

2
+ x

3

6
+ x

4

24
+ x5

120
+ . . .

− x
2

2
− x

3

6
− x

4

24
− x5

120
+ . . .

− x
2

2
− x

3

4
− x

4

12
− x

5

48
+ . . .

+ x
3

12
+ x

4

24
+ x

5

60
+ . . .

..........................

From the above long division we have,

B0 +
B1

1!
x + B2

2!
x2 + . . . = 1 − 1

2
x + 1

12
x2 + . . .

hence

B0 = 1,B1 = −
1

2
,B2 =

1

12
⋅ 2! = 1

6

***

But let’s stop here and try another route! A more efficient way to proceed is to equate
powers of x in the adjusted equation (17.1.1)

x =
∞
∑
n=0

Bn

n!
xn ⋅ (ex − 1)

We have,

x = (B0 +
B1

1!
x + B2

2!
x2 + B3

3!
x3 + . . .) ⋅ (x + x

2

2!
+ x

3

3!
+ x

4

4!
+ x

5

5!
+ . . .)

= B0x + (B0

2!
+ B1

1!
)x2 + (B0

3!
+ B1

1!
⋅ 1

2!
+ B2

2!
)x3 + . . .
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Equating coefficients of x gives 1 = B0.

Equating coefficients of x2 gives 0 = B0

1
+B1 ⇒ B1 = −

1

2
Equating coefficients of x3 gives,

0 = B0

6
+ B1

2
+ B3

2
⇒ B2 = 2(−1

6
+ 1

4
) = 1

6

Equating coefficients of x4 gives,

0 = B0

24
+ B1

6
+ B2

4
+ B3

6
= 1

24
− 1

12
+ 1

24
+ B3

6
⇒ B3 = 0

OK, it’s more efficient, but it is still dreary! Let’s go elsewhere.

***

Definition 64. even and odd functions
A function f(x) is an even function if f(−x) = f(x).
A function f(x) is an odd function if f(−x) = −f(x).

Example 88.
f(x) = x4 + 3x2 + 6 is an even function since f(−x) = (−x)4 + 3(−x)2 + 6 = f(x).
f(x) = x3 − 7x is an odd function since f(−x) = (−x)3 − 7(−x) = −x3 + 7x = −f(x) ◇

If f(x) is a polynomial, it is obvious it can only be an even function if all terms
containing odd powers of x have a coefficient of zero.

Example 89. Since the Taylor series of sinx contains only odd powers of x then it
is not an even function, but cosx obviously is an even function.

sinx = x

1!
+ x

3

3!
+ x

5

5!
+ . . .

cosx = 1 + x
2

2!
+ x

4

4!
+ x

6

6!
+ . . .

Invoking Theorem 110 on page 162, we actually do have sin(−x) = − sinx,
cos(−x) = cosx, so cosx is an even function and sinx is not. ◇

Lemma 132.
The odd Bernoulli numbers B2n+1, n > 1 are all zero.

Proof. By definition the Bernoulli numbers are generated by,

x

ex − 1
= B0 +

B1

1!
x + B2

2!
x2 + B3

3!
x3 + B4

4!
x4 + B5

5!
x5 + . . .

= 1 − x
2
+ B2

2!
x2 + B3

3!
x3 + B4

4!
x4 + B5

5!
x5 + . . . putting B1 = −

1

2

⇒ x

ex − 1
+ x

2
= 1 + B2

2!
x2 + B3

3!
x3 + B4

4!
x4 + B5

5!
x5 + . . . (17.1.2)
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Now if f(x) = x

ex − 1
+ x

2
then,

f(x) − f(−x) = x

ex − 1
+ x

2
− ( −x

e−x − 1
+ −x

2
)

= x

ex − 1
+ x

2
+ x

e−x − 1
+ x

2

= x + x( 1

ex − 1
+ ex

1 − ex)

= x + x(1 − ex
ex − 1

)

= x − x = 0

Then f(x) = f(−x) so f(x) is an even function. But since the left side of the equation
(17.1.2) is an even function, then the right side must also be an even function, that
is, the coefficient of every odd power of x must be zero, implying the odd Bernoulli
numbers B2n+1 are all zero.

We still lack an efficient way of calculating the even Bernoulli numbers. The
following theorem is an excellent example of obtaining a result by generalizing the
relevant definition.

Definition 65. generalized Bernoulli function
For any complex number z we define the generalized functions Bn(x) by the equation,

zexz

ez − 1
=

∞
∑
n=0

Bn(x)
n!

zn, where ∣z∣ ≤ 2π

The constant functions Bn(0) with x = 0 are generated by,

z

ez − 1
=

∞
∑
n=0

Bn(0)
n!

zn

Accordingly, referencing (17.1.1), they are the Bernoulli numbers and we let
Bn(0) = Bn.

Theorem 133.
The functions Bn(x) are polynomials in x given by

Bn(x) =
n

∑
k=0

(n
k
)Bkx

n−k

Proof. We have, using the definition of Bn and the Taylor series expansion for ex from
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Theorem 117, page 171 written in reverse,

∞
∑
n=0

Bn(x)
n!

zn

= z

ez − 1
⋅ exz

= (
∞
∑
n=0

Bn

n!
zn) × (

∞
∑
n=0

xn

n!
zn)

= (B0

0!
+ B1

1!
z + . . . + Bn

n!
zn)(. . . x

n

n!
zn + xn−1

(n − 1)!z
n−1 + xn−2

(n − 2)!z
n−2 + . . . + x

1!
z + 1)

Selecting the terms in zn we have,

Bn(x)
n!

zn = B0

0!

xn

n!
zn + B1

1!

xn−1

(n − 1)!z
n + B2

2!

xn−2

(n − 2)!z
n + . . . + Bn

n!
zn

⇒ Bn(x)
n!

=
n

∑
k=0

Bk

k!

xn−k

(n − k)!

⇒ Bn(x) =
n

∑
k=0

n!

(n − k)!k!
Bkx

n−k

=
n

∑
k=0

(n
k
)Bkx

n−k

Theorem 134. The Bernoulli polynomials Bn(x) satisfy the difference equation,

Bn(x + 1) −Bn(x) = nxn−1 if n ≥ 1

Therefore,
Bn(0) = Bn(1) if n ≥ 2

Proof. We construct the identity,

∞
∑
n=0

Bn(x + 1) −Bn(x)
n!

= z e
(x+1)z

ez − 1
− z exz

ez − 1
= zexz (e

z − 1

ez − 1
) = zexz

From this identity, using the Taylor expansion exz =
∞
∑
n=0

(xz)n
n!

, we find,

∞
∑
n=0

Bn(x + 1) −Bn(x)
n!

zn =
∞
∑
n=0

z
(xz)n
n!

= x
0

0!
z1 + x

1

1!
z2 + . . . + xn−1

(n − 1)!z
n + . . .
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Equating the coefficients of zn, n ≥ 1 and noting
n!

(n − 1)! = n we obtain,

Bn(x + 1) −Bn(x)
n!

= xn−1

(n − 1)! if n ≥ 1

⇒ Bn(x + 1) −Bn(x) = nxn−1

Putting x = 0 and avoiding division by zero we find,

Bn(0) = Bn(1) if n ≥ 2

Theorem 135.
If n ≥ 2 we have,

Bn =
n

∑
k=0

(n
k
)Bk

Proof. Since by Theorem 133 the functions Bn(x) are polynomials in x given by,

Bn(x) =
n

∑
k=0

(n
k
)Bkx

n−k,

putting x = 1 and using Bn = Bn(0) = Bn(1) if n ≥ 2 we find,

Bn = Bn(1) =
n

∑
k=0

(n
k
)Bk

We now have a recursive formula for calculating the Bernoulli numbers succeeding

B0 = 1,B1 = −
1

2
.

B2 =
2

∑
k=0

(2

k
)Bk = (2

0
)B0 + (2

1
)B1 + (2

2
)B2 = 1 + 2(−1

2
) +B2 = B2

tells us nothing, but,

B3 =
3

∑
k=0

(3

k
)Bk = (3

0
)B0 + (3

1
)B1 + (3

2
)B2 + (3

3
)B3

= 1 + 3(−1

2
) + 3B2 +B3

⇒ 3B2 =
3

2
− 1 = 1

2

⇒ B2 =
1

6

In a similar fashion, omitting all the odd Bernoulli numbers which are all zero,

B4 = −
1

30
, B6 =

1

42
, B8 = −

1

30
, B10 =

5

66
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17.2 Formula for the Sums of Powers of Integers

Theorem 136.
For m ≥ 1,

Sm(n) = 1m + 2m + . . . + (n − 1)m =
m

∑
k=0

(m + 1

k
) Bk

m + 1
nm+1−k

Proof. Let Sm(n) = 1m + 2m + . . . + (n − 1)m.
From Theorem 117, page 171,

ex = 1 + x

1!
+ x

2

2!
+ x

3

3!
+ . . .

⇒ ekt = 1 + kt
1!
+ (kt)2

2!
+ (kt)3

3!
+ . . .

Substituting k = 0,1,2, . . . , n − 1 gives the equations,

e0 = 1

et = 1 + 1 ⋅ t
1!
+ 12 ⋅ t

2

2!
+ 13 ⋅ t

3

3!
+ 14 ⋅ t

4

4!
+ . . .

e2t = 1 + 2 ⋅ t
1!
+ 22 ⋅ t

2

2!
+ 23 ⋅ t

3

3!
+ 24 ⋅ t

4

4!
+ . . .

e3t = 1 + 3 ⋅ t
1!
+ 32 ⋅ t

2

2!
+ 33 ⋅ t

3

3!
+ 34 ⋅ t

4

4!
+ . . .

. . .

e(n−1)t = 1 + (n − 1) ⋅ t
1!
+ (n − 1)2 ⋅ t

2

2!
+ (n − 1)3 ⋅ t

3

3!
+ (n − 1)4 ⋅ t

4

4!
+ . . .

Adding the columns of these equations gives1,

1 + et + e2t + e3t + e4t + . . . + e(n−1)t = n − 1 + S1(n)
t

1!
+ S2(n)

t2

2!
+ S3(n)

t3

3!
+ S4(n)

t4

4!
+ . . .

=
∞
∑
m=0

Sm(n) t
m

m!

Recalling the sum of the first n terms of the geometric series a+ ar + ar2 + . . .+ arn−1

is given by,

a + ar + ar2 + . . . + arn−1 = a(r
n − 1)
r − 1

,

we have, with a = 1, r = et,
ent − 1

et − 1
=

∞
∑
m=0

Sm(n) t
m

m!
(17.2.1)

1Note S0(n) = 10 + 20 + . . . + (n − 1)0 = n − 1
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Now,

ent − 1

et − 1
= e

nt − 1

t
● t

et − 1

=
(�1 + nt +

(nt)2

2!
+ (nt)3

3!
+ . . . − �1)

t
●

∞
∑
j=0

Bj
tj

j!

= (n + n
2t

2!
+ n

3t2

3!
+ . . .) ●

∞
∑
j=0

Bj
tj

j!

Then we have from (17.2.1),

∞
∑
m=0

Sm(n) t
m

m!
= (n + n

2t

2!
+ . . . + n

mtm−1

m!
+ nm+1tm

(m + 1)! + . . .)

● (. . . + Bm

m!
tm + Bm−1

(m − 1)!t
m−1 + . . . + B2

2!
t2 + B1

1!
t1 +B0)

If we equate the terms in tm on either side we have,

Sm(n) 1

m!
= Bm

m!
⋅ n + Bm−1

(m − 1)! ⋅
n2

2!
+ . . . + B1

1!
● n

m

m!
+B0 ●

nm+1

(m + 1)!

Multiplying by (m + 1)! gives,

(m + 1)!
m!

Sm(n) = Bm

m!
(m + 1)! ● n + Bm−1

(m − 1)!(m + 1)! ● n
2

2!
+ Bm−2

(m − 2)!(m + 1)!n
3

3!
+

. . . + B1

1!
● n

m(m + 1)!
m!

+B0 ●
nm+1(m + 1)!

(m + 1)!

So we have,

(m + 1)Sm(n) =
m

∑
k=0

(m + 1

k
)Bkn

m+1−k

⇒ Sm(n) =
m

∑
k=0

(m + 1

k
) Bk

m + 1
nm+1−k

⇒ 1m + 2m + . . . + (n − 1)m =
m

∑
k=0

(m + 1

k
) Bk

m + 1
nm+1−k
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Example 90. We can now apply the formula to
n

∑
k=0
kp, p = 1,2,3, . . .

Note, Sm = 1m + 2m + . . . + (n − 1)m so that
n

∑
k=1
km = Sm + nm.

n

∑
k=1

k1 = n
2

2
+ n

2
n

∑
k=1

k2 = n
3

3
+ n

2

2
+ n

6
n

∑
k=1

k3 = n
4

4
+ n

3

2
+ n

2

4
n

∑
k=1

k4 = n
5

5
+ n

4

2
+ n

3

3
− n

30

. . .
n

∑
k=1

k10 = n
11

11
+ n

10

2
+ 5n9

6
− n7 + n5 − n

3

2
+ 5n

66

Now
100

∑
k=1
k10 = 110 + 210 + . . .+ 10010 has 100 terms each of which soon becomes huge as

we multiply it out (like 5010) but the whole is easily computed from

10011

11
+ 10010

2
+ 5 ● 1009

6
− 1007 + 1005 − 1003 + 5 ● 100

66
◇



Part VII

Shopping Excursion 4

The Natural Logarithm Function
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Just as the natural exponential function ex arises “naturally” in many branches of
mathematics and science, so does its inverse function, the natural logarithmic function
logx.
Like its inverse, logx has a simple derivative, filling in the integral’s power rule,

∫ xn dx = xn+1

n + 1
+ c, n ≠ 1

∫ x−1 dx = logx + c

Like its inverse, logx has a Taylor series.
We will use the logx properties many times in the following chapters.



Chapter 18

The Natural Logarithm Function

Ingredients
Inverse function theory – definitions, finding and graphing inverses
The natural exponential function
Directions
Define and study the natural logarithmic function.
Find its derivative.
Study an alternative definition of the natural logarithmic function.
Derive the laws of logarithms.
Derive the exponential laws.
Study extensions of the natural logarithmic function.
Learn how to differentiate complicated functions using logarithms.
Apply Taylor series to find the series for a logarithmic function.

We define the natural logarithmic function as the inverse function of the natural
exponential function.

18.1 Inverse Functions

Definition 66. composition of functions
The composition f(g(x)) of two functions f(x), g(x) means that the variable x in the
function f is replaced with the expression for g(x). You may already know its notation
as f ○ g(x).

Example 91. If f(x) = 2x − 1 and g(x) = x2 − 4 then

f(g(x)) = 2g(x) − 1 = 2(x2 − 4) − 1 = 2x2 − 9 ◇

Definition 67. inverse functions
Two functions f and g are said to be inverse functions if,

� f(g(x)) = x for all x in the domain of g

207
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� g(f(x)) = x for all x in the domain of f.

Example 92. To prove f(x) = 1

3
x − 7 and g(x) = 3x + 21 are inverse functions we

show,

� f(g(x)) = 1

3
g(x) − 7 = 1

3
(3x + 21) − 7 = x

� g(f(x)) = 3f(x) + 21 = 3(1

3
x − 7) + 21 = x

So f and g are inverse functions. ◇

Notation 4. We write a function and its inverse as f and f−1 or g and g−1, etc.
Then our definition becomes:
Two functions f and f−1 are said to be inverse functions if and only if,

� f(f−1(x)) = x for all x in the domain of f−1

� f−1(f(x)) = x for all x in the domain of f.

18.1.1 Finding inverse functions

Assuming the inverse function of y = f(x) exists, we can find it as follows:

1. Interchange x and y in the equation y = f(x) to get x = f(y).

2. Solve the new equation for y in terms of x. This new equation is the inverse
function f−1(x).

Note, since we have interchanged x and y, it follows that the domain of the inverse
function is the range of the original function and the range of the inverse function is
the domain of the original function.

Example 93.
To find the inverse function of f(x) = 4x − 3, we write y = 4x − 3 and,

1. Interchange x and y in the equation y = 4x − 3 to get x = 4y − 3.

2. Solve the new equation for y in terms of x, giving y = x + 3

4
= f−1(x).

To show this is correct we return to the definition to show,

f(f−1)(x) = 4f−1(x) − 3 = 4
x + 3

4
− 3 = x

You can check the other condition f−1(f(x)) = x. ◇
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18.1.2 Sketching the graphs of inverse functions

Since we interchanged variables to obtain the inverse function, it follows that if (b, a)
lies on the graph of a function, then (a, b) lies on the graph of its inverse. This means
the graph of f−1(x) is the reflection of the graph of f(x) in the line y = x as shown
in Figure 35.

Note the point (b, a) on the graph of f(x) reflects to become the point (a, b) on the
graph of f−1(x) as follows. From (b, a) on the graph of y = f(x) we measure the
shortest distance to a point on the line y = x and then go the same distance in the
same direction on the other side of y = x to locate (a, b) on the graph of y = f−1(x).

x

y
y = x

y = f(x)

(b, a)

y = f−1(x)

(a, b)

●

●

Figure 35

18.2 Logarithmic Functions

Definition 68. logarithmic function with base b
The inverse of the exponential function y = f(x) = bx with base b is called the loga-
rithmic function y = f−1(x) = logb x, with base b.

We obtain the inverse function of y = bx as usual by interchanging the variables
to get x = by. We cannot solve x = by for y = f(x) so we invent a new function defined
as y = logb x to mean x = by. So we have the equivalence,

y = logbx⇔ x = by

The first expression is in logarithmic form, the second is in exponential form. Note,
that a logarithm therefore is an exponent, y is the power or exponent to which the
base b must be raised to get x.

Example 94. Some equivalent statements are:
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(a) 23 = 8⇔ log2 8 = 3

(b) 102 = 100⇔ log10 100 = 2

(c) log6 216 = 3⇔ 216 = 63 ◇

18.2.1 Graphs of logarithmic functions

Since the logarithmic function is the inverse of the exponential function, the graph of
y = logb x is obtained by reflecting the graph of y = bx in the line y = x. See Figure 36.

Note 24. Every graph of y = logb x,

(a) passes though (1,0)

(b) approaches the negative y−axis asymptotically

(c) grows very slowly as x→∞, for example log10 10 = 1, log10 1000 = 3

(d) The domain of y = logb x is (0,∞) or x > 0 only.

(e) The logarithm of negative numbers and zero is undefined. You cannot evaluate
the logarithm of a negative number or zero

x

y

y = x

y = logb x

y = bx

(0,1)

(1,0)
●

●

Figure 36

18.3 The Natural Logarithmic Function

Definition 69. natural logarithmic function
We define the natural logarithmic function y = loge x or simply y = logx as the inverse
of the natural exponential function y = ex.
We form the inverse function, as usual, by interchanging the variables x, y and making
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y the subject of the new equation. To do this we needed notation for a new function
since we cannot solve x = ey for y. We define y = logx to mean x = ey.
Accordingly, since f(f−1(x)) = f−1(f(x)) = x we have

elogx = x and log ex = x for all x

18.4 Derivative of the Natural Logarithmic Func-

tion

Theorem 137.

d

dx
(log ∣x∣) = 1

x
, x ≠ 0

Proof. We use y = logx⇔ x = ey and the chain rule, Theorem 63, page 89.

x = ey ⇒ d

dx
x = d

dx
ey

⇒ 1 = de
y

dy

dy

dx
= ey dy

dx

⇒ dy

dx
= 1

ey
= 1

x

⇒ d

dx
logx = 1

x

More generally, since for x > 0 we have,

d

dx
log ∣x∣ = d

dx
logx = 1

x

and, for x < 0 we have,

d

dx
log ∣x∣ = d

dx
log(−x) = d log(−x)

d(−x)
d(−x)
dx

= 1

−x ⋅ (−1) = 1

x

We conclude,
d

dx
log ∣x∣ = 1

x
for all x except x = 0.

18.5 Alternative definition of logx

Definition 70. We could also define,

logx = ∫
x

1

1

t
dt
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Graphically, logx is the area under the curve f(t) = 1

t
for 1 ≤ t ≤ x. See Figure

37.

t

y

y = 1
x

(1,0)
⋅ ⋅

x

Figure 37

By Theorem 66, First Fundamental Theorem of Calculus, page 94, we have,

d

dx
(logx) = d

dx ∫
x

1

1

t
dt = 1

x

as in Theorem 137, so that in general,

∫
1

x
dx = logx + c

We can then develop the usual laws of logarithms from this definition.

18.6 Laws of Logarithms

Lemma 138.

log 1 = 0

Proof.

log 1 = ∫
1

1

1

t
dt = 0

Lemma 139.

logxy = logx + log y
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Proof.

logxy = ∫
xy

1

1

t
dt = ∫

x

1

1

t
dt + ∫

xy

x

1

t
dt by Theorem 70, page 97

In the second integral we put u = t

x
⇒ du

dt
= 1

x
⇒ du = dt

x
and change the limits of

integration to,

t = x⇒ u = x
x
= 1, t = xy⇒ u = xy

x
= y

to give,

∫
xy

x

1

t
dt = ∫

y

1

1

u
du = log y − log 1 = log y

Hence,

logxy = ∫
x

1

1

t
dt + ∫

y

1

1

u
du = logx + log y

Note 25. The logarithm of an infinite product.
The result logxy = logx + log y extends to,

log(
∞
∏
n=1

f(n)) =
∞
∑
n=1

log(f(n))

We have for example,

logxyz = log(xy)z = logxy + log z = logx + log y + log z

and we continue in this manner to show the logarithm of the product of any number
of variables is just the sum of their logarithms.

Lemma 140.

log
x

y
= logx − log y

Proof.

logx = log (y ⋅ x
y
) = log y + log

x

y
by Lemma 139

⇒ log
x

y
= logx − log y

Lemma 141.

logxp = p logx
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Proof.
d

dx
(logxp) = d logxp

dxp
⋅ dx

p

dx
= 1

xp
⋅ pxp−1 = p

x

Also,
d

dx
(p logx) = p ⋅ 1

x

Therefore, since the two left side derivatives both equal
p

x
we have,

logxp = p logx + c

But putting x = 1 shows c = 0.

We would then define the natural exponential function f−1(x) = ex as the inverse
of the natural logarithm function f(x) = logx, and then the definition

f(f−1(x)) = x and f−1(x)) = x

gives,

log ex = x, elogx = x

We can then go ahead and prove the exponential laws for the base e.

18.7 Exponential Laws for Base e.

Lemma 142.

ex+y = ex ⋅ ey

Proof. Let,

x = logu⇔ u = ex

y = log v⇔ v = ey

Then,

ex+y = elogu+log v = eloguv = uv = ex ⋅ ey

Lemma 143.

ex−y = e
x

ey

Lemma 144.

(ex)y = exy

The final two proofs are left to the reader.
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Note 26. To prove the exponential laws for any real base a we use elogx = x and argue
as follows in proving (say) the first law.

ax ⋅ ay = elog ax ⋅ elog ay

= ex log a ⋅ ey log a

= ex log a+y log a

= e(x+y) log a

= elog ax+y

= ax+y

18.8 logx and lnx

When students of mathematics are first introduced to the logarithm function, the
symbol lnx is used for the natural logarithm function.
The reason is that historically the abbreviation log was used for logarithms to base
10 and in the days before handheld calculators and computers, using tables of logs to
base 10 was the only way to do complex arithmetic calculations like 1000×456÷34893

But those days are long gone (where long gone means 30 years!) and mathematicians
have now taken back the log symbol to mean the natural logarithm, the inverse of
the natural exponential function.
So we will always use,

logx for lnx

18.9 The derivative of log g(x).
To differentiate log g(x) we use the chain rule thus,

d

dx
log g(x) = d log g(x)

dg(x) ⋅ dg(x)
dx

= g
′(x)
g(x)

Example 95. With g(x) = sinx,

d

dx
log(sinx) = cosx

sinx
◇

It therefore follows that,

∫
g′(x)
g(x) dx = log g(x) + c

Example 96. With g(x) = x4 + 6⇒ g′(x) = 4x3 we first take care of the 4 and then
just use the result above thus,

∫
x3

x4 + 6
dx = 1

4 ∫
4x3

x4 + 6
dx = 1

4
log(x4 + 6) + c. ◇
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18.10 Technique of logarithmic differentiation

We can differentiate complicated functions by using the product and quotient rules
but it is often much simpler to proceed as in the following example. We use the
logarithm properties, the derivative of log g(x) and the chain rule.

Example 97. To differentiate

y = (x3 − 1)4
√

3x − 1

x2 + 4

we take logs of both sides and use the rules of logarithms to expand the right side,

log y = 4 log(x3 − 1) + 1

2
log(3x − 1) − log(x2 + 4)

then differentiate both sides with respect to x using the chain rule on the left side and
the derivative of log g(x) on the right.

d log y

dx
= 4

x3 − 1
⋅ 3x2 + 1

2
⋅ 3

3x − 1
− 2x

x2 + 4

⇒ d log y

dy
⋅ dy
dx

= ( 12x2

x3 − 1
+ 1

2
⋅ 3

3x − 1
− 2x

x2 + 4
)

⇒ 1

y
⋅ dy
dx

= ( 12x2

x3 − 1
+ 1

2
⋅ 3

3x − 1
− 2x

x2 + 4
)

⇒ dy

dx
= y ⋅ ( 12x2

x3 − 1
+ 1

2
⋅ 3

3x − 1
− 2x

x2 + 4
)

⇒ dy

dx
= (x3 − 1)4

√
3x − 1

x2 + 4
⋅ ( 12x2

x3 − 1
+ 1

2
⋅ 3

3x − 1
− 2x

x2 + 4
)

18.11 Taylor Series of log(1 + x).
Theorem 145.

log(1 + x) = x − x
2

2
+ x

3

3
− x

4

4
+ . . . =

∞
∑
k=0

(−1)k x
k+1

k + 1
, ∣x∣ < 1

Proof. Consider the convergent geometric series,

1

1 − x = 1 + x + x2 + x3 + . . . , ∣x∣ < 1
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Integrating with respect to x and using ∫
g′(x)
g(x) dx = log(g(x)) + c gives,

∫
1

1 − x dx = ∫ (1 + x + x2 + . . . + xk + . . .) dx, ∣x∣ < 1

−∫
−1

1 − x dx = ∫ (1 + x + x2 + . . . + xk + . . .) dx, ∣x∣ < 1

− log(1 − x) = x + x
2

2
+ x

3

3
+ x

4

4
+ . . . + xk+1

k + 1
+ . . . + c, ∣x∣ < 1

Substituting x = 0 gives c = 0 and substituting −x for x gives,

log(1 + x) = x − x
2

2
+ x

3

3
− x

4

4
+ . . . + (−1)k x

k+1

k + 1
+ . . . , ∣x∣ < 1 (18.11.1)

=
∞
∑
k=0

(−1)k x
k+1

k + 1
, ∣x∣ < 1

Substituting y = 1 + x⇒ x = y − 1 into ∣x∣ < 1⇒ −1 < x < 1, we have,

0 < y − 1 < 2⇒ 0 < y < 2

and thus,

log y = (y − 1) + (y − 1)2

2
+ (y − 1)3

3
− (y − 1)4

4
+ . . .

=
∞
∑
k=0

(−1)k (y − 1)k+1

k + 1
, 0 < y < 2

or in the variable x,

logx =
∞
∑
k=0

(−1)k (x − 1)k+1

k + 1
, 0 < x < 2

Note 27. Putting x = 2 we have,

log 2 = 1 − 1

2
+ 1

3
− 1

4
+ . . .

This happens to be a fact but can we really do this since the Taylor series is only true
for 0 < x < 2?
The dilemma is solved by applying a convergence test we did not prove, namely, the
alternating series test which states,

∞
∑
n=1

(−1)n+1an converges if and only if lim
n→∞

an = 0.

This is true for the alternating series
∞
∑
n=1

(−1)n+1
1

n
since lim

n→∞
1

n
= 0. We could therefore

write the Taylor series for logx as,

logx =
∞
∑
n=0

(−1)n (x − 1)n+1

n + 1
, 0 < x ≤ 2.
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Part VIII – Exotic Tastings - continued

Provisioned with sufficient theory of exponential, logarithmic and trigonometric func-
tions and in particular their related Taylor series, we can now sample our final exotic
tasting, namely the Euler Zeta function. We find its values at even natural numbers.

We are finished with our Shopping Excursions and ready to tackle the full menu.



Chapter 19

Euler’s Zeta Function

In Chapter 17 we developed the formulas for summing finite series of the type
m

∑
n=1

ns, s ∈ N. These formulas contained the Bernoulli numbers.

We now consider the reciprocal analogues, they will, however, be infinite series. They
are called Euler zeta functions and have the form,

ζ(s) =
∞
∑
n=1

1

ns
, s ∈ R.

By the p-series test, Theorem 77, page 105, they converge only for s > 1.

If s = 1 then ζ(1) =
∞
∑
n=1

1

n
is the harmonic series which, as we proved in Theorem 72,

page 101, diverges. We will develop a formula for ζ(2k), k ∈ N. It may come as little
surprise that this formula also contains the Bernoulli numbers.
We first explore sin(nx) and cos(nx) where n is a positive integer so that we can give
a rigorous proof that,

sinπx

πx
=

∞
∏
r=1

(1 − x
2

r2
)

Course: Tasting Plate III
Ingredients
Trigonometrical functions and identities
Euler’s Zeta Function
Bernoulli numbers and their theory
Directions

Follow Euler and first prove the classic infinite product formula for
sinπx

πx
and then

find the formula for ζ(2k), k ∈ N.

219



220 Chapter 19. Euler’s Zeta Function

19.1 A Trigonometric Exploration

We use the addition formulas of Theorem 111, page 163, to obtain the double angle
formulas by putting A for B.

sin(A +B) = sinA cosB + cosA sinB ⇒ sin 2A = 2 sinA cosA

cos(A +B) = cosA cosB − sinA sinB ⇒ cos 2A = cos2A − sin2A

Using the Pythagorean Identity from Theorem 108, page 160, namely,

sin2A + cos2A = 1

⇒ sin2A = 1 − cosA

⇒ cos2A = 1 − sin2A

we derive,

cos 2A = cos2A − sin2A

= 2 cos2A − 1

= 1 − 2 sin2A

Then, again using the addition formulas,

sin 3x = sin(2x + x) = sin 2x cosx + cos 2x sinx

= 2 sinx cos2 x + (1 − 2 sin2 x) sinx

= 2 sinx(1 − sin2 x) + sinx(1 − 2 sin2 x)
= 3 sinx − 4 sin3 x

= P3(sinx) say, (19.1.1)

where P3(sinx) means a polynomial in sinx of degree 3.
Similarly,

cos 3x = cos(2x + x)
= cos 2x cosx − sin 2x sinx

= (1 − 2 sin2 x) cosx − 2 sin2 x cosx

= cosx(1 − 4 sin2 x)
= cosxQ3−1(sinx) say (19.1.2)

where Q3−1(sinx) is a polynomial in sinx of degree 3 − 1. (we want the subscript to
reflect the starting value of cos 3x.)
Further,

sin 5x = sin(3x + 2x) = sin 3x cos 2x + cos 3x sin 2x

= (3 sinx − 4 sin3 x)(1 − 2 sin2 x) + (cosx(1 − 4 sin2 x))(2 sinx cosx)
= (3 sinx − 4 sin3 x)(1 − 2 sin2 x) + (1 − 4 sin2 x)(2 sinx cos2 x)
= (3 sinx − 4 sin3 x)(1 − 2 sin2 x) + (1 − 4 sin2 x)(2 sinx(1 − sin2 x))
= P5(sinx) say.

This exploration suggests the following lemma which we prove by induction.
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Lemma 146.
Let n = 2k + 1 be a positive odd integer. Then,

sin(nx) = Pn(sinx)
cos(nx) = cosx Qn−1(sinx)

where Pn(sinx),Qn−1(sinx) are polynomials in the variable sinx of degree at most n
and n − 1 respectively.

Proof. We use induction on k where n = 2k + 1.
Let S(k) be the statements,

sin(nx) = Pn(sinx)
cos(nx) = cosx Qn−1(sinx)

where Pn(sinx) and Qn−1(sinx) are polynomials in sinx of degree at most n = 2k + 1
and n − 1 = 2k respectively.

Basis Step: S(1) is true since by (19.1.1) and (19.1.2) we have sin 3x = P3(sinx)
and cos 3x = cosxQ3−1(sinx) (Remember n = 2k + 1.)

Supposition step: Assume S(k − 1) is true, that is,

sin(2k − 1) = P2k−1(sinx) (19.1.3)

cos(2k − 1) = cosx Q2k−2(sinx) (19.1.4)

Induction Step: We want to show S(k) is true, that is, sin(2k + 1)x is a polynomial
in sinx of degree at most 2k + 1 and cos(2k + 1)x is cosx times a polynomial in sinx
of degree at most 2k. We have1,

sin(2k + 1)x
= sin((2k − 1)x + 2x)
= sin(2k − 1)x cos 2x + cos(2k − 1)x sin 2x

which, using (19.1.3) and (19.1.4),

= P2k−1(sinx)(1 − 2 sin2 x) + cosx Q2k−2(sinx)2 sinx cosx

= P2k−1(sinx) + P2k+1(sinx) + sinx(1 − sin2 x)Q2k−1(sinx)
= P2k−1(sinx) + P2k+1(sinx) +Q2k−1(sinx) −Q2k+1(sinx)

which is a polynomial in sinx of degree at most 2k + 1 and, similarly,

cos(2k + 1)x = cos((2k − 1)x + 2x)
= cos(2k − 1)x cos 2x − sin(2k − 1)x sin 2x

= cosx Q2k−2(sinx)(1 − 2 sin2 x) − 2 sinx cosxP2k−1(sinx)
= cosx{Q2k−2(sinx) +Q2k(sinx) − P2k(sinx)}

1Note -1 or any integer is “absorbed” into Pn(sinx) or Qn−1(sinx).
For example 3Pn(sinx) = Pn(sinx).
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is a polynomial in sinx of degree at most 2k multiplied by cosx.

19.2 Infinite product for sinπx/πx
Theorem 147.

sinπx

πx
=

∞
∏
r=1

(1 − x
2

r2
)

Proof. By Lemma 146 let,

sinnx = Pn(sinx) = b0 + b1 sinx + b2 sin2 x + . . . + bn sinn x

Putting x = 0 gives 0 = b0. Differentiating with respect to x gives,

n cosnx = b1 cosx + 2b2 sinx cosx + 2b2 sinx cosx + . . . + nbn sinn−1 x cosx

Putting x = 0 gives n = b1. We then have,

sinnx = n sinx + b2 sin2 x + . . . + bnsinnx
So we have,

sinnx

n sinx
= 1 + a1 sinx + a2 sin2 x + . . . + an−1 sinn−1 x, say

= 1 + a1 sinx + a2 sin2 x + . . . + a2k sin2k x (19.2.1)

where we put n = 2k + 1 (remember in the statement of Lemma 146 that n is odd),

and
bn
n

= a2k, ai ∈ Q.

Note that for x = ±kπ
n

that sinnx = 0, so the left side of (19.2.1) vanishes for these

values of x. So the 2k values of x,

x ∈ {± sin(π
n
) ,± sin(2π

n
) ,± sin(3π

n
) , . . . ,± sin(kπ

n
)}

are distinct numbers at which
sinnx

n sinx
vanishes or each x ± sin(kπ

2
) is a factor.

Since
sinnx

n sinx
has degree 2k and constant term 1 and a polynomial of degree n can

have at most n factors, it must factor as,

sinnx

n sinx

=

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
⎛
⎜
⎝

1 − sinx

sin
π

n

⎞
⎟
⎠

⎛
⎜
⎝

1 − sinx

− sin
π

n

⎞
⎟
⎠

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
⎛
⎜⎜
⎝

1 − sinx

sin
2π

n

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

1 − sinx

− sin
2π

n

⎞
⎟⎟
⎠
⋯

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
⎛
⎜⎜
⎝

1 − sinx

sin
kπ

n

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

1 − sinx

− sin
kπ

n

⎞
⎟⎟
⎠

=
k

∏
r=1

⎛
⎜
⎝

1 − sin2 x

sin2 πr

n

⎞
⎟
⎠
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Putting x = πx
n
, we have,

sinπx

n sin(πx
n

)
=

k

∏
r=1

⎛
⎜
⎝

1 −
sin2 πx

n

sin2 πr

n

⎞
⎟
⎠

(19.2.2)

We claim that taking the limit as n = 2k + 1→∞ gives for the left side of (4.2.2),

lim
n→∞

sinπx

n sin(πx
n

)
= sinπx

πx
(19.2.3)

To show this we begin via Theorem 112 on page 164 with lim
h→0

sinh

h
= 1.

Putting k = 1

h
and noting h→ 0⇒ k = 1

h
→∞, gives,

lim
k→∞

k sin
1

k
= 1.

Putting k = n

πx
and noting k →∞⇒ n = 2k + 1→∞ gives

lim
n→∞

n

πx
sin(πx

n
) = 1 (19.2.4)

So multiplying the left side of (19.2.3) by the left side of (19.2.4) which is just 1, we
conclude,

lim
n→∞

sinπx

n sin(πx
n

)
= lim
n→∞

sinπx

n sin(πx
n

)
× lim
n→∞

n

πx
sin(πx

n
) = sinπx

πx
(19.2.5)

Taking the limit as n = 2k + 1→∞ gives for the right side of (19.2.2),

lim
n→∞

k

∏
r=1

⎛
⎜⎜⎜
⎝

1 −
sin2 (πx

n
)

sin2 (πr
n

)

⎞
⎟⎟⎟
⎠

= lim
n→∞

k

∏
r=1

⎛
⎜⎜⎜
⎝

1 −
sin2 (πx

n
)

(πx
n

)
2 ×

(πr
n

)
2

sin2 (πr
n

)
×

(πx
n

)
2

(πr
n

)
2

⎞
⎟⎟⎟
⎠

by inserting
(πr
n

)
2

(πr
n

)
2 and

(πx
n

)
2

(πx
n

)
2
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=
∞
∏
r=1

(1 − 1 ⋅ 1 ⋅ x
2

r2
)

using lim
h→0

sinh

h
= 1 in the forms h = πx

n
, h = πr

n
so lim

n→∞
sinπx/n
πx/n = lim

n→∞
sinπr/n
πr/n = 1

=
∞
∏
r=1

(1 − x
2

r2
)

We conclude from (19.2.5) and (19.2.6) that,

sinπx

πx
=

∞
∏
r=1

(1 − x
2

r2
) (19.2.6)

We are now prepared to find values of ζ(2k).

19.3 Hyperbolic Functions

Definition 71. hyperbolic sine function
We define the hyperbolic sine function sinhx by,

sinhx = e
x − e−x

2

Lemma 148. For all x ∈ R,
sinhπx

πx
=

∞
∏
n=1

(1 + x
2

n2
) (19.3.1)

Proof. From Equation (15.5.1) of Corollary 121 on page 174,

sinx = e
ix − e−ix

2i

⇒ −i sin ix = −ie
i2x − e−i2x

2i
putting x = ix and multiplying by −i

= e
x − e−x

2
⇒ −i sin ix = sinhx (19.3.2)

By putting x = ix in (19.2.6) we have,

sinπx

πx
=

∞
∏
r=1

(1 − x
2

r2
) gives,

sin iπx

iπx
=

∞
∏
r=1

(1 − (ix)2

r2
)

sin iπx

iπx
=

∞
∏
r=1

(1 + x
2

r2
) (19.3.3)
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Therefore using (19.3.2),

sinhπx

πx
= −i sin iπx

πx

= sin iπx

iπx

=
∞
∏
r=1

(1 + x
2

r2
) by (19.3.3) (19.3.4)

19.4 Formula for ζ(2k)
Theorem 149.

ζ(2k) = (−1)k+1π2k 22k−1

(2k)!B2k

where Bn is the nth Bernoulli number.

Proof.
We have by taking logarithms of both sides2 of (19.3.4) multiplied by πx that,

sinhπx = πx
∞
∏
n=1

(1 + x
2

n2
)

⇒ log sinhπx = log{πx
∞
∏
r=1

(1 + x
2

r2
)} (19.4.1)

The left side of (19.4.1) becomes,

log sinhπx = log [e
πx − e−πx

2
]

= log [e
πx

2
(1 − e−2πx)]

= log eπx + log(1 − e−2πx) − log 2

= πx + log(1 − e−2πx) − log 2 (19.4.2)

The right side of (19.4.1) is dealt with by again noting Note 25 on page 213 and
substituting x = e−2πx in the Taylor series expansion3 of log(1 + x), namely,

log(1 + x) =
∞
∑
k=0

(−1)kxk+1

k + 1
=

∞
∑
k=1

xk

k
, ∣x∣ < 1.

2Refer to Note 25, page 213 for the logarithm of an infinite product

3Refer to Section 18.11, equation (18.11.1) on page 216.
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We have for the right side of (19.4.1),

log{πx
∞
∏
r=1

(1 + x
2

r2
)} = logπ + logx +

∞
∑
n=1

log (1 + x
2

n2
)

= logπ + logx +
∞
∑
n=1

∞
∑
k=1

(−1)k+1 x
2k

kn2k
(19.4.3)

Inserting (19.4.2) and (19.4.3) into (19.4.1), noting ζ(2k) =
∞
∑
1

1

n2k
and assuming we

can interchange the order of summation, we now have,

πx + log(1 − e−2πx) − log 2 = logπ + logx +
∞
∑
n=1

∞
∑
k=1

(−1)k+1 x
2k

kn2k

= logπ + logx +
∞
∑
k=1

(−1)k+1x
2k

k

∞
∑
n=1

1

n2k

= logπ + logx +
∞
∑
k=1

(−1)k+1x
2k

k
ζ(2k)

Differentiating with respect to x we have,

π + 2πe−2πx

1 − e−2πx
= 1

x
+

∞
∑
k=1

(−1)k+1 2k

k
x2k−1ζ(2k)

Multiplying by x,

πx + 2πxe−2πx

1 − e−2πx
= 1 +

∞
∑
k=1

(−1)k+1 2k

k
x2kζ(2k)

Putting
x

2
for x we have,

πx

2
+

2π x2e
−2π x

2

1 − e−2π x
2

= 1 +
∞
∑
k=1

(−1)k+1 2k

k

x2k

22k
ζ(2k)

πx

2
+ ( πxe

−πx

1 − e−πx) = 1 +
∞
∑
k=1

(−1)k+1 2k

k

x2k

22k
ζ(2k)

Multiplying numerator and denominator of the second term on the left side by eπx

we have,

πx

2
+ ( πxe

−πx

1 − e−πx ×
eπx

eπx
) = 1 +

∞
∑
k=1

(−1)k+1 2k

k

x2k

22k
ζ(2k)

πx

2
+ πx

eπx − 1
= 1 +

∞
∑
k=1

(−1)k+1 x2k

22k−1
ζ(2k)

Recall, the Bernoulli numbers are defined by,

x

ex − 1
= B0 +

B1

1!
x + B2

2!
x2 + B3

3!
x3 . . . =

∞
∑
k=0

Bk

k!
xk
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So here with πx replacing x, we have,

∞
∑
k=0

Bk

k!
(πx)k + πx

2
= 1 +

∞
∑
k=0

(−1)k+1 x2k

22k−1
ζ(2k)

Comparing powers of x2k gives,

B2k

(2k)!π
2k = (−1)k+1 ζ(2k)

22k−1

⇒ ζ(2k) = (−1)k+1π2k 22k−1

(2k)!B2k

Example 98. Using the values of B2k we found via Theorem 135 on page 201,

k = 1, ζ(2) =
∞
∑
n=1

1

n2
= (−1)2π2 2

2!
B2 =

π2

6

k = 2, ζ(4) =
∞
∑
n=1

1

n4
= (−1)3π4 23

4!
B4 =

π4

90

k = 3, ζ(6) =
∞
∑
n=1

1

n6
= π6

945



228 Chapter 19. Euler’s Zeta Function

Note 28.

We defined above the hyperbolic sine function sinhx = ex − e−x
2

. There is a corre-

sponding hyperbolic cosine function coshx = ex + e−x
2

. You can complete the algebra

and show cosh2 x − sinh2 x = 1. These functions which parallel the trigonometric sine
and cosine functions for which cos2 x+ sin2 x = 1, are called hyperbolic functions since

they are very useful in the mathematics of hyperbolas with equations
x2

a2
− y

2

b2
= 1 and

graphs like this:

x

y

Figure 37

just as the sine and cosine functions are very useful in the mathematics of ellipses

with equations
x2

a2
+ y

2

b2
= 1 and graphs like this,

x

y

Figure 38



Part VIII

A Prime Banquet

The Entrée Courses
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Euclid to Gauss to Dirichlet

Primes have always fascinated mathematicians. They are the building blocks of
the integers as evidenced by the fundamental theorem of arithmetic, yet they seem
out of control, random and uncountable. In Chapter 28 we shall study the Riemann
Hypothesis which many mathematicans hope should provide the long-sought control.

In ancient times, Euclid proved there are an infinity of primes.
In 1837, Dirichlet proved one of the most remarkable theorems of analytic number

theory, namely there are an infinite number of primes in any arithmetic progression
given by a + bn, gcd(a, b) = 1, a, b, n ∈ N. For example,

{p∣p = 4n + 1} = {5,13,17, . . . ,101,109,113, . . .}
{p∣p = 6n + 5} = {5,11,17,23, . . . ,107, . . .}

{p∣p = 11n + 7} = {7,29,73, . . .}
{p∣p = 72n + 37} = {37,109,181, . . .}

The proofs that there are an infinite number of primes of the forms 4n + 1 and
4n + 3 are particular examples of this general proof. We begin with them.

It is easy to prove there are an infinite number of primes of the form 4n + 3. This
proof, also due to Euclid, uses the same method as that for proving the infinitude of
primes.

The proof that there are an infinite number of primes of the form 4n + 1 is more
difficult. It is instructive to prove it in several different ways. Each requires the
development of a suitable framework. The last of these proofs that we consider is a
special case of Dirichlet’s theorem in the a = 1, b = 4 or 4n + 1 case.

As a bonus, we will also find another proof of the 4n + 3 case.



Chapter 20

All Primes and 4n + 3 Primes

Course: Entrée I
Ingredients
Primes
Arithmetic progressions
Congruences
Directions
Prove there are an infinite number of primes.
Prove there are an infinite number of primes of the form 4n + 3

20.1 General observations

Note 29.
Before we begin this series of proofs, let us make a general observation about numbers
of the forms 4n + 1 and 4n + 3. All odd numbers, and therefore primes other than 2,
are of the form 4n + 1 or 4n + 3 which for the odd primes we can also state as each
prime p satisfies either p ≡ 1(mod 4) or p ≡ 3(mod 4).

� If we multiply two primes of the form 4n+1 we get a number of the form 4n+1
since,

(4k + 1)(4j + 1) = 4(4kj + j + k) + 1 ≡ 1(mod 4)

� If we multiply a 4n + 1 prime by a 4k + 3 prime we get a number of the form
4k + 3 since,

(4k + 1)(4j + 3) = 4(4kj + j + k) + 3 ≡ 3(mod 4)

� If we multiply two primes of the form 4n+3 we get a number of the form 4n+1
since,

(4k + 3)(4j + 3) = 4(4kj + j + k + 2) + 1 ≡ 1(mod 4)

231
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It therefore follows that a number of the form 4n + 1 must factor as an even or
zero number of primes of the form 4k+3 and any number of primes of the form 4n+1.

Whereas a number of the form 4n+3 must factor as an odd number (at least one)
of primes of the form 4k + 3 and any number of primes of the form 4n + 1.

20.2 Infinitude of primes

Definition 72. prime number
A prime is any natural number other than 1 which is divisible only by 1 and itself.

The proof that there are an infinite number of primes is ancient! The list begins
2,3,5,7,11,13,17,19,23, . . .

Theorem 150. (Euclid)
There are an infinite number of primes.

Proof.
Suppose not and that p1, p2, . . . , pn are all the primes.
Consider the number N = p1p2⋯pn + 1.
By the Fundamental Theorem of Arithmetic, Theorem 19 on page 43 we can factor
N as a unique product of primes, say N = q1q2⋯qs, where we may have s = 1 making
N itself a prime.
Now no qi is equal to any of the primes p1, p2, . . . , pn since none of these divide N
in each case the division leaving a remainder of 1, whereas all the qi do divide N.
Thus there are prime/s different to p1, p2, . . . , pn and the supposition there are a finite
number of primes is incorrect.

20.3 Primes in an arithmetic progression

Definition 73. arithmetic progression
An arithmetic progression is a sequence of numbers generated by adding the same
number (the common difference d) to generate the next number. If a is the first term,
the progression will be,

a, (a + d), (a + 2d), . . .

where the nth term will be a + (n − 1)d.

Example 99. For example, if we begin with 7 and the common difference is 5 then
we generate,

7,7 + 5,7 + 5 + 5,7 + 5 + 5 + 5, . . . = 7,12,17,22, . . .

Dirichlet’s Theorem is that any arithmetic progression generates an infinite num-
ber of primes if gcd(a, d) = 1. We begin with a = 3, d = 4 or the 4n + 3 numbers.
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20.4 Primes of the form 4n + 3.

We first need a more extensive introduction ot the theory of congruences.

20.4.1 Congruences

Definition 74. congruence
Let m be a positive integer. If m divides the difference a − b of two integers a, b, we
say “a is congruent to b modulo m,” and we write,

m∣a − b⇔ a ≡ b(mod m)

Note that,
m∣a − b⇒ a − b =mk⇒ a = b +mk,k ∈ Z

so that,
a ≡ b(mod m) ⇔ a = b +mk,k ∈ Z

We say a and b are incongruent modulo m if a�≡ b(mod m)

.

Example 100.

23 = 5 × 4 + 3 ⇔ 23 ≡ 3(mod 5)
23 = 5 × 3 + 8 ⇔ 23 ≡ 8(mod 5)
23 = 5 × 2 + 13 ⇔ 23 ≡ 13(mod 5)
23 = 5 × −3 + 38⇔ 23 ≡ 38(mod 5) ◇

Definition 75. residue
If a ≡ b(mod m), b is called a residue of a modulo m. It is any possible remainder
when a is divided by m.

Example 101. In the previous example the residues of 23 modulo 5 are 3,8,13 and 38.

Note 30. In this example we call 3 the least non-negative remainder when 23 is
divided by 5. Unless otherwise specified, given a ≡ b(mod m) we will always assume b
is the least non-negative residue. Thus, for example, the solution to 37(mod 11) will
unambiguously be 4 unless we clearly state otherwise.

Definition 76. complete residue system
The set of integers {0,1,2,3, . . . ,m−1} is called a complete residue system modulo m
since when any integer n is divided by m the least non-negative solutions to
n(mod m) are 1,2,3, . . . ,m − 1.

Example 102. If any integer n is divided by 7 the least non-negative remainders are
0,1,2,3,4,5 and 6. ◇
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Theorem 151. (Congruences)
Let m be a positive integer and a, b, c be integers.

(i) a ≡ b(mod m) ⇒ b ≡ a(mod m)

(ii) a ≡ b(mod m), b ≡ c(mod m) ⇒ a ≡ c(mod m)

(iii) a ≡ b(mod m), c ≡ d(mod m) ⇒ a ± c ≡ b ± d(mod m)

(iv) a ≡ b(mod m) ⇒ ac ≡ bc(mod m) for all c ∈ Z

(v) For all c ∈ Z where c∣a, c∣b we have a ≡ b(mod m) if and only if
a

c
≡ b
c
(mod m)

(vi) ca ≡ cb(mod m) ⇒ a ≡ b(mod m) if gcd(a, b) = 1.

(vii) a ≡ b(mod m), c ≡ d(mod m) ⇒ ac ≡ bd(mod m)

(viii) a ≡ b(mod m) ⇒ an ≡ bn(mod m) for all n ∈ N.

(ix) If d∣m,d > 0, and a ≡ b(mod m) then a ≡ b(mod d)

Proof.
The proofs are mostly left to the reader. They all proceed from the definition,

a ≡ b(mod m) ⇒ a = b +mk,k ∈ Z.

For example, the proof of (iii), which we will use later, is

a ≡ b(mod m), c ≡ d(mod m)
⇔ a − b =mk, c − d =mj
⇒ (a ± c) ∓ (b ± d) =m(k ± j) =ml, l ∈ Z
⇒ a ± c ≡ b ± d(mod m)

We will also use (vii) a ≡ b(mod m), c ≡ d(mod m) ⇒ ac ≡ bd(mod m) whose proof
is as follows.

a ≡ b(mod m) ⇒ a = b + km
c ≡ d(mod m) ⇒ c = d + jm
⇒ ac = bd +m(bj + dk + kjm)
⇒ ac ≡ cd(mod m)



20.5. Proof of the 4n + 3 case 235

20.5 Proof of the 4n + 3 case

We can now prove the case p = 4n + 3, n ∈ N.

Theorem 152.
There are an infinite number of primes p of the form p = 4n+3, n ∈ N or p ≡ 3( mod 4).

Proof. Suppose 3,7,11, . . . , pn are all the primes of the form p = 4n + 3, n ∈ N.
Consider,

M = (4 ⋅ 3 ⋅ 7 ⋅ 11⋯pn) + 3

Then M ≡ 3(mod 4) and none of the finite number of primes of the form 4n + 3 can
divide M since each would leave a remainder of 3.
Write M = q1q2⋯qs as the product of primes. At least1 one of the primes qi must be
of the form 4n + 3 since the product of two primes of the form p = 4n + 1 is again of
the form 4n + 1.
But no qi is among the set 3,7,11, . . . , pn since if M is divided by any of these numbers
there is a remainder of 3. So there exists another prime of the form 4n + 3 and
the supposition is incorrect and there are an infinite number of primes of the form
4n + 3.

1See Note 29 on page 231
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Primes of the form 4n+1: Method 1

There are an infinite number of primes p of the form 4n + 1 or p ≡ 1(mod 4).
We will prove this theorem using five different methods. Each method allows us to
explore a different branch of number theory.

The first method of proof uses Fermat’s Little Theorem. The framework we need
is Euclid’s totient function φ(m) and a little more of the theory of congruences.

Course: Entrée II
Ingredients
Euler’s totient function
Linear congruences
Directions
Solve linear congruences
Prove Euler’s Theorem
Prove Fermat’s Little Theorem
Prove there are an infinite number of primes of the form 4n + 1

21.1 Euler’s Totient Function

Definition 77. relatively prime
Two natural numbers a, b are relatively prime if gcd(a, b) = 1.

Example 103. 6 and 7 are relatively prime since gcd(6,7) = 1.
6 and 1 are relatively prime since gcd(6,1) = 1
3 and 6 and not relatively prime since gcd(3,6) = 3. ◇

Definition 78. Euler’s totient function
The function φ(m) denotes the number of positive integers less than or equal to m
that are relatively prime to m. This function φ(m) is called the Euler totient function.
We define φ(1) = 1.
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Example 104.
φ(10) = 4 since only the numbers 1,9,7,3 less than 10 are relatively prime to 10.
φ(11) = 10 since all natural numbers less 11 are relatively prime to it. ◇

Note that in general for all primes p that φ(p) = p − 1 since gcd(p, n) = 1 for all
natural numbers n less than p or for {1,2,3,4, . . . , p − 1}.

21.2 Congruence Lemmas

Definition 79. linear equation
A linear equation in the variables x, y is of the form ax + by = c.

Definition 80. linear congruence
A linear congruence is of the form x ≡ y(mod n) which is equivalent to the linear
equation x = y + km.

Let us now investigate the integer solutions of the linear congruence ax ≡ b(mod n).
We are building up the theory of congruences we began with the Chinese Remainder
Theorem, Theorem 81 on page 119.

Theorem 153. (Solution of Linear Congruences)
The linear congruence,

ax ≡ b(mod n), (21.2.1)

a) has solutions if and only if gcd(a,n) divides b.

b) if gcd(a,n) = 1, the congruence has a unique solution.

Proof. a) Consider ax ≡ b(mod n). Suppose there is a solution x0 such that we
have ax0 ≡ b( mod n). There there exists a y0 such that ax0 = b+ny0 by definition
of a congruence.
Thus x0, y0 is a solution of the linear equation ax−ny = b. But by the Theorem
15(b), page 41, ax ≡ b(mod n) ⇔ ax − ny = b has solutions if and only if
gcd(a,n)∣b.

b) Suppose gcd(a,n) = 1. From Theorem 78, page 110, if x = x0 and y = y0 is a
particular solution of ax ≡ (mod n) ⇔ ax − ny = b , the general solution for all
k ∈ Z is,

x = x0 + nk, y = y0 + ak.
But for all k ∈ Z, x0 + nk ≡ x0(mod n).
Hence x ≡ x0(mod n) is the only solution of ax ≡ b(mod n).

Let us now prove the theorem concerning primes of the form 4n+1. We first need
a lemma and two famous classic theorems of Euler and Fermat.
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Lemma 154.
Let a,m be any positive integers such that gcd(a,m) = 1.
Let {x1, x2, . . . , xn} be the set of all the positive integers less than m with gcd(xi,m) = 1
for 1 ≤ i ≤ n.
Then axi ≡ xj( mod m) for some i ≠ j,1 ≤ i, j ≤ n. In other words, the set {ax1, ax2, . . . , axn}
has the same residues modulo m as does {x1, x2, . . . , xn}.
By definition the number of elements in both sets is φ(m).

Proof. Let a,m be any positive integers such that gcd(a,m) = 1.
Let {x1, x2, . . . , xn} be the set of all the positive integers less than m with
gcd(xi,m) = 1 for 1 ≤ i ≤ n.
Suppose {ax1, ax2, . . . , axn} has {y1, y2, . . . yn} as residues modulo n.
We need to show yi ≠ yj for all i ≠ j so there are n distinct values of yj. We then need
to show any yj = xi for some i ∶ 1 ≤ i ≤ n so that {y1, y2, . . . , yn} = {x1, x2, . . . , xn}.
Beginning with {ax1, ax2, . . . , axn} having {y1, y2, . . . yn} as residues modulo n we
have,

axi ≡ yj(mod m) for somej ∶ 1 ≤ j ≤ n
⇔ axi − yj = km for somek ∈ Z

We claim gcd(yj,m) = 1.
For suppose gcd(yj,m) = d, d > 1, making yj = cd,m = ld. Then,

axi + yj = km⇒ axi − cd = kld⇒ d(c + lk) = axi
So either d∣a making gcd(a,m) = d or d∣xi making gcd(xi,m) = d, which both contra-
dict the assumptions unless d = 1. Hence, gcd(yj,m) = 1.
But if gcd(yj,m) = 1 and gcd(xi,m) = 1 then yj = xi for some i.
We cannot have yj = yi since that would mean

axi ≡ axj(mod m)
⇒ a(xi − xj) ≡ 0(mod m)

⇒m ∣ a(xi − xj)

But m��∣a and we cannot have m ∣ (xi − xj) since both xi and xj are less than m. We
conclude the yj are all distinct and therefore,

{y1, y2, . . . , yn} = {x1, x2, . . . , xn}

and,
axi ≡ xj(mod m)

for some i ≠ j,1 ≤ i, j ≤ n.
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Example 105. Take m = 12, a = 5 and note gcd(12,5) = 1.
First the set {1,5,7,11} are the positive integers less than and relatively prime to 12.
Consider the same set with each element multiplied by 5, that is, {5,25,35,55}.
Then,

5 ≡ 5(mod 12)
25 ≡ 1(mod 12)
35 ≡ 11(mod 12)
55 ≡ 7(mod 12)

shows the two sets have the same residues 1,5,7,11 modulo 12. ◇

21.3 Euler’s and Fermat’s Theorems

Recall φ(n) is the number of positive integers less than n that are relatively prime to
n and if p is a prime then φ(p) = p − 1.

Theorem 155. (Euler’s Theorem)
If gcd(a,m) = 1 then aφ(m) ≡ 1(mod m).

Proof.
Let a,m ∈ N with gcd(a,m) = 1.
Let r1, r2, . . . , rs be all the positive integers less than m that are relatively prime to n,
making Euler’s φ(m) = s. By Lemma 154, page 238 and Theorem 151(vii), page 234,

ar1ar2⋯ars ≡ r1r2⋯rs(mod m)
⇒ asr1r2⋯rs ≡ r1r2⋯rs(mod m)
⇔ as ≡ 1(mod m)

Or, aφ(m) ≡ 1(mod m).

Theorem 156. (Fermat’s Little Theorem)
If p is a prime then for all a ∈ N,

ap ≡ a(mod p) ⇔ ap−1 ≡ 1(mod p)

Proof.
Let p be a prime and a ∈ N. There are two cases.
Case 1: If p∣a⇒ a = kp then a(mod p) = kp(mod p) = 0 and ap = kppp ≡ 0(mod p) so
ap ≡ a(mod p), both being 0.
Case 2: If p��∣a then gcd(a, p) = 1 so by Euler’s Theorem 155,

aφ(p) = ap−1 ≡ 1(mod p)

Then, ap−1 ≡ 1(mod p) ⇒ ap ≡ a(mod p).
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21.4 Method 1 Proof

Theorem 157.
There are an infinite number of primes p of the form 4n + 1 or p ≡ 1(mod 4).

Proof.
Let N be a positive integer. Let,

M = [N(N − 1)(N − 2)⋯2 ⋅ 1]2 + 1

= [N !]2 + 1

Then N is odd.
Let p be a prime number greater than N such that p∣M. We note p must exist since
either M has no factors and p =M or M has prime factors none of which can be the
numbers 1,2, . . . ,N since each of them leaves a remainder of 1 when it divides N.
Then,

M ≡ 0(mod p)
⇒ [N !]2 + 1 ≡ 0(mod p)
⇒ [N !]2 ≡ −1(mod p)

⇒ ([N !]2)
p−1
2 ≡ (−1) p−12 (mod p)

⇒ [N !]p−1 ≡ (−1) p−12 (mod p) (21.4.1)

Substitute a = N ! in Fermat’s Little Theorem 156, namely ap−1 ≡ 1(mod m), to give,

[N !]p−1 ≡ 1(mod p) (21.4.2)

⇒ 1(mod p) ≡ (−1) p−12 (mod p), by (21.4.1) and (21.4.2)

⇒ 1 = (−1) p−12

⇒ p − 1

2
= 2k, k ∈ Z − {0}

⇒ p = 4k + 1

Since p > N and we can have take N as large as we like, then we can find a
p = 4k + 1 as large as we like. So there are an infinite number of primes p of the form
p ≡ 1(mod 4).
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Primes of the form 4n+1 ∶ Method 2

The second method again uses Fermat’s Little Theorem 156 and is elegantly brief.

Course: Entrée III
Ingredients
Congruences
Fermat’s Little Theorem
Directions
Investigate prime factors of two squares
Prove there are an infinite number of primes of the form 4n + 1 by method 2.

22.1 The Key Lemma

Lemma 158.
The sum of two squares cannot have a prime factor p of the form p = 4n + 3 or
p ≡ 3(mod 4).

Proof. Suppose a prime p of the form p = 4n+3 divides the sum a2+b2 of two squares
of two integers a, b.
By Fermat’s Little Theorem 156 since p is a prime,

ap−1 ≡ 1(mod p) and bp−1 ≡ 1(mod p)

Hence by Theorem 151(iii) on page 234,

ap−1 + bp−1 ≡ 2(mod p).

On the other hand, if p = 4n + 3 then since xn + yn factors if n is odd,

ap−1 + bp−1 = a4k+2 + b4k+2

= (a2)2k+1 + (b2)2k+1

= (a2 + b2)(a2k−1 − . . . + b2k−1)
≡ 0(mod p) since we supposed p∣a2 + b2
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This is a contradiction to ap−1 + bp−1 ≡ 2(mod p) so no prime of the form p = 4n + 3
divides a2 + b2.

22.2 Method 2: Proof

Theorem 159. There are an infinite number of primes p of the form p = 4n + 1 or
p ≡ 1(mod 4).

Proof. Suppose there are only the finite number {5,13,17, . . . , pn}.
Consider,

N = (2 ⋅ 5 ⋅ 13⋯pn)2 + 1 = A2 + 12, where gcd(A,1) = 1

By Lemma 158, no prime of the form p ≡ 3(mod 4) divides N since N is the sum of
two squares.
Therefore the prime factors of N are all of the form p = 4n + 1 and none of them can
be in the finite set {5,13,17, . . . , pn} since each of these numbers leaves a remainder
of 1 when it divides N so is not a factor of N. This is a contradiction so there are an
infinite number of primes p of the form p = 4n + 1 or p ≡ 1(mod 4).
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Primes of the form 4n+1 ∶ Method 3

The third method uses the theory of quadratic residues, another classic of number
theory, largely due to Gauss.

Course: Entrée IV
Ingredients
Congruences
Quadratic residues
Directions
Prove a theorem about the number of quadratic residues and non-residues.
Learn how to find quadratic residues and non-residues.
Prove Wilson’s Theorem.
Prove Euler’s Criterion and a Corollary.
Prove there are an infinite number of primes of the form 4n + 1 by method 3.

23.1 Quadratic Residues

Definition 81. quadratic residue
Let m be an integer greater than 1 and a ∈ Z. Suppose gcd(a,m) = 1. Then a is called
a quadratic residue1 of m if the equation x2 ≡ a(mod m) has a solution. If there is
no solution, then a is called a quadratic non-residue of m.

Example 106. gcd(5,11) = 1 and 42 ≡ 5(mod 11) so 5 is a quadratic residue of 11.

Theorem 160.

Let p be an odd prime. Then there are exactly
p − 1

2
incongruent2 quadratic residues

and exactly
p − 1

2
incongruent quadratic non-residues modulo p.

1x2 ≡ a(mod m) means a is a residue and x2 = a + km means we are dealing with a quadratic
equation, hence the name “quadratic residues.”

2Incongruent means if a, b are quadratic residues of p then a�≡b(mod p).
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Proof. Let p be an odd prime. Then the numbers a = 1,2, . . . ,
p − 1

2
,
p + 1

2
, . . . , p−1 all

satisfy gcd(a, p) = 1 since a prime cannot divide any positive integer less than itself.
Now the numbers,

12,22, . . . ,(p − 1

2
)

2

are all incongruent since for any two of these squares we can call r, s if r2 ≡ s2(mod p)
then,

r ≡ s(mod p) or r ≡ −s(mod p) ⇒ p∣r − s or p∣r + s.

But since both r and s are less than
p − 1

2
, neither their sum nor their difference can

be divisible by p. Hence for each x ∈ {1,2, . . . ,(p − 1

2
)} we have by x2 ≡ a(mod p),

where each a is different, a set of
p − 1

2
quadratic residues.

Also since, (p − r)2 = p(p − 2r) + r2, we have,

r2 ≡ (p − r)2(mod p).

Accordingly the numbers,

(p + 1

2
)

2

,(p + 3

2
)

2

, . . . , (p − 2)2, (p − 1)2

produce the same quadratic residues as do,

12,22, . . . ,(p − 3

2
)

2

,(p − 1

2
)

2

and there can be no more and no less. Hence there are exactly
p − 1

2
incongruent

quadratic residues and therefore exactly
p − 1

2
incongruent quadratic non-residues

modulo p.

23.2 Finding Quadratic Residues and Non-residues

The proof of the above theorem shows us how to find the quadratic residues of p. We
simply square,

x = 1,2,3, . . . ,
p − 1

2
,

calculate their values (mod p) and read off the values of a in x2 ≡ a(mod p).
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Example 107. For example, for p = 11 we square 1,2,3,4,5 and take their modulus
11 and read off the values of a in x2 ≡ a(mod 11).

12 = 1 ≡ 1(mod 11)
22 = 4 ≡ 4(mod 11)
32 = 9 ≡ 9(mod 11)
42 = 16 ≡ 5(mod 11)
52 = 25 ≡ 3(mod 11)

So the quadratic residues are 1,4,9,5 and 3 and the quadratic non-residues are the
rest, namely, 2,6,7,8 and 10. ◇

23.3 Wilson’s Theorem

Theorem 161. (Wilson3)
Let p > 1 be an integer. Then p is prime if and only if

(p − 1)! ≡ −1(mod p).

Proof.
Clearly (2 − 1)! = 1 ≡ −1(mod 2) and (3 − 1)! = 2 ≡ −1(mod 3) so we may assume
p > 3.
To prove (p − 1)! ≡ −1(mod p) ⇒ p is prime we prove the contrapositive statement
that if p is not prime (that is p is composite) then (p − 1)!�≡ − 1(mod p).
Let p be composite. Then its positive divisors are in the set of integers
{1,2,3,4, . . . , p − 1} so that4

p∣1 ⋅ 2 ⋅ 3 ⋅ 4⋯(p − 1) ⇒ 1 ⋅ 2 ⋅ 3 ⋅ 4⋯(p − 1) ≡ 0(mod p)
⇒ (p − 1)! ≡ 0(mod p)

so we cannot have (p − 1)! ≡ −1(mod p). Therefore if (p − 1)! ≡ −1(mod p) then p is
a prime.

*****

Let p be prime. For the converse we need to prove (p − 1)! ≡ −1(mod p).
Now for p prime, each of the integers 1,2, ,3 . . . , p − 1 is relatively prime to p.
We know by the Solution of Linear Congruences, Theorem 153 on page 237,
ax ≡ b(mod m) has a solution if and only if gcd(a,m) = 1. So, for each of these
integers less than p and therefore relatively prime to p there is another unique integer

3See also Theorem 102 on page 142

4For example, if p = 12 its positive divisors are 1,2,3,4,6 and they are elements of
{1,2,3,4,5,6,7,8,9,10,11}.



246 Chapter 23. Primes of the form 4n + 1 ∶ Method 3

b modulo p such that ab ≡ 1(mod p).
Since p is prime, if a, b are both 1 or a, b are both5 p − 1 then ab ≡ 1(mod p).
If we omit 1 and p − 1 the other numbers in {1,2,3,4, . . . , p − 1} can be grouped into
pairs whose product modulo p is 1, showing,

2 × 3 × 4 ×⋯ × (p − 2) ≡ 1(mod p) ⇒ (p − 2)! ≡ 1(mod p)

Multiplying both sides by p − 1 gives,

(p − 1)! ≡ p − 1(mod p) ≡ −1(mod p)

Definition 82. Legendre symbol
If p is an odd prime and gcd(a, p) = 1, we define the Legendre symbol (a/p) by,

(a/p) = 1 if a is a quadratic residue of p

(a/p) = −1 if a is a quadratic non-residue of p.

Example 108. For example, using the results of Example 107 above, (4/11) = 1 and
(6/11) = −1.

Theorem 162. (Euler’s Criterion)
Let p be an odd prime and gcd(a, p) = 1. Then,

(a/p) ≡ a p−12 (mod p) ⇔ a
p−1
2 ≡ (a/p)(mod p)

Proof.
Case 1: Let a be a quadratic non-residue of p so that (a/p) = −1. We want to show

a
p−1
2 ≡ −1(mod p).

Let b ∈ {1,2, . . . , p − 1}
The congruence bx ≡ a(mod p) has, modulo p, a unique solution b̄ by Theorem 153,
page 237. Note b̄ ≠ b otherwise we would have b2 ≡ a(mod p) and a would be a
quadratic residue of p.

It follows that the residue classes {1,2,3, . . . , p − 1} modulo p fall into
p − 1

2
pairs b, b̄

such that bb̄ ≡ a(mod p). Therefore,

(p − 1)! = 1 × 2 ×⋯ × (p − 1)

≡

p−1
2³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

a × a × . . . × a(mod p)
⇒ (p − 1)! ≡ a p−12 (mod p) (23.3.1)

By Wilson’s Theorem 161, (p − 1)! ≡ −1(mod p) so substituting into (23.3.1),

a
p−1
2 ≡ −1(mod p) ⇒ a

p−1
2 ≡ (a/p)(mod p)

5For the latter, (p − 1)(p − 1) = p(p − 2) + 1 ≡ 1(mod p).
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***

Case 2: Let a be a quadratic residue of p so that (a/p) = 1. We want to show

a
p−1
2 ≡ 1(mod p).

By definition of a quadratic residue, the congruence x2 ≡ a(mod p) has a solution x.
Suppose y is also a solution so that y2 ≡ a(mod p). Then we have,

x2 − y2 ≡ 0(mod p) ⇒ (x − y)(x + y) ≡ 0(mod p)
So either

(x − y) ≡ 0(mod p) or (x + y) ≡ 0(mod p) so x ≡ ±y(mod p)
It follows that when c(mod p) is one solution of x2 ≡ a(mod p) then so is
−c(mod p) = p−c(mod p). These solutions are distinct since p is odd6. Furthermore,
we conclude these are the only two solutions. Note (−c)2 ≡ a(mod p).
Now isolate c, p−c from {1,2,3, . . . , p−1}. The remaining integers fall, modulo p, into
p − 3

2
pairs b, b̄ such that bb̄ ≡ a(mod p). Then,

(p − 1)! = 1 × 2 ×⋯ × c ×⋯ × (p − c) ×⋯ × (p − 1)

≡

p−3
2³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

a × a⋯× a×c × (p − c)(mod p)
≡ a p−32 (−c2)(mod p) since p − c ≡ −c(mod p)
≡ a p−33 (−a)(mod p) since c2 ≡ a(mod p)

⇒ (p − 1)! ≡ −a p−12 (mod p) (23.3.2)

Since by Wilson’s Theorem 161 we have (p − 1)! ≡ −1(mod p) then substituting

(26.1.2), −a p−12 ≡ −1(mod p),

a
p−1
2 ≡ 1(mod p)

We conclude for a quadratic residue (a/p) = 1 that,

a
p−1
2 ≡ (a/p)(mod p)

So whether a quadratic residue or a quadratic non-residue, a
p−1
2 ≡ (a/p)(mod p).

Theorem 163.
Let p be any odd prime. Then (−1/p) = 1 if and only if p ≡ 1(mod 4).
Proof.

Put a = −1 in the statement of Theorem 162, namely (a/p) ≡ a p−12 (mod p), to give,

(−1/p) ≡ (−1) p−12 (mod p)

and note
p − 1

2
is even if and only if p ≡ 1(mod 4).

Then (−1/p) = 1 if and only if p ≡ 1(mod 4).
6We cannot have c = p − c since then p = 2c making p even
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23.4 Method 3 Proof

Theorem 164.
There are an infinite number of primes p of the form p = 4n + 1 or p ≡ 1(mod 4).

Proof.
Suppose there are only a finite number of primes of the form 4n+ 1 say, 5,13, . . . , pn.
Consider,

N = (2 × 5 × 13 ×⋯ × pn)2 + 1

Suppose p is a (necessarily odd) prime divisor of N say (2× 5× 13×⋯× pn)2 + 1 = kp.
Then since,

(2 × 5 × 13 ×⋯ × pn)2 = −1⇒ (2 × 5 × 13 ×⋯ × pn)2 ≡ −1(mod p)

making −1 a quadratic residue of p or (−1/p) = −1, so by Theorem 163 we must have
p ≡ 1(mod 4).
Clearly p�∈{2,5,13, . . . , pn} since each of these leave a remainder of 1 when they divide
N. So we have a contradiction and there are an infinite number of primes p of the
form p = 4n + 1 or p ≡ 1(mod 4).

Note 31. We have used only what we need of the theory of quadratic residues, a
very rich area of Number Theory. Indeed we find here one of Gauss’s favorite and
challenging theorems, so much so he labelled it “aurema theorema” or the “golden
theorem.” We call it the quadratic reciprocity law. It states: If p and q are distinct
primes then,

(p
q
) = (q

p
)

unless p, q are both of the form 4n + 3, in which case (p
q
) ≠ (q

p
) .
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Primes of the form 4n+1 ∶ Method 4

This proof requires an introduction to an important arithmetic function, the Möbius
function µ(n) and the framework of introductory abstract algebra.
This will be our first proof in the algebraic branch of number theory. We actually use
algebra to show in a different way that if x2 ≡ −1(mod p) then the prime p is of the
form p ≡ 1(mod 4).

Course: Entrée V
Ingredients
Möbius function
Euler’s totient function
Groups
Examples of groups
Cyclic groups
The multiplicative group Z/pZ
Directions
Prove the theory of the Möbius function
Prove the theorems of Euler’s totient function
Prove the relationship between the Möbius and totient functions
Prove the multiplicative group Z/pZ is cyclic
Prove there are an infinite number of primes of the form 4n + 1 by method 4.

24.1 The Möbius function

Definition 83. arithmetic function
An arithmetic function is any function whose domain is Z, that is, it can be written
as,

f(n), n ∈ Z

Example 109. f ∶ N→ R where f(n) = √
n is an arithmetic function.
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Definition 84. Möbius function
The arithmetic function called the Möbius function1 µ(n) is defined by,

µ(n) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if n = 1

0 if p2∣n for some prime p

(−1)r if n = p1p2⋯pr where the pi are distinct primes.

Example 110.

µ(2) = −1

µ(4) = µ(22) = 0

µ(30) = µ(2 × 3 × 5) = (−1)3 = −1 ◇

Definition 85. multiplicative function
A multiplicative function is an arithmetic function f(n) of a positive integer n with
the property that f(1) = 1 and if gcd(a, b) = 1, then f(ab) = f(a)f(b).

Example 111. f ∶ N → R where f(n) = √
n is also a multiplicative function since√

ab = √
a
√
b.

Theorem 165.
µ is a multiplicative function, that is for any m,n ∈ Z+ with gcd(m,n) = 1,

µ(mn) = µ(m)µ(n)

Proof.
Suppose gcd(m,n) = 1. Let the prime factorizations of m,n be,

n = pα1
1 p

α2
2 ⋯pαrr and m = qβ11 q

β2
2 ⋯qβss

Then µ(mn) = 0 = µ(m)µ(n) if any of the exponents of either m or n exceeds 1. And
if all the r + s exponents αi and βj equal 1 then

µ(mn) = (−1)r+s = (−1)r(−1)s = µ(m)µ(n)

Theorem 166.
If n > 1 then ∑

d∣n
µ(d) = 0 where the d are the divisors of n including 1.

Proof.
We use induction.
Let S(t) be the statement ∑

d∣n
µ(d) = 0 where n = pα1

1 p
α1
1 ⋯pαtt is the product of t distinct

primes.

1µ = mu
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Basis Step: Then S(1) is true since if n = pα then the successive powers of p all divide
pα and we have, since µ(n) = 0 if p2∣n and µ(p) = −1,

∑
d∣n
µ(d) = µ(1) + µ(p) + µ(p2) + . . . + µ(pα) = 1 − 1 + 0 + . . . + 0 = 0

Assumption Step: Suppose S(t) is true, that is ∑
d∣n
µ(d) = 0 where n = pα1

1 p
α1
1 ⋯pαtt is

the product of t distinct primes.
Inductive Step: Consider S( t+1).
We want to show ∑

d∣N
µ(d) = 0 is true for N = pα1

1 p
α2
2 ⋯pαtt pαt+1t+1 = npαt+1t+1 .

Write N = npα where for convenience pα replaces pαt+1t+1 . Then2,

∑
d∣N

µ(d) = ∑
d∣n
µ(d) +∑

d∣n
µ(pd) +∑

d∣n
µ(p2d) + . . . +∑

d∣n
µ(pαd)

= 0 +∑
d∣n
µ(pd) +∑

d∣n
µ(p2d) + . . . +∑

d∣n
µ(pαd) assuming S(t) is true

= 0 +∑
d∣n
µ(pd) + 0 + 0 + . . . + 0 since each zero term was a power of a prime > 1

= 0 +∑
d∣n
µ(p)µ(d) since µ is multiplicative

= 0 −∑
d∣n
µ(d) since µ(p) = −1 by definition of µ

= 0 assuming S(t) is true

Note 32.
This note deals with double sums, handling them can be tricky.
A double sum is conducted in two steps. First evaluate the inner sum, (the one on
the right), and then evaluate the outer sum.
Note that if an index (i, j, k, etc.) is not controlled by the sum it is attached to, its

2If for example the divisors of n are 1, a, b, c, ab, ac, ba, abc then the divisors of N = p3n are

1, a, b, c, ab, ac, bc, abc

p, pa, pb, pc, pab, pac, pbc, pabc

p2, p2a, p2b, p2c, p2ab, p2ac, p2bc, p2abc

p3, p3a, p3b, p3c, p3ab, p3ac, p3bc, p3abc

that is, the divisors of n multiplied by successive powers of p from 0 to 3.
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terms may be taken outside (it’s just the distributive law.) For example,

4

∑
j=1

3

∑
k=1

6kj =
4

∑
j=1

(
3

∑
k=1

6kj)

=
4

∑
j=1

j (
3

∑
k=1

6k)

=
4

∑
j=1

j × 6(1 + 2 + 3)

=
4

∑
j=1

36j

= 36(1 + 2 + 3 + 4)
= 360

The main procedure in the following theorem and its converse is to combine a double
sum like,

∑
dd′=n

µ(d)∑
e∣d′
g(e) (24.1.1)

into a single sum over the product of the indices thus,

∑
deh=n

µ(d)g(e) (24.1.2)

and then separate out this single sum into a double sum in which the order is reversed,
namely,

∑
eh′=n

g(c)∑
d∣h′

µ(d) (24.1.3)

Example 112. We claim for n = 6,

∑
dd′=6

µ(d)∑
e∣d′
g(e) = ∑

deh=6

µ(d)g(e)

If dd′ = 6 then the dd′ pairs are (1,6), (2,3), (3,2) and (6,1). Hence,

∑
dd′=6

µ(d)∑
e∣d′
g(e)

= µ(1)∑
e∣6
g(e) + µ(2)∑

e∣3
g(e) + µ(3)∑

e∣2
g(e) + µ(6)∑

e∣1
g(e)

= µ(1)[g(1) + g(2) + g(3) + g(6)] + µ(2)[g(1) + g(3)]
+ µ(3)[g(1) + g(2)] + µ(2 × 3)[g(1)]

= g(1) + g(2) + g(3) + g(6) − g(1) − g(3) − g(1) − g(2) + g(1) + g(6)
= g(6)



24.1. The Möbius function 253

whereas for ∑
deh=6

µ(d)g(e) the possible cobinations of d, e and h and their contributions

to the sum are:

(1,1,6) ∶ µ(1)g(1) = +g(1)
(1,2,3) ∶ µ(1)g(2) = +g(2)
(1,3,2) ∶ µ(1)g(3) = +g(3)
(2,1,3) ∶ µ(2)g(1) = −g(1)
(2,3,1) ∶ µ(2)g(3) = −g(3)
(3,2,1) ∶ µ(3)g(2) = −g(2)
(6,1,1) ∶ µ(6)g(1) = −g(1)
(1,6,1) ∶ µ(1)g(6) = +g(6)
(3,1,2) ∶ µ(3)g(1) = −g(1)

leaving only g(6). ◇

Theorem 167. (Möbius Inversion Formula)
If f(n), g(n) are two arithmetic functions, then,

f(n) = ∑
d∣n
g(d) if and only if g(n) = ∑

d∣n
µ(d)f (n

d
)

Proof.
First we suppose f(n) = ∑

d∣n
g(d). Then, writing d∣n as dd′ = n we have,

∑
d∣n
µ(d)f (n

d
) = ∑

dd′=n
µ(d)f(d′) (24.1.4)

Substituting f(n) = ∑
d∣n
g(d) in the form f(d′) = ∑

e∣d′
g(e) we have,

∑
d∣n
µ(d)f (n

d
) = ∑

dd′=n
µ(d)∑

e∣d′
g(e) (24.1.5)

Writing e∣d′ as d′ = eh we have,

∑
d∣n
µ(d)f (n

d
) = ∑

dd′=n
µ(d) ∑

d′=eh
g(e) (24.1.6)

We combine this double sum into a single sum by replacing d′ with eh in dd′ = n to
give the single sum,

∑
d∣n
µ(d)f (n

d
) = ∑

deh=n
µ(d)g(e) (24.1.7)
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We now reverse the process and separate the single sum into a double sum by reversing
the functions and writing h′ = dh so d∣h′ and returning to the form of (24.1.5),

∑
d∣n
µ(d)f (n

d
) = ∑

eh′=n
g(e)∑

d∣h′
µ(d) (24.1.8)

Since ∑
d∣h′

µ(d) = 0 if h′ > 0 and by definition is µ(1) = 1 if h′ = 1, we have left on the

right side only ∑
e=n

g(e) giving,

∑
d∣n
µ(d)f (n

d
) = g(n) (24.1.9)

*****

Conversely, suppose g(n) = ∑
d∣n
µ(d)f (n

d
) . Then,

∑
d∣n
g(d) = ∑

d∣n
∑
d′∣d
µ(d′)f ( d

d′
)

= ∑
d′ef=n

µ(d′)f(e)

= ∑
eh′=n

f(e) ∑
d′∣h′

µ(d′)

As above, since ∑
d∣h′

µ(d) = 0 if h′ > 0 and by definition is 1 if h′ = 1 we have left on the

right side only f(n) so,

∑
d∣n
g(d) = f(n) (24.1.10)

24.2 Euler’s Totient Function

Recall Euler’s Totient function φ(n) is the number of numbers less than n that are
relatively prime to n.

Theorem 168.
For p a prime and α a positive integer,

φ(pα) = pα − pα−1

Proof.
There are pα numbers less than or equal to pα and the only positive numbers less than
pα that are not relatively prime to pα are pα−1 multiples of p, namely p,2p,3p, . . . , pα−1.
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Theorem 169.
Let n ∈ N with prime decomposition n = pα1

1 p
α2
2 ⋯pαss . Then,

(a) φ(n) = n∏
p∣n

(1 − 1

p
) where p is a prime.

(b) φ(n) = φ(pα1
1 )φ(pα2

2 )⋯φ(pαss ) =
s

∏
i=1
φ(pαii

Proof.

(a) Let the prime decomposition of n be n = pα1
1 p

α2
2 ⋯pαss . Then by Theorem 168,

φ(pαii ) = pαii − pαi−1
i = pαii (1 − 1

pi
) for all i ∶ 1 ≤ i ≤ s)

Since φ is multiplicative we have,

φ(n) = φ(pα1
1 p

α2
2 ⋯pαtt )

= φ(pα1
1 )φ(pα2

2 )⋯φ(pαtt )

= pα1
1 (1 − 1

pα1
1

)pα2
2 (1 − 1

pα2
2

)⋯pαss (1 − 1

pαss
)

= n∏
p∣n

(1 − 1

p
)

(b)

φ(n) = n∏
p∣n

(1 − 1

p
) by (a)

= n
s

∏
i=1

(1 − 1

pαii
) since only p1 to ps divide n

= pα1
1 p

α2
2 ⋯pαss (1 − 1

p1

)(1 − 1

p2

)⋯(1 − 1

ps
)

=
s

∏
i=1

(pαii − pαi−1
i ) by grouping each pαii (1 − 1

pi
)

=
s

∏
i=1

φ (pαii ) by Theorem 168

Theorem 170.
Euler’s totient function φ is multiplicative, that is for m,n ∈ Z+ with gcd(m,n) = 1
we have,

φ(mn) = φ(n)φ(m)
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Proof.
Let

n = pα1
1 p

α2
1 ⋯pr1αr , m = qβ11 q

β2
2 ⋯qβss

Then,

φ(nm) = φ(pα1
1 p

α2
1 ⋯pαrr qβ11 q

β2
2 ⋯qβss )

= φ(pα1
1 )φ(pα2

1 )⋯φ(pαrr ) × φ(qβ11 )φ(qβ22 )⋯φ(qβss )
= φ(n)φ(m)

so φ is a multiplicative function.

Theorem 171. Let n ∈ N. Then,

∑
d∣n
φ(d) = n.

Proof.
Let d∣n, d > 0 and let,

Sd = {m ∈ Z ∣ 1 ≤m ≤ n, gcd(m,n) = d}

Now gcd(m,n) = d if and only if3 gcd(m
d
,
n

d
) = 1.

Hence the number of integers in Sd is equal to the number of positive integers not

exceeding
n

d
that are relatively prime to

n

d
. That is the number of elements, ∣Sd∣, is,

∣Sd∣ = φ(n
d
)

Since every integer from 1 to n inclusive is an element of one and only one Sd we
have,

n = ∑
d∣n
φ(n

d
)

But as d runs over the positive divisors of n we have that
n

d
runs over the positive

divisors of n so that4,

n = ∑
d∣n
φ(n

d
) = ∑

d∣n
φ(d)

3gcd(m,n) = d if and only if m = kd,n = jd where j, k have no common factors other than 1, that

is gcd(k, j) = 1⇒ gcd(m
d
,
n

d
) = 1.

4For example, if n = 10 we have,

∑
d∣10

φ(d) = φ(1) + φ(2) + φ(5) + φ(10) and,

∑
d∣10

φ(10

d
) = φ(10

1
) + φ(10

2
) + φ(10

5
) + φ(10

10
) = φ(1) + φ(5) + φ(2) + φ(1) = ∑

d∣10

φ(d).
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Corollary 172.
The Möbius function and Euler’s Totient function are related as follows:

φ(n) = ∑
d∣n
µ(d)n

d
= n∏

p∣n
(1 − 1

p
)

Proof.
From Theorem 171 we have,

∑
d∣n
φ(d) = n.

Apply the Möbius Inversion Theorem 167, page 253 to obtain,

φ(n) = ∑
d∣n
µ(d)n

d

From Theorem 169, page 255 we have,

φ(n) = n∏
p∣n

(1 − 1

p
)

Hence,

φ(n) = ∑
d∣n
µ(d)n

d
= n∏

p∣n
(1 − 1

p
)

24.3 Group Theory

There are literally dozens of text books on group theory which is the corner stone
of abstract algebra. Again we will cherry-pick at a very elementary level and just
take the minimum we need. Let’s first categorize the description of the mathematical
operations that act on numbers.

Definition 86. binary and unitary operations
There are two types of operations, binary and unitary, on numbers. The basic binary

operations are {+,−,×,÷} and the unitary operations include taking the square root
(or any root) and raising a number to a power, that is n

√
x and xn. A binary operation

requires an input of two numbers, e.g., 5 + 7 = 12, while a unitary operation requires
an input of one number, e.g.,

√
9 = 3.

And now groups.

A group is an abstract mathematical object. Its inspiration is an abstraction from
the axioms of integers, fractions, real and complex numbers. Each of these is a set
and the binary arithmetic operations apply to each. A group requires a set and one
binary operation, generally regarded as either addition or multiplication.
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Definition 87. group and group axioms
In abstract terms we define a group as a set G together with a binary operation ∗,

written (G,∗), such that the following axioms, taken from {Z,Q,R,C}, are satisfied:

1. Closure law: For all a, b ∈ G , we have a ∗ b ∈ G, that is, the result of a binary
operation acting on any two elements of the group is another element of the
group. We say the group is closed under ∗.

2. Associative law: For all a, b, c ∈ G we have a ∗ (b ∗ c) = (a ∗ b) ∗ c

3. Identity law: There is an identity element e ∈ G such that for all a ∈ G we have
a ∗ e = e ∗ a = a

4. Inverses law: For all a ∈ G there is an element b ∈ G such that a ∗ b = b ∗ a = e
and we write this b as a−1.

Example 113. For an example of each axiom, when applied to (Z,+) we have state-
ments such as,

1. Closure: 5,7 ∈ Z and 5 + 7 = 12 ∈ Z

2. Associativity: 2 + (3 + 4) = (2 + 3) + 4

3. Identity: e = 0 since 3 + 0 = 0 + 3 = 3

4. Inverses: −3 is the inverse of 3 since 3+(−3) = (−3)+3 = 0 or, more commonly
3 − 3 = 0 ◇

Definition 88. commutative or abelian group
If a group (G,∗) satisfies a∗ b = b∗ a for all a, b ∈ G we say the group is commutative
or abelian (after Niels Abel, the Norwegian algebraicist).

Clearly, (Z,+) is abelian since 3 + 2 = 2 + 3, etc.

Lemma 173.
A group obeys the cancellation law a ∗ b = a ∗ c⇒ b = c.

Proof. Let a, b, c ∈ G where (G,∗) is a group.

a ∗ b = a ∗ c
⇒ a−1 ∗ (a ∗ b) = a−1 ∗ (a ∗ c)
⇒ (a−1 ∗ a) ∗ b = (a−1 ∗ a) ∗ c
⇒ e ∗ b = e ∗ c
⇒ b = c

where we used the inverse, associative and identity axioms of groups.
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For the sake of simplicity we refer to a group (G,∗) as just G since the binary
operation is mostly specified elsewhere. Along these lines we then drop the use
of ∗ and just say statements like a(bc) = (ab)c which can be understood to mean
a × (b × c) = (a × b) × c if the operation is multiplication or a + (b + c) = (a + b) + c if
the operation is ordinary addition. But we will find there are other binary operations
besides the arithmetic ones.

Further, for inverses, a−1 suits multiplication, giving the usual aa−1 = a/a = 1 but
it means −a when we are dealing with addition, thus a + (−a) = 0, and of course
we generally drop the parentheses and write a − a = 0. The inverse elements for the
arithmetic operations are 0 for addition and 1 for multiplication and we call −6 the

additive inverse of 6 and
1

6
the multiplicative inverse of 6.

Z,Q,R,C are obviously all groups under the operation of addition. The only
group axiom that causes an issue with the sets Z,Q,R,C under the operation of
multiplication is the inverse law and the existence of multiplicative inverses. No
integer has a multiplicative inverse that is also an integer, for example, 1/7 is the
multiplicative inverse of 7 but 1/7 ∉ Z, failing closure, so (Z,×) is not a group.

For each of Q,R,C , the element 0 does not have a multiplicative inverse, that is
there is no element b such that 0×b = 1. But we can still form groups simply by deleting
the element 0. So we have the multiplicative groups Q×,R×,C× where the exponent ×
means the zero element has been removed. Thus, for example, C× = C−{0} or C/{0}.

So we have four additive groups, Z,Q,R,C, and three multiplicative groups
Q×,R×,C×. They are all infinite in size and they form the “inspiration” for an infinity
of other groups, some finite, some infinite.

Notation 5. The number of elements in the group G is written ∣G∣.
For an infinite group we use ∣G∣ = ℵ0 spoken as “aleph naught” or “aleph null” where
aleph is the first letter of the Hebrew alphabet.

24.4 Congruence and Finite Groups

24.4.1 The Additive Group Zn
Definition 89. Zn and addition modulo n
Zn is the set of all possible smallest positive remainders when the integers are divided

by n. That is,

Zn = {0,1,2, ..., n − 1}

In words, Zn is the set of all integers modulo n where we note that when an integer
is divided by n, no remainder can be greater than n − 1.
Accordingly ∣Zn∣ = n.
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Example 114. For example, Z5 = {0,1,2,3,4} with operation modulo 5, meaning
any integer is replaced by its least positive remainder when divided by 5. Thus,

0,1,2,3,4,5,6,7,8,9,10,11, ...

becomes,

0,1,2,3,4,0,1,2,3,4,0,1, ...

leaving only the elements 0,1,2,3,4.
If we set up what we can call an operations table for all possible combinations of the
elements of Z5 = {0,1,2,3,4} under addition modulo 5, we have,

Mod 5 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

where we used 4 + 4 = 8 ≡ 3(mod 5) etc.
You can easily see the set Z5 is closed under addition modulo 5, meaning only its

elements 0,1,2,3,4 are found in the table, that the associative law holds, that there
is an identity 0 (e.g., 0 + 3 = 3 ) and that every element has an additive inverse, the
pairs being (0,0), (1,4), (2,3). So Z5 is a group. ◇

Since we can specify any positive integer n for Zn, we already have an infinite
number of finite groups once we prove the next theorem, that the set Zn together
with the operation of addition modulo n is a group.

Theorem 174.
The set Zn together with the operation of addition modulo n is a group.

Proof. We need to prove the four group axioms in Definition 87 on page 258 hold.

1. Closure, that is, if a, b ∈ Zn so does a+b(mod n), that is a+b ≡ c(mod n) where
c < n.
This is so since a, b are less than n so a + b < 2n and either a + b = c < n and we
are done, or a + b = n + c where we must have c < n, and therefore n divides the
difference a + b − c so by Definition 23, page 67, a + b ≡ c(mod n).

2. Associative Law, that is if a, b, c ∈ Zn then a + (b + c) = (a + b) + c. This is true
since a, b, c are also integers.

3. Identity element is 0.

4. Inverse Law. Given a ∈ Zn, 0 ≤ a ≤ n − 1, then (n − a) + a = 0 making n − a the
inverse of a.

Hence Zn is a group.
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24.4.2 The Multiplicative Group Z/nZ
We now extend the multiplicative set Z∗

p we used in Chapter 13 without needing that
it is also a group.

Definition 90. multiplicative group Z/nZ
If we divide the integers by n ∈ N the possible remainders are {0,1,2, . . . , n− 1.} Thus
division by n separates the integers into n−1 subsets which we call cosets and we label
them thus,

[0]n = {0, n,2n, . . . ,}
[1]n = {1, n + 1,2n + 1, . . . ,}
[2]n = {2, n + 2,2n + 2, . . . ,}

. . .

[n − 1]n = {n − 1, n + (n − 1),2n + (n − 1), . . . ,}

Accordingly [a]n is the set of all integers with a least non-negative remainder of a
when divided by n. Thus we note that in general,

[a]n = {x ∈ Z ∣ x ≡ a(mod n}

We define,

Z/nZ = {[0]n, [1]n, [2]n, . . . , [n − 1]n

Example 115. For example Z/5Z separates the integers into the five cosets,

[0]5 = {0,±5,±10, . . .}
[1]5 = {1,6,11, . . .} ∪ {−4,−9,−14, . . .}
[2]5 = {2,7,12, . . .} ∪ {−3,−8,−13, . . .}
[3]5 = {3,8,13, . . .} ∪ {−2,−7,−12, . . .}
[4]5 = {4,9,14, . . .} ∪ {−1,−6,−11, . . .}

Note the elements x of [2]5 satisfy x ≡ 2(mod 5), similarly the other cosets. ◇

We next prove Z/nZ is a multiplicative group. To form a group we delete the
zero coset [0]n since 0 cannot have an inverse and for brevity continue to denote
Z/nZ − {[0]n} by Zn/nZ. We define the operation we need by,

Definition 91. coset multiplication
We define coset multiplication of elements [a]n, [b]n ∈ Z/nZ by

[a]n[b]n = [ab]n
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This definition makes sense since,

x ∈ [a]n⇒ x ≡ a(mod n) ⇒ x = a + jn, j ∈ Z and

y ∈ [b]n⇒ y ≡ b(mod n) ⇒ y = b + kn, k ∈ Z
⇒ xy = ab + n(aj + bk + kjn) ≡ ab(mod n)
⇒ xy ∈ [ab]n.

Theorem 175.
For p a prime, Z/nZ is a group under coset multiplication.

Proof. We need to show the four group axioms of Definition 87 on page 258 hold.

1) Closure: The definition [a]n[b]n = [ab]n shows the multiplication of two cosets
results in another coset.

2) Identity: The identity element is [1]n since [a]n[1]n = [a × 1]n = [a]n.

3) Inverses: To show the inverse of y ∈ Z/nZ exists in Z/nZ we use Corollary 16
on page 42 which states that for x, y ∈ Z that there exist integers a, b such that
ax + by = 1 if and only if gcd(x, y) = 1.
We let x = p and y ∈ {1,2, . . . , p − 1} so that gcd(x, y) = 1.
Then ap + by = 1⇔ by = 1 − ap means there exists a b such that by ≡ 1(mod p)
which in turn means y−1 = b exists.

4) Associativity: This holds since it is true for a, b, c which are integers. Thus we
have,

[a]n([b]n[c]n) = [an][bc]n = [a(bc)]n = [(ab)c]n = [ab]n[c]n = ([a]n[bn)[c]n

Hence Z/nZ is a group under coset multiplication.

24.4.3 Cyclic Groups

A cyclic group is a group that can be generated by one of its elements meaning every
element in the group can be formed from that one element by repeated applications
of the binary operation. Symbolically we use only addition and multiplication, but
the binary operations take many other forms.

Definition 92. cyclic group5 < a >
We define the cyclic group < a > generated by the element a in the group G as,

� for multiplication, < a >= {x ∈ G ∣ x = an for some n ∈ Z}.

� for addition, < a >= {x ∈ G ∣ x = a + a +⋯ + a´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n

= na for some n ∈ Z.}

5We prove < a > is a group in Theorem 176, part (1) on page 263
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Example 116. For example, (Z5, addition modulo 5) is a finite cyclic group gener-
ated by 2 since,

2 = 2,

2 + 2 = 4,

2 + 2 + 2 = 1,

2 + 2 + 2 + 2 = 3,

2 + 2 + 2 + 2 + 2 = 0

are all elements of Z5 = {0,1,2,3,4}.
Note any further addition of 2’s always yields one of these five elements, for example
102 × 2 ≡ 4 (mod 5). ◇

In general the additive group (Zn, modulo n) = {0,1,2,⋯, n−1} is obviously cyclic
by definition. It can be generated by any element a provided gcd(a,n) = 1.
(Try Z8 = {0,1,2,3,4,5,6,7} with a = 3,4.)
The simplest example of an infinite cyclic group is Z which is generated by 1 since
n × 1, n ∈ Z gives us all the integers. We could also use −1.
We want to show Z/nZ = {[1]n, [2]n, . . . , [n − 1]m} is a cyclic group under coset
multiplication.
Let us first note that the word “order” is used in two different ways when we are
dealing with elements and groups.

Definition 93. order of a group
The order of a group G is the number of elements in the group. We use ∣G∣ as the

symbol for the order of a group.

Example 117. ∣Z5∣ = ∣{0,1,2,3,4}∣ = 5
The order of Q is infinite. ◇

Definition 94. order of a group element
Let G be a group with identity e and let a ∈ G. If there is a positive integer n such

that an = e, then a is said to have finite order. The smallest such positive integer is
called the order of a, written ∣a∣.

Example 118. 2 ∈ Z5 and ∣2∣ = 4 since 24 ≡ 1 (mod 5).

We now prove a theorem that gives a test as to whether a finite group is cyclic.

Theorem 176.

(1) Let G be a group under multilpication.
If a ∈ G then < a >= {x ∈ G ∣ x = ak for some k ∈ Z} is also a group under the
same operation as for G.
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(2) If the order of a is n, that is ∣a∣ = n, then the cyclic subgroup < a > is a finite
group of n elements given by

< a >= {e, a, a2,⋯, an−1}

and therefore ∣ < a > ∣ = n = ∣a∣.

(3) A finite group G is cyclic if and only if there exists an element a ∈ G such that
the order of G equals the order of a, that is, ∣a∣ = ∣G∣.

Proof. (1) To show < a > is a group, we use the criteria for a group from Definition
87 on page 258.

� Closure: < a >= {x ∈ G ∣ x = ak for some k ∈ Z} is closed since if ai, aj ∈< a >
then aiaj = ai+j ∈< a > since i + j ∈ Z.

� Associativity follows from ai × (aj × ak) = (ai × aj) × ak = ai+j+k.
� The identity element is e = a0 = 1 since a0 × ak = ak. Note also an = 1, so
e = a0 = an = 1.

� Inverses exist since (an)−1 = a−n and −n ∈ Z so that an(an)−1 = a0 = 1.

Therefore < a > is a group.

(2) We want to show if a ∈ G and ∣a∣ = n then the cyclic group
< a >= {x ∈ G ∣ x = ak for some k ∈ Z} is a finite group of n elements given by
< a >= {e, a, a2, . . . , an−1} and therefore ∣ < a > ∣ = n = ∣a∣.
Given ∣a∣ = n we can write any integer k divided by n as k = qn+ r,0 ≤ r ≤ n− 1.
Then,

ak = aqn+r = (an)qar = eq × ar = ar, 0 ≤ r ≤ n − 1.

Thus, all the integer powers, ak, separate out into just the n elements ar with
powers 0 ≤ r ≤ n − 1. So,

< a >= {e, a, a2,⋯, an−1},

and therefore ∣ < a > ∣ = n = ∣a∣.

(3) Suppose a finite group G is cyclic and generated by a ∈ G where the order of
a is ∣a∣ = n. Then by (2) G =< a >= {e, a, a2,⋯, an−1} and clearly the respective
orders ∣a∣ = ∣G∣ since both equal n.

*****

Conversely, suppose a ∈ G and ∣a∣ = n = ∣G∣. Then a1, a2,⋯, an = e all belong to
G and since ∣G∣ = n, there can be no other elements. Then G is cyclic by (2).
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Note 33. Part (3) of Theorem 176 has given us an easy test for a finite group to be
cyclic, namely, a group G is cyclic if and only if it contains an element a of order
∣G∣, that is, an = 1 where n is the number of elements in the group G or n = ∣G∣.
In particular, to show Z/pZ is a cyclic group we need to show there is an element a
whose order ∣a∣ = p − 1.

24.5 More on Groups

We proceed with a further set of theorems, corollaries and lemmas on our way to
showing for p ∈ P that Z/pZ is a cyclic group.

Theorem 177.
Let G be a group and a ∈ G. Then for all i, j ∈ Z if a has the finite order ∣a∣ = n then
ai = aj if and only if n divides i − j.

Proof.
If and only if means we must prove two implications, one the converse of the other:

(i) If n divides i = j then ai = aj.

(ii) If ai = aj then n∣(i − j).

***

(i) Suppose n divides i − j. Then i − j = nk for some k ∈ Z. Hence,

ai = ank+j = (an)kaj = ekaj = eaj = aj

(ii) Conversely, suppose ai = aj. Then ai−j = a0 = e.
By the Division Algorithm, Theorem 13, page 39,

i − j = qn + r,0 ≤ r < n.

Then,

e = ai−j = anq+r = (an)qar = eqar = ar, 0 ≤ r < n
Since 0 ≤ r < n and n is the least positive integer such that an = e we must have
r = 0. Then,

i − j = qn⇒ n∣(i − j).

Corollary 178.
Let G be a group and a ∈ G be an element of finite order, say ∣a∣ = n. Then for all
k ∈ Z, ak = e if and only if n∣k.
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Proof.
Suppose ak = e⇒ ak = a0. By Theorem ?? with i = k, j = 0 we have n∣(k − 0) ⇒ n∣k.

***

Conversely, suppose n∣k⇒ k = nm,m ∈ Z.
Then ak = anm = (an)m = em = e.

Let’s recall some arithmetic definitions and theorems.

Definition 95. least common multiple
The least common multiple of two integers a, b, denoted lcm(a, b), is the least number
that is a multiple of a and b. (As distinct from the greatest common divisor or gcd(a, b)
which is the greatest number that is a multiple of a and b.)

Example 119. For example, to find lcm(18,60) we fully factor both numbers into
powers of primes and then take the greatest power of each prime to form the lcm.
Thus 18 = 21 × 32 and 60 = 22 × 31 × 51 so lcm(18,60) = 22 × 32 × 5 = 180. ◇

Note 34.
On the other hand, to find gcd(a, b) we take the smallest power of each prime in their
prime decompositions so in the previous example gcd(18,60) = 21 × 31 × 50 = 6.

It is a theorem that gcd(a, b) × lcm(a, b) = ab.
To prove this we let gcd(a, b) = p so that a = pq, b = pr with gcd(q, r) = 1.
Then lcm(a, b) = pqr and gcd(a, b) × lcm(a, b) = p2qr = ab.

In the above example a×b = 18×60 = 1080 and gcd(18,60)×lcm(18,60) = 6×180 = 1080.

Theorem 179.
Let G =< a > be a cyclic group with generator a of order ∣a∣ = ∣G∣ = ∣ < a > ∣ = n. Then
for all powers as ∈ G we have the order of as is given by,

∣as∣ = n

gcd(n, s)

Proof.
Let G =< a > be a cyclic group with generator a of order ∣a∣ = ∣G∣ = ∣ < a > ∣ = n.
Let the order of as be k, that is k is the least integer such that (as)k = ask = e.
So sk is the least multiple of s.
By Corollary 178, ask = e if and only if sk∣n where n is the least integer such that
an = e.
Now sk∣n⇒ sk =mn,m ∈ Z and therefore sk is the least multiple of n.
But if sk is the least multiple of s and also of n then sk = lcm(s, n). That is to say,

sk = lcm(n, s) ⇒ k = lcm(n, s)
s

.
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Now for any integers a, b we have gcd(a, b) × lcm(a, b) = ab.
Then,

∣as∣ = k = lcm(n, s)
s

= sn

s × gcd(n, s) = n

gcd(n, s)

Lemma 180.
The polynomial

f(x) = a0x
n + a1x

n−1 + a2x
n−2 + . . . + an−1x + an

has at most n distinct roots6.

Proof.
We use induction.
Let S(n) be the statement,

g(x) = a0x
n + a1x

n−1 + a2x
n−2 + . . . + an−1x + an, a0 ≠ 0

has at most n distinct roots.
Basic Step: S(1) ∶ g(x) = a0x + a1 has at most 1 root is true since −a1

a0

is the only

root.
Assumption Step: Assume S(n) is true.
Induction Step: We need to show the statement S(n + 1) that the polynomial

f(x) = a0x
n+1 + a1x

n + . . . + anx + an+1

has at most n + 1 distinct roots is true.
If f(x) has no roots, we are done. Otherwise, suppose α is a root.
Then f(x) = (x − α)g(x) where g(x) has degree n.
If β is another different root, that is f(β) = 0, then

0 = f(β) = (β − α)g(β) ⇒ g(β) = 0.

That is, any other distinct root of f(x) is also a root of g(x).
By assumption, g(x) has at most n roots. Therefore f(x) has at most n + 1 distinct
roots namely α and the roots of g(x).

6A root of a polynomial in the variable x is a value of x for which the polynomial equals 0. For
example 2 is a root of f(x) = x3 − 8 since 23 − 8 = 0. It follows that if a is a root then (x − a) is a
factor of f(x). Here x3 − 8 = (x − 2)(x2 + 2x + 4) so x − 2 is a factor of x3 − 8.
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24.5.1 Roots of Unity

We wish to identify the roots of the equation xd ≡ 1(mod p) where p is a prime.
We now use the Euler’s formula eπi = −1 proved in Theorem 119 on page 173. We
observe for x = e 2πi

d
k that we can always have only 1 ≤ k ≤ d or d distinct values of

x since any larger value of k reduces to 1 ≤ k ≤ d by using e2πi = 1. For example, if
k = jd + f, f < d then.

e
2πi(jd+f)

d = (e2πi)j × e 2πif
d = e 2πif

d where 1 ≤ f ≤ d.

These d solutions of xd = 1 are the dth roots of unity e
2πi
d
k,1 ≤ k ≤ d. Since there are

d roots of the equation xd = 1 then by Lemma 180 there can be no more.

We now show the roots of unity are a group.

Theorem 181.
The nth roots of unity form a cyclic group under multiplication modulo n.

Proof. The nth roots of unity are,

{e2πi k
n ∣ 1 ≤ k ≤ n} = {e2πi 1

n , e2πi 2
n , . . . , e2πin

n = 1} =< e2πi 1
n >

Clearly this satisfies Definition 92, page 262, of a cyclic group generated by an element
a = e2πi 1

n since we have the replacements,

{a, a2, . . . , an = e} = {e2πi 1
n , e2πi 2

n , . . . , e2πin
n = e2πi = 1}

It remains to be proved it is a group. But we have,

� Closure: Consider e2πi k
n ⋅e2πi j

n = e2πi j+k
n . Under multiplication modulo n we can

have j + k ≤ n so the product is an element of the set.

� Identity: e2πin
n = 1.

� Inverses: e2πi k
n ⋅ e2πin−k

n = 1 so e2πi k
n has the inverse e2πin−k

n .

� Associativity: Obvious.

So the nth roots of unity are a group.



24.6. Conclusion 269

24.6 Conclusion

Theorem 182.
The multiplicative group Z/pZ, p ∈ P is cyclic.

Proof. We will use Theorem 176 (3), page 263 to prove this, namely a finite group G
is cyclic if and only if there is an element a ∈ G of order ∣a∣ = ∣G∣. Specifically we need
to show there is an element a ∈ Z/pZ such that ∣a∣ = ∣Z/pZ∣ = p − 1.
For any divisor d ∣ p − 1 let Ψ(d) be the number of elements of Z/pZ of order d. By
Theorem 181 the elements of Z/pZ satisfying xd ≡ 1(mod p) form a group of order
or size d. Now by Corollary 178, page 265, for any element of order c less than d we
must have c ∣ d. Thus we can separate out the elements of Z/pZ into various subsets
all of which have the same order c where c ∣ d. Then the sum total of all the number
of elements in all those subsets must equal d, or using Ψ(c) is the number of elements
of Z/pZ of order c,

∑
c∣d

Ψ(c) = d.

Now, by the Möbius Inversion Theorem 167 on page 253,

∑
c∣d

Ψ(c) = d⇒ Ψ(d) = ∑
c∣d
µ(c)d

c

and by Corollary 172, page 257, we can use Euler’s Totient function φ(n), specifically
the result,

φ(d) = ∑
c∣d
µ(c)d

c

to show

Ψ(d) = φ(d) for all d∣p − 1

In particular,

Ψ(p − 1) = φ(p − 1) > 1 for p > 2

or the number of elements of Z/pZ of order p − 1 is φ(p − 1).
Since the case p = 2 is trivial, we have shown in all cases the existence of an element
of order p − 1.
Thus Z/pZ is cyclic.

Theorem 183.
Let p be a prime such that x2 + 1 ≡ 0(mod p) for some x. Then p ≡ 1(mod 4).

Proof. Consider the multiplicative group Z/pZ
Since p is a prime, by Theorem 182 this group is cyclic. Then,

x2 + 1 ≡ 0(mod p) ⇒ x2 ≡ −1(mod p) ⇒ x4 ≡ 1(mod p).
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So x has order 4 in Z/pZ.
Since ∣Z/pZ∣ = p − 1, by Theorem 179, page 266, we have,

4 = p − 1

gcd(p − 1,4)
⇒ p = 1 − 4 × gcd(p − 1,4)
⇒ p ≡ 1(mod 4).

Theorem 184.
There are an infinite number of primes p of the form p = 4n+1, n ∈ N or p ≡ 1( mod 4).

Proof. Suppose there are only the finite number 5,13,17, . . . , pn of primes of the form
p = 4n + 1, n ∈ N.
Consider N = (2 × 5 × 13 × 17 ×⋯ × pn)2 + 1.
Suppose p is a (necessarily odd) prime divisor of N.
Then since,

(2 × 5 × 13 × 17 ×⋯ × pn)2 + 1 ≡ 0(mod p)
by Theorem 183 we must have p ≡ 1(mod 4).
Clearly p�∈{2,5,13,17, . . . , pn} since no element of this set divides N, each leaving a
remainder of 1.
So we have a contradiction showing there are an infinite number of primes p of the
form p = 4n + 1, n ∈ N or p ≡ 1(mod 4).



Chapter 25

Primes of the form 4n+1 ∶ Method 5

Our final proof there are an infinite number of primes of the form 4n + 1 is due
to Dirichlet. We are re-introduced to the Zeta function which is of fundamental
importance in number theory. It was first studied by Euler as an elementary function
and later as a complex function by Riemann.

This proof of the 4n + 1 case is based on Dirichlet’s general theorem regarding
primes in arithmetic progressions. The proof of the general theorem is much more
complicated.

Course: Entrée V I
Ingredients
The Euler Zeta Function ζ(s)
The functions ξ(m), L(s),Q(s)
Directions
Prove the Euler product formula for ζ(s)
Investigate the behavior of ζ(s) as s→∞
Follow Euler’s proof on the infinitude of primes
Derive the product formulas for L(s),Q(s)
Follow Dirichlet’s proofs of the 4n + 3 and 4n + 1 cases.

25.1 Zeta Function ζ(s)
Definition 96. Euler Zeta function
The Euler Zeta function is defined by,

ζ(s) =
∞
∑
n=1

1

ns

For s ∈ R, the function converges for all s > 1. This was the function studied by Euler.
For s ∈ C, the function converges for all s where Re(s) > 1. This was the function
studied by Riemann.
Both convergence results may be proved by the Integral Test, Theorem 76 on page

271
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104, for convergence of an infinite series1. You can earn a million dollar prize by
being the first to prove the celebrated Riemann hypothesis concerning the zeros of
the Riemann Zeta function. We will describe the challenge later.

In this chapter we need only the Euler Zeta function ζ(s) =
∞
∑
n=1

1

ns
which we discussed

previously in Chapter 19 for values of s = 2k, k ∈ Z+.

Theorem 185. (Euler product)
For p ∈ P, where P is the set of all primes, and n ∈ N,

ζ(s) =
∞
∑
n=1

1

ns
=∏

p

1

1 − 1

ps

where the product is over all primes.

Proof. For each value of n in
∞
∑
n=1

1

ns
we have the unique factorization into products of

prime numbers,
n = pα1

1 ⋅ pα2
2 ⋯pαkk .

Then .
1

ns
= 1

pα1
1

⋅ 1

pα1
1

⋯ 1

pαkk
.

Consider,

(1 + 1

2s
+ 1

22s
+ . . .)(1 + 1

3s
+ 1

32s
+ . . .)(1 + 1

5s
+ 1

52s
+ . . .) =∏

p

(1 + 1

ps
+ 1

p2s
+ . . .)

Each term
1

ns
is found once and only once among these products2. Thus,

∞
∑
n=1

1

ns
=∏

p

(1 + 1

ps
+ 1

p2s
+ . . .)

1To show
∞

∑
n=1

1

ns
converges for s > 1 we need to show

∞

∫
1

1

xs
dx converges for s > 1. Now,

∫
∞

1

1

xs
dx = ∫

∞

1
x−s dx = [ 1

−s + 1
x−s+1]

∞

1
=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[ 1

s − 1

1

xs−1
]
∞

1
= −1

s − 1
for s > 1

[ 1

s − 1

1

x−s+1
]
∞

1
= ∞ for s ≤ 1

Hence the integral converges for s > 1 but not for s ≤ 1 and the infinite sum follows suit.

2This is so since by the Fundamental Theorem of Arithmetic any integer can be written as the

product of powers of primes so, for example, if n = 233254 then
1

ns
= 1

23s32s54s
so we can form

1

ns

by selecting
1

23s
from the first product,

1

32s
from the second,

1

54s
from the third and 1 from every

other term to ∞. We can clearly form any
1

ns
in a similar manner.
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Each term on the right side is an infinite geometric series with first term a = 1 and

common ratio r = 1

ps
< 1 which can be summed by the formula,

S∞ = a

1 − r =
1

1 − 1

ps

Then,

ζ(s) =
∞
∑
n=1

1

ns
=∏

p

1

1 − 1

ps

(25.1.1)

which we call the Euler product decomposition.

Lemma 186.

lim
s→1+

ζ(s) = +∞

Proof.
ζ(s) is monotonic as a function of s by which we mean it is a constantly increasing
function. It follows that lim

s→1+
ζ(s) is either ∞ or some finite number3 k.

Suppose lim
s→1+

ζ(s) = k. Then,

k ≥ lim
s→1+

ζ(s) = lim
s→1+

∞
∑
n=1

1

ns
=

∞
∑
n=1

1

n

In the limit as s→ 1+ we would have k >
∞
∑
n=1

1

n
for all m > 1.

But the right side is the harmonic series which does not converge4, a contradiction to
lim
s→1+

ζ(s) = k.
Hence lim

s→1+
ζ(s) = +∞.

Corollary 187.
The number of factors in the Euler product,

ζ(s) =
∞
∑
n=1

1

ns
=∏

p

1

1 − 1

ps

is infinite.

3
∞

∑
n=0

1

2n
is an example of a monotonic function with a finite limit (of 2).

4See Theorem 72 on page 101
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Proof. If the number of factors in ∏
p

1

1 − 1

ps

is finite then,

lim
s→1+

ζ(s) = lim
s→1+

∏
p

1

1 − 1

ps

=∏
p

1

1 − 1

p1

< ∞

which contradicts Lemma 186.

25.2 Infinitude of Primes

We include here, in a corollary sense, an alternative proof due to Euler that there
are an infinite number of primes. The proof requires the natural logarithm function.
The proof also requires finding the limit of an infinite double sum so we will do that
as an exercise.

Note 35. We claim,

∑
p

∞
∑
n=2

1

n
⋅ 1

pns
< 2 for s→ 1+.

We take each prime in turn so the contributions to this double sum are,

p = 2 ∶ 1

2
⋅ 1

22
+ 1

3
⋅ 1

23
+ 1

4
⋅ 1

24
+ . . .

p = 3 ∶ 1

2
⋅ 1

32
+ 1

3
⋅ 1

33
+ 1

4
⋅ 1

34
+ . . .

p = 5 ∶ 1

2
⋅ 1

52
+ 1

3
⋅ 1

53
+ 1

4
⋅ 1

54
+ . . .

. . .

Although the contribution of each prime is a series of infinite terms we do not assume
this series of contributions is infinite otherwise we assume our objective. We rearrange
and substitute as follows with s = 1,

∑
p

∞
∑
n=2

1

n
⋅ 1

pn
= 1

2
( 1

22
+ 1

32
+ 1

52
+ . . .) + 1

3
( 1

23
+ 1

33
+ 1

53
+ . . .) + 1

4
( 1

24
+ 1

34
+ 1

54
+ . . .) + . . .

We create an inequality by adding in all natural numbers and not just the primes thus,

∑
p

∞
∑
n=2

1

n
⋅ 1

pn
< 1

2
( 1

22
+ 1

32
+ 1

52
+ . . .) + 1

3
( 1

23
+ 1

33
+ 1

53
+ . . .) + 1

4
( 1

24
+ 1

34
+ 1

54
+ . . .)

+ 1

5
( 1

25
+ 1

35
+ 1

55
+ . . .) + 1

6
( 1

26
+ 1

36
+ 1

56
+ . . .) + 1

7
( 1

27
+ 1

37
+ 1

57
+ . . .)

+ 1

8
( 1

28
+ 1

38
+ 1

58
+ . . .) + . . .
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We drop off the leading fractions to give the stronger inequality,

∑
p

∞
∑
n=2

1

n
⋅ 1

pn
< ( 1

22
+ 1

32
+ 1

52
+ . . .) + ( 1

23
+ 1

33
+ 1

53
+ . . .) + ( 1

24
+ 1

34
+ 1

54
+ . . .)

+ ( 1

25
+ 1

35
+ 1

55
+ . . .) + ( 1

26
+ 1

36
+ 1

56
+ . . .) + ( 1

27
+ 1

37
+ 1

57
+ . . .)

+ ( 1

28
+ 1

38
+ 1

58
+ . . .) + . . .

Note each of the ellipses . . . now means we have an infinite number of terms in
each pair of parentheses (...) and an infinite number of such pairs. We rearrange as
folloows,

∑
p

∞
∑
n=2

1

n
⋅ 1

ps
< ( 1

22
+ 1

23
+ 1

24
+ . . .) + ( 1

32
+ 1

33
+ 1

34
+ . . .)( 1

42
+ 1

43
+ 1

44
+ . . .) + . . .

Each of these bracketed terms is an infinite geometric series with a common ratio less
than 1 so we have,

∑
p

∞
∑
n=2

1

n
⋅ 1

pn
<

1
22

1 − 1
2

+
1
32

1 − 1
3

+
1
42

1 − 1
4

+ . . . +
1
n2

1 − 1
n

+ . . .

= 1

1 ⋅ 2 +
1

3 ⋅ 2 +
1

4 ⋅ 3 + . . . +
1

n(n − 1) + . . .

< 1

1
+ 1

2 ⋅ 2 +
1

3 ⋅ 3 + . . . +
1

(n − 1)(n − 1) + . . . , since
1

n
< 1

n − 1

=
∞
∑
n=2

1

(n − 1)2

=
∞
∑
m=1

1

m2
, where we put m = n − 1

= ζ(2) = π
2

6
(See Theorem 149 page 225 and its Example.)

< 2

Theorem 188. (Euler)

The sum ∑
p∈P

1

p
diverges (so there are infinitely many primes).

Proof.

ζ(s) =∏
p

1

1 − 1

ps

so taking logs and using Note 25 on page 213 we have,

log ζ(s) = log∏
p

1

1 − 1

ps

= ∑
p

log
1

1 − 1

ps

(25.2.1)



276 Chapter 25. Primes of the form 4n + 1 ∶ Method 5

Now5 for ∣x∣ < 1,

1

1 − x = 1 + x + x2 + x3 + . . . (25.2.2)

Integrating both sides with respect to x gives6

log
1

1 − x = x + x
2

2
+ x

3

3
+ x

4

4
+ . . . =

∞
∑
n=1

xn

n

Substituting x = 1

ps
we have,

log
1

1 − 1

ps

=
∞
∑
n=1

( 1

ps
)
n

⋅ 1

n
(25.2.3)

So substituting (25.2.1) into (25.2.3) we have,

log ζ(s) = ∑
p

log
1

1 − 1

ps

= ∑
p

∞
∑
n=1

( 1

ps
)
n

⋅ 1

n
= ∑

p

1

ps
+∑

p

∞
∑
n=2

1

n
⋅ 1

pns
< ∑

p

1

ps
+ 2,

since the double series on the right is less than 2 for s > 1 (See Note 35, page 274 and

note obviously ∑
p

1

p
> ∑

p

1

ps
for all s > 1). Then,

∑
p

1

ps
> log ζ(s) − 2⇒∑

p

1

ps
→∞

since log ζ(s) → ∞ by Lemma 186. Hence there are infinitely many primes.

25.3 Dirichlet’s Proofs

We can now read Dirichlet’s proof of the p=4n + 1 case. As a bonus we also get his
proof of the p=4n + 3 case. We need some new notation and three new functions.

Notation 6.
For the even integers we use E = {2n∣n ∈ Z}.
Note that even integers must be of the form 4n or 4n + 2.
For the odd integers we use O = {2n + 1∣n ∈ Z}.}
Note that odd integers must be of the form 4n + 1 or 4n + 3.

5This is just the sum of an infinite geometric series with ∣r∣ = ∣x∣ < 1.

6Using ∫
g′(x)
g(x) dx = log g(x) we have,

∫
1

1 − x dx = −∫
−1

1 − x dx = − log(1 − x) = log 1 − log(1 − x) = log
1

1 − x
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25.3.1 The χ function

Definition 97. chi function χ

We define the function χ ∶ Z → C by χ(m) =
⎧⎪⎪⎨⎪⎪⎩

(−1)m−1
2 , m ∈ O

0, m ∈ E
where χ ∶ Z → C

means χ maps or changes integers into complex numbers. So for the odd integers
χ(4n + 1) = 1 and χ(4n + 3) = −1 and for all the even integers χ(2n) = 0.

Lemma 189.
χ is a strictly multiplicative function, that is for all mi,mj ∈ Z,

χ(m1m2) = χ(m1)χ(m2)

Proof. Let m1,m2 ∈ Z. The cases where one is odd and the other even or both are
even can be dealt with together. If either of m1,m2 ∈ E then m1m2 ∈ E so that

χ(m1m2) = χ(m1)χ(m2) for all mj ∈ Z

since both sides of the equation are 0.
The other case is if both m1,m2 ∈ O and then for j = 1,2 we have χ(mj) = ±1 since we

either have (−1) 4n+1−1
2 = +1 or (−1) 4n−1−1

2 = −1. The possibilities for χ(m1m2) and χ(m1)χ(m2)
with m1,m2 = 4n ± 1 are shown in this table.

m1 m2 m1m2 χ(m1) χ(m2) χ(m1) ⋅ χ(m2) χ(m1m2)
4n + 1 4n + 1 4n + 1 1 1 1 1
4n + 1 4n − 1 4n − 1 1 −1 −1 −1
4n − 1 4n − 1 4n + 1 −1 −1 1 1

In each case χ(m1m2) = χ(m1)χ(m2) so the Lemma is true.

25.3.2 The L(s) and Q(s) Functions

Dirichlet defined two functions L(s) and Q(s) related to the zeta function ζ(s). First,

Q(s) = (1 − 1

2s
) ζ(s)

= (1 − 1

2s
)

∞
∑
n=1

1

ns

=
∞
∑
n=1

1

ns
−

∞
∑
n=1

1

(2n)s

= 1 + 1

3s
+ 1

5s
+ . . . since all the even values cancel

= ∑
o∈O

1

os
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where o runs over the positive odd integers.
Q(s) has an Euler product decomposition as follows,

Q(s) = (1 − 1

2s
)

∞
∑
n=1

1

ns
= (1 − 1

2s
)∏

p

1

1 − 1

ps

using (25.1.1)

We extract the first term of the product to obtain,

Q(s) = (1 − 1

2s
)
⎛
⎜⎜
⎝

1

1 − 1

2s

⎞
⎟⎟
⎠
∏
p>2

1

1 − 1

ps

⇒ Q(s) =∏
p>2

1

1 − 1

ps

(25.3.1)

since the first term in 2s cancels.
Second, he defined,

L(s) = ∑
o∈O

(−1) o−12
os

= 1 − 1

3s
+ 1

5s
− 1

7s
+ 1

9s
+ . . .

For o ∈ O since we defined χ(m) = (−1)m−1
2 , m ∈ O and χ(m) = 0 for m ∈ E, we can

write,

L(s) =
∞
∑
m=1

χ(m)
ms

=
∞
∑
o=1

χ(o)
os

Then,

L(s) =∏
p∈P
p≠2

1

1 − χ(p)
ps

(25.3.2)

This is so since, similar to the proof of Theorem 185 on page 272,

∏
p∈P
p≠2

1

1 − χ(p)
ps

=∏
p∈P
p≠2

(1 + χ(p)
ps

+ (χ(p)
ps

)
2

+ (χ(p)
ps

)
3

+ . . .)

= 1 +
∞
∑
ki=0

∏
pi∈P
pi≠2

(χ(pi)
psi

)
ki

= 1 +
∞
∑
ki=0

χ
⎛
⎜
⎝
∏
pi∈P
pi≠2

pki
⎞
⎟
⎠

⎛
⎜
⎝
∏
pi∈P
pi≠2

pki
⎞
⎟
⎠

s ,
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since χ is multiplicative.

=
∞
∑
m=1

χ(m)
ms

= L(s)

by the Fundamental Theorem of Arithmetic.

25.4 Proof of 4n + 3 Case

These new functions can be used to prove there are an infinite number of primes in
the two arithmetic progressions 4n ± 1.

Theorem 190. (Dirichlet)
There are an infinite number of primes of the form 4n + 3.

Proof. We use (25.3.1) and (25.3.2) above and consider,

L(s)
Q(s) =∏

p∈P
p≠2

1 − 1

ps

1 − χ(p)
ps

= ∏
p≡3(mod 4)

1 − 1

ps

1 + 1

ps

since,
χ(p) = +1 for p ≡ 1(mod 4)

thus cancelling all the terms with p ≡ 1(mod 4) and because,

χ(p) = −1 for p ≡ 3(mod 4)

then all the remaining denominator terms have χ(p) = −1.
Now assume there are finitely many primes of the form p ≡ 3(mod 4). Then, the
product on the right is a finite product, hence well-defined at s = 1 and certainly not
equal to 0.

But at s = 1 ,
L(s)
Q(s) → 0 since

L(s)
Q(s) =

1 − 1

3
+ 1

5
− . . .

1 + 1

3
+ 1

5
+ . . .

is an alternating7 harmonic-like series (which converges) divided by an harmonic-like8

series (which does not converge) giving, if you like, a constant divided by infinity.
This is a contradiction, hence there are infinitely many primes p ≡ 3(mod 4).

7We can just say lim
n→∞

1

n
= 0 so this series converges

8Similar to the proof that the harmonic series does not converge given in Theorem 72 on page
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25.5 Proof of 4n + 1 Case

Theorem 191. (Dirichlet)
There are an infinite number of primes of the form p ≡ 1(mod 4).

Proof. Using (25.3.1) and (25.3.2) consider,

Q(2s)
Q(s)L(s) =∏

p∈P
p≠2

(1 − 1

ps
)(1 − χ(p)

ps
)

(1 − 1

p2s
)

=∏
p∈P
p≠2

(1 − 1

ps
)(1 − χ(p)

ps
)

(1 − 1

ps
)(1 + 1

ps
)

=∏
p∈P
p≠2

1 − χ(p)
ps

1 + 1

ps

= ∏
p≡1(mod 4)

1 − 1

ps

1 + 1

ps

since χ(p) = −1 for p ≡ 3(mod 4) and χ(p) = +1 for p ≡ 1(mod 4) so that all the
terms with p ≡ 3(mod 4) will cancel out and all the remaining numerator terms have
χ(p) = +1.
Now assume there are finitely many primes p ≡ 1(mod 4). Then, the product on the
right is a finite product, hence well-defined at s = 1 and certainly not equal to 0. But
(we build the contradiction),

Q(2) = ∑
o∈O

1

o2
= 1

12
+ 1

32
+ 1

52
+ . . . < 1

12
+ 1

22
+ 1

32
+ . . .

101, we group the terms and replace each term in a group by the end group element of the form
1

3n
.

Thus,

1 + 1

3
+ (1

5
+ 1

7
+ 1

9
) + ( 1

11
+ 1

13
+ . . . + 1

27
) + ( 1

29
+ . . . + 1

81
) + . . .

> 1 + 1

3
+ (1

9
+ 1

9
+ 1

9
) + ( 1

27
+ 1

27
+ . . . + 1

27
) + ( 1

81
+ . . . + 1

81
) + . . .

> 1 + 1

3
+ 1

3
+ 1

3
+ . . .

→∞
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which is a convergent p−series9 with p > 1 and,

L(1) = 1 − 1

3
+ 1

5
− 1

7
+ 1

9
− 1

11
+ . . . = 1 − 1

3
+ (1

5
− 1

7
) + (1

9
− 1

11
+) + . . . > 2

3
,

since all the paired terms following 1 − 1

3
are positive. Also, from the definition of

Q(s),
lim
s→1

Q(s) = lim
s→1

(1 − 1

2s
) ζ(s) = ∞ by Lemma 186, page 273

Therefore if we write lim
s→1

Q(s) = Q and lim
s→1

L(s) = L then

lim
s→1

Q(2s)
L(s)Q(s) = Q(2)

L(1)Q(1) = Q

L ×∞ = 0

This is a contradiction, hence there are infinitely many primes p ≡ 1(mod 4).

9Refer to Theorem 79 on page 112.
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A sorbet to cleanse the palate.

The final new function we will discuss is the Gamma Function, initially developed sep-
arately by Euler and Weierstrasse, although as we shall see, their definitions prove to
be equivalent. The challenge was to find a continuous function of a variable that was
the same as factorial n, (n!), when the variable took positive integer values. Achieve-
ments of this kind are remarkable.

Applications of the Gamma Function are numerous. One we will consider later is
in connection with the Riemann Zeta function and the famous Riemann Hypothesis.



Chapter 26

Gamma Function

Course: Sorbet
Ingredients
Euler-Mascheroni Constant emanating from the harmonic series
Calculus on the complex plane
Weierstrasse Gamma Function
Euler Gamma Function
Directions
Prove the lemma properties of the Weierstrasse Gamma Function.
Prove the equivalence of the Weierstrasse and Euler Gamma Functions.
Prove the duplication formula.

We start with further consideration of the harmonic series
∞
∑
n=1

1

n
which we have al-

ready proved (in Theorem 72, page 101) is not convergent. However, its divergence
is very slow, paralleling the divergence of logx as x→∞. Indeed their difference is a
small constant.

26.1 Euler-Mascheroni Constant

Definition 98. Euler-Macheroni constant
The Euler-Mascheroni constant γ is defined by,

γ = lim
m→∞

(1

1
+ 1

2
+ 1

3
+ . . . + 1

m
− logm) = 0.5772157 . . .

Lemma 192.
The constant γ exists.

Proof.

284
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Consider,

un = ∫
1

0

t

n(n + t) dt = ∫
1

0

1

n
dt − ∫

1

0

1

n + t dt

= [ 1

n
t − log(n + t)]

1

0

= 1

n
− (log(n + 1) − logn)

Hence, noting log 1 = 0,

m

∑
n=1

un =
m

∑
n=1

1

n
−

m

∑
n=1

(log(n + 1) − logn)

=
m

∑
n=1

1

n
− (���log 2 − log 1 +���HHHlog 3 −���log 2 + log 4 −���HHHlog 3 + . . .+

+���logm −����
��XXXXXXlog(m − 1) + log(m + 1) −���logm)

=
m

∑
n=1

1

n
− log(m + 1)

⇒
m

∑
n=1

un + log(m + 1) = 1

1
+ 1

2
+ . . . + 1

m

Therefore subtracting logm from both sides and taking the limit as m→∞ we have,

lim
m→∞

(1

1
+ 1

2
+ 1

3
+ . . . + 1

m
− logm) = lim

m→∞
(
m

∑
n=1

un + log(m + 1) − logm)

= lim
m→∞

m

∑
n=1

un + lim
m→∞

log (m + 1

m
)

=
∞
∑
n=1

un, (26.1.1)

since lim
m→∞

log (m + 1

m
) = lim

m→∞
log(1 + 1

m
) = log 1 = 0.

Now for t ∈ [0,1] we have
t

n(n + t) < 1

n2
.

So un =
1

∫
0

t

n(n + t) dt is positive and less than
1

∫
0

1

n2
dt = 1

n2
and therefore, by the

p− test1,
∞
∑
n=1

un converges and by (26.1.1) since,

lim
m→∞

(1

1
+ 1

2
+ 1

3
+ . . . + 1

m
− logm) =

∞
∑
n=1

un,

then lim
m→∞

(1

1
+ 1

2
+ 1

3
+ . . . + 1

m
− logm) converges to a finite number we call γ.

1See Theorem 77, page 105
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26.2 Observations on Calculus on the Complex Plane

We will be dealing with complex numbers and the complex number plane. We have
not discussed differentiation on the complex plane, but it is sufficient to note that,

1. Differentiable real functions parallel holomorphic complex functions and,

2. Division by zero or multiples of zero occurring at a real point of a function of a
real variable corresponds to simple poles or poles of higher order occurring at a
complex point of a function of a complex variable.

Definition 99. holomorphic function
A holomorphic function is a complex-valued function of one or more complex variables
that is differentiable in a neighborhood of every point in its domain. We will also call
such functions analytic functions if the function has only one variable.

Definition 100. pole

A function f has a pole of order n at a point z = z0 if f(z) = g(z)
(z − z0)n

and (z−z0)��∣g(z)
where g(z) is a holomorphic function.
Accordingly the function (z − z0)nf(z) is also holomorphic.
If n = 1, we say f has a simple pole at z = z0.

Example 120.

f(z) = 1

z
has a simple pole at z = 0 since zf(z) = 1 and

d

dz
(zf(z)) = 0 exists at z = 0.

f(z) = z2

(z − 1)3
has a pole of order 3 at z = 1 and

d

dx
(z − 1)3f(z) = d

dx
z2 = 2z exists

at z = 1.

Let us proceed.

26.3 Weierstrasse Gamma Function

Definition 101. The Gamma Function Γ(z) defined by Weierstrasse is,

1

Γ(z) = zeγz
∞
∏
n=1

{(1 + z
n
) e− zn} , z ∈ C

where γ is the Euler-Mascheroni constant.

Obviously, inverting the definition, Γ(z) is analytic or holomorphic everywhere

except at z = 0 and for any values of n for which
z

n
= −1, that is at z = −1,−2, . . . since

we can at the same time have n = 1,2, . . . .
We can now build the lemmas and theorems resulting from this definition.
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Lemma 193.
Γ(1) = 1

Proof. Noting γ = lim
m→∞

(1

1
+ 1

2
+ 1

3
+ . . . + 1

m
− logm) ,

1

Γ(1) = eγ
∞
∏
n=1

{(1 + 1

n
) e− 1

n}

= lim
m→∞

{e 1
1
+ 1

2
+...+ 1

m
−logm [(1 + 1

1
) e− 1

1 ] [(1 + 1

2
) e− 1

2 ]⋯[(1 + 1

m
) e− 1

m ]}

= lim
m→∞

e−logm ( �2
1
× 3

�2
×⋯ × m + 1

��m
)

since all the exponentials e
1
m , etc. cancel

= lim
m→∞

(m + 1

m
) since e− logm = elog 1

m = 1

m

= lim
m→∞

(1 + 1

m
) = 1

Lemma 194.

Γ′(1) = −γ

Proof. Taking logs of both sides of,

1

Γ(z) = zeγz
∞
∏
n=1

{(1 + z
n
) e− zn}

we obtain,

− log Γ(z) = log z + log eγz +
∞
∑
n=1

{log (1 + z
n
) + log e−

z
n}

Differentiating both sides with respect to z and noting log eγz = γz and log e−
z
n = − z

n
gives,

−Γ′(z)
Γ(z) = 1

z
+ γ +

∞
∑
n=1

⎛
⎜⎜
⎝

1

n

1 + z
n

− 1

n

⎞
⎟⎟
⎠

Then,

−Γ′(1)
Γ(1) = 1 + γ −

∞
∑
n=1

( 1

n
− 1

n + 1
)

= 1 + γ − (1

1
−
�
�
�1

2
+
�
�
�1

2
−
�
�
�C
C
C

1

3
+
�
�
�C
C
C

1

3
−
�
�
�1

4
+
�
�
�1

4
− . . .)

= γ
By Lemma 193, Γ′(1) = −γ.
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In the next lemma we use a ”trick”, namely, m =
m−1

∏
n=1

(1 + 1

n
) since,

(1 + 1

1
)(1 + 1

2
)(1 + 1

3
)⋯(1 + 1

m − 1
) = �2 ⋅ �A

3

�2
⋅ 4

�A3
⋯�

��m − 1

m − 2
⋅ m

���m − 1
=m

so we have the result we will use below,

m−z =
m−1

∏
n=1

(1 + 1

n
)
−z

Lemma 195. (Euler)

Γ(z) = 1

z

∞
∏
n=1

{(1 + 1

n
)
z

(1 + z
n
)
−1

} provided z ≠ 0,−1,−2, . . . .

Proof.

We substitute γ = lim
m→∞

(1

1
+ 1

2
+ 1

3
+ . . . + 1

m
− logm) into the definition of

1

Γ(z) ,

1

Γ(z) = zeγz
∞
∏
n=1

{(1 + z
n
) e− zn}

= z [ lim
m→∞

e(1+
1
2
+...+ 1

m
−logm)z] [ lim

m→∞

∞
∏
n=1

(1 + z
n
) e− zn ]

= z lim
m→∞

[e−z logme(1+
1
2
+...+ 1

m
)ze(−

1
1
)ze(−

1
2
)z⋯e(− 1

m
)z

m

∏
n=1

(1 + z
n
)]

= z lim
m→∞

[m−z
m

∏
n=1

(1 + z
n
)]

since e−z logm = −mz and all the powers of ez cancel.

= z lim
m→∞

[
m−1

∏
n=1

(1 + 1

n
)
−z m

∏
n=1

(1 + z
n
)] where we used the ”trick” above.

= z lim
m→∞

[(1 + 1

m
)
z

⋅ (1 + 1

m
)
−z
⋅
m−1

∏
n=1

(1 + 1

n
)
−z
⋅
m

∏
n=1

(1 + z
n
)]

where we multiplied by the first two terms which are inverses so we could

increase the first product thus,

= z lim
m→∞

[(1 + 1

m
)
z

⋅
m

∏
n=1

(1 + 1

n
)
−z
⋅
m

∏
n=1

(1 + z
n
)]

= z lim
m→∞

[
m

∏
n=1

(1 + 1

n
)
−z
⋅
m

∏
n=1

(1 + z
n
)]

since lim
m→∞

(1 + 1

m
)
z

= 0.

⇒ Γ(z) = 1

z

∞
∏
n=1

[(1 + 1

n
)
z

(1 + z
n
)
−1

]
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provided z ≠ 0,−1,−2, . . . so (there is no division by 0 when n = 1,2, . . .).

Theorem 196.

Γ(z + 1) = zΓ(z) if z ≠ 0,−1,−2, . . . .

Proof.
By definition,

1

Γ(z) = zeγz
∞
∏
n=1

{(1 + z
n
) e− zn}

= zeγz lim
m→∞

m

∏
n=1

{(1 + z
n
) e− zn}

Hence,

Γ(z + 1)
Γ(z) =

zeγz
∞
∏
n=1

{(1 + z
n
) e− zn}

(z + 1)eγ(z+1)
∞
∏
n=1

{(1 + z + 1

n
) e− z+1n }

= z

z + 1
e−γ lim

m→∞

m

∏
n=1

{( z + n
z + n + 1

) e 1
n}

= z

z + 1
lim
m→∞

m

∏
n=1

e−γ+
1
1
+ 1

2
+... ( z + n

z + n + 1
)

= z

z + 1
lim
m→∞

m

∏
n=1

elogm ( z + n
z + n + 1

)

where we used γ = lim
m→∞

(1

1
+ 1

2
+ 1

3
+ . . . + 1

m
− logm) .

= z

���z + 1
lim
m→∞

(m ⋅ �
��z + 1

���XXXz + 2
⋅ �
��XXXz + 2

z + 3
⋯z +m − 1

���z +m ⋯ ���z +m
z +m + 1

)

where we used elogm =m

= z lim
m→∞

( m

z +m + 1
)

= z

since lim
m→∞

m

m + z + 1
= lim
m→∞

1

1 + z

m
+ 1

m

= 1.

Corollary 197.

Γ(n + 1) = n! for n ∈ N
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Proof.

Γ(n + 1) = nΓ(n) = n(n − 1)Γ(n − 1) = . . . = n(n − 1)(n − 2) ⋯ Γ(1) = n!

We now express the gamma function as an infinite fraction.

Theorem 198.

Γ(z) = lim
n→∞

n!

z(z + 1)(z + 2)⋯(z + n)n
z (26.3.1)

Proof.
By Lemma 195,

Γ(z) = 1

z

∞
∏
n=1

{(1 + 1

n
)
z

(1 + z
n
)
−1

}

= lim
m→∞

1

z
⋅ (1 + 1

1
)
z

⋅ (1 + 1

2
)
z

⋯(1 + 1

m
)
z

⋅ (1 + z
1
)
−1

× (1 + z
2
)
−1

⋯ (1 + z

m
)
−1

= lim
m→∞

1

z
⋅��2z ⋅ �

�3z

��2z
⋅ ⋯ (m + 1)z

��mz
× 1

1 + z ⋅
2

2 + z⋯
m

m + z
= lim
m→∞

m!(m + 1)z
z(1 + z)(2 + z)⋯ (m + z)

We put n − 1 =m,

= lim
n→∞

(n − 1)!nz
z(z + 1)(z + 2)⋯ (n + z − 1)

Another ”trick” - we multiply by lim
n→∞

n

n + z = 1.

= lim
n→∞

n

n + z ⋅
(n − 1)!nz

z(z + 1)(z + 2)⋯ (n + z − 1)

= lim
n→∞

n!

z(z + 1)(z + 2)⋯(z + n)n
z

The proof of this next ”famous” lemma needs complex analysis at least up to the
residue theorem. That was not available to Euler. He argued, some say “recklessly”,
as follows. For the purists we proved the Lemma rigorously as Equation (19.2.6) of
Theorem 147 on page 222 with z = πx.

Lemma 199. (Euler)

sin z

z
=

∞
∏
n=1

(1 − z2

n2π2
)
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Proof. From Theorem 118, page 172,

sin z = z − z
3

3!
+ z

5

5!
− . . .

⇒ sin z

z
= 1 − z

2

3!
+ z

4

5!
+ . . .

= (1 − a1)(1 − a2)⋯ (”recklessly” saying an infinite sum factors)

Now we proved in Theorem 112 on page 164 that lim
z→0

sin z

z
= 1. We know2 sin z has

an infinite number of zeros at 0,±π,±2π, . . . and therefore the factors of
sin z

z
must

be the pairs,

sin z

z
=
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(1 − z

π
)(1 + z

π
)
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(1 − z

2π
)(1 + z

2π
)⋯

= (1 − z
2

π2
)(1 − z2

(2π)2
)⋯

=
∞
∏
n=1

(1 − z2

n2π2
) (26.3.2)

Theorem 200.

Γ(z)Γ(1 − z) = π

sinπz

Proof.
We can invert Euler’s (26.3.2) above into,

z

sin z
=

∞
∏
n=1

1

(1 − z2

n2π2
)

and then replace z with πz to obtain,

πz

sinπz
=

∞
∏
n=1

1

(1 − z
2

n2
)

(26.3.3)

Now, by Theorems 196 and 198,

Γ(z + 1) = zΓ(z) = lim
n→∞

n!

(z + 1)(z + 2)⋯(z + n)n
z (26.3.4)

2See Note 22 on page 160
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Let nz = ez logn and use Euler-Mascheroni’s constant γ = lim
n→∞

(1

1
+ 1

2
+ 1

3
+ . . . + 1

n
− logn)

so that,

lim
n→∞

nz = lim
n→∞

ez logn = lim
n→∞

ez(
1
1
+ 1

2
+ 1

3
+...+ 1

n
−γ) (26.3.5)

Then, distributing the terms in (26.3.5) across (26.3.4) and unpacking n! we have,

Γ(z + 1) = lim
n→∞

e−γz (1 ⋅ ez
1 + z)(2 ⋅ e z2

2 + z )(3 ⋅ e z3
3 + z )⋯(n ⋅ e

z
n

n + z )

= e−γz lim
n→∞

( ez

1 + z)
⎛
⎜
⎝
e
z
2

1 + z
2

⎞
⎟
⎠

⎛
⎜
⎝
e
z
3

1 + z
3

⎞
⎟
⎠
⋯

⎛
⎜
⎝
e
z
n

1 + z
n

⎞
⎟
⎠

= e−γz
∞
∏
n=1

e
z
n

1 + z
n

(26.3.6)

So, putting z = −z,

Γ(1 − z) = eγz
∞
∏
n=1

e
−z
n

1 − z
n

(26.3.7)

Now, Γ(z + 1) = zΓ(z) so we have from (26.3.6) and (26.3.7) both,

Γ(z) = Γ(z + 1)
z

= e
−γz

z

∞
∏
n=1

e
z
n

1 + z
n

, (26.3.8)

and using Γ(1 − z) = −zΓ(z),

Γ(−z) = Γ(1 − z)
−z = e

γz

−z
∞
∏
n=1

e
−z
n

1 − z
n

(26.3.9)

Then by (26.3.8) and (26.3.9),

Γ(z)Γ(−z) =
⎛
⎜
⎝
e−γz

z

∞
∏
n=1

e
z
n

1 + z
n

⎞
⎟
⎠

⎛
⎜
⎝
eγz

−z
∞
∏
n=1

e
−z
n

1 − z
n

⎞
⎟
⎠

= − 1

z2

∞
∏
n=1

⎛
⎜⎜⎜
⎝

1

1 − z
2

n2

⎞
⎟⎟⎟
⎠

= − 1

z2

πz

sinπz
by (26.3.3) of Theorem 200,

= − π

z sinπz
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Hence substituting,

Γ(z + 1) = zΓz ⇒ Γ(−z + 1) = −zΓ(−z) ⇒ Γ(−z) = Γ(1 − z)
−z

we have,

Γ(z)Γ(1 − z)
−z = − π

z sinπz
(26.3.10)

⇒ Γ(z)Γ(1 − z) = π

sinπz
(26.3.11)

Corollary 201.

Γ(1

2
) =

√
π

Proof.

Put z = 1

2
in formula (26.3.11) of the above theorem, note sin

π

2
= 1, to obtain,

Γ(1

2
)Γ(1

2
) = π

sin π
2

= π⇒ Γ(1

2
) =

√
π

26.4 Euler Gamma Function

Euler defined the Gamma Function by,

Γ(z) = ∫
∞

0
e−ttz−1 dt

We will now show the Euler and Weierstrasse definitions of the Gamma Function are
actually the same, that is,

Γ(z) = e
−γz

z

∞
∏
n=1

e
z
n

1 + z
n

= ∫
∞

0
e−ttz−1 dt

We begin with a lemma.

Lemma 202.

lim
n→∞

[e−t − (1 − t

n
)
n

] = 0

⇒ e−t = lim
n→∞

(1 − t

n
)
n

⇒ et = lim
n→∞

(1 + t

n
)
n

by putting −t = t
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Proof.
Consider,

f(x) = t logx

⇒ f ′(x) = t

x
⇒ f ′(1) = t.

Then, by definition of the derivative evaluated at x = 1,

t = f ′(1) = lim
h→0

f(x + h) − f(x)
h

∣
x=1

= lim
h→0

t log(x + h) − t logx

h
∣
x=1

= lim
h→0

t log(1 + h) − t log 1

h

= lim
h→0

t log(1 + h) − 0

h

= lim
h→0

t

h
log(1 + h)

⇒ t = lim
h→0

log(1 + h) th (26.4.1)

Then, assuming we can take a limit inside and using elogx = x,

lim
h→0

(1 + h) th = lim
h→0

elog(1+h)
t
h

= e lim
h→0

log(1+h)
t
h

= et by (26.4.1)

Putting h = t

n
, and noting h→ 0⇒ n→∞. we get,

et = lim
n→∞

(1 + t

n
)
n

and e−t = lim
n→∞

(1 − t

n
)
n

(26.4.2)

Theorem 203. (Equivalence of the Euler and Weierstrasse Definitions)

Γ(z) = e
−γz

z

∞
∏
n=1

e
z
n

1 + z
n

⇔ Γ(z) = ∫
∞

0
e−ttz−1 dt

Proof. Let,

Π(z, n) = ∫
n

0
(1 − t

n
)
n

tz−1 dt
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Putting t = nr we have both dt = n dr and 0 ≤ t ≤ n replaced by 0 ≤ r ≤ 1. We obtain,

Π(z, n) = nz ∫
1

0
(1 − r)nrz−1 dr

We use repeated integration by parts noting the variable is r.

First, putting u = (1 − r)n, v′ = rz−1 ⇒ u′ = −n(1 − r)n−1, v = r
z

z
we have,

Π(z, n) = ([r
z

z
(1 − r)n]

1

0

+ n
z ∫

1

0
(1 − r)n−1rz dr)nz

= 0 + (n
z ∫

1

0
(1 − r)n−1rz dr)nz

Next, putting u = (1 − r)n−1, v′ = rz ⇒ u′ = −(n − 1)(1 − r)n−2, v = rz+1

z + 1
we have,

Π(z, n) = ([r
z+1

z
(1 − r)n−1]

1

0

+ n
z
⋅ n − 1

z + 1 ∫
1

0
(1 − r)n−2rz+1 dr)nz

= 0 + (n
z
⋅ n − 1

z + 1 ∫
1

0
(1 − r)n−2rz+1 dr)nz

. . . . . .

= n!

z(z + 1)(z + 2)⋯(z + n)n
z

since the (1 − r) term under the integral will disappear when we have,

1

∫
0

rz+n−1 dr = 1

z + n.

Hence by equation (26.3.1) of Theorem 198, page 290,

lim
n→∞

Π(z, n) = Γ(z)

Consequently,

Γ(z) = lim
n→∞∫

n

0
(1 − t

n
)
n

tz−1 dt

Let Γ1(z) = ∫
∞

0 e−ttz−1 dt. We will show Γ1(z) = Γ(z).

Note that ∫
∞

0 e−ttz−1 dt is an analytic function of z and therefore converges when
the real part of z is greater than 0 or Re(z) > 0, but the integral does not converge

when Re(z) ≤ 0 since the consequential denominator
1

t∣Re(z)∣ → ∞ as t→ 0.
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Since ∫
∞

0 e−ttz−1 dt is convergent, it follows that just as the nth term an of a
convergent infinite series must obey lim

n→0
an = 0, so the convergent infinite series,

∫
∞

0
e−ttz−1 dt = ∫

1

0
e−ttz−1 dt + ∫

2

1
e−ttz−1 dt + . . .∫

∞

n
e−ttz−1 dt

must obey

∫
∞

n
e−ttz−1 dt = 0 (26.4.3)

Then, using,

Γ1(z) = ∫
∞

0
e−ttz−1 dt = ∫

n

0
e−ttz−1 dt + ∫

∞

n
e−ttz−1 dt

we obtain,

Γ(z) − Γ1(z) = lim
n→∞

[∫
n

0
(1 − t

n
)
n

tz−1 dt − ∫
n

0
e−ttz−1 dt − ∫

∞

n
e−ttz−1 dt]

= lim
n→∞∫

n

0
[(1 − t

n
)
n

− e−t] tz−1 dt − 0 by (26.4.3)

= 0 due to (26.4.2) of Lemma 202.

We have proved,

Γ(z) = e
−γz

z

∞
∏
n=1

e
z
n

1 + z
n

⇔ Γ(z) = ∫
∞

0
e−ttz−1 dt

We could, therefore, have developed the theory of the Gamma Function by start-
ing with Γ(z) = ∫

∞
0 e−ttz−1 dt. For example,

Theorem 204.

Γ(z + 1) = zΓ(z)

Proof.
Given Γ(z) = ∫

∞
0 e−ttz−1 dt we have,

Γ(z + 1) = ∫
∞

0
e−ttz−1+1 dt = ∫

∞

0
e−ttz dt

We use integration by parts, putting u = tz, v′ = e−t⇒ u′ = ztz−1, v = −e−t to get,

Γ(z + 1) = [−e−ttz]∞0 + z∫
∞

0
e−ttz−1 dt = 0 + zΓ(z) = zΓ(z).
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Theorem 205.

Γ(1) = 1

Proof.

Γ(1) = ∫
∞

0
e−t dt = [−e−t]∞0 = 0 + e0 = 1

26.5 Duplication Formula

Finally, there are many examples in mathematics and number theory of recursive
type formulas and/or duplication formulas as well as functional equations combining
more than one function together into a formula.

Here is the one relating to the Gamma Function due to Legendre which we will
also use in the final chapter.

Theorem 206. (Duplication Formula)

22z−1Γ(z)Γ(z + 1

2
) =

√
π Γ(2z)

Proof.
Since Γ(z + 1) = zΓ(z),

Γ(z + 1

2
) = Γ(2z + 1

2
) = (2z − 1

2
)Γ(2z − 1

2
)

= (2z − 1

2
)(2z − 3

2
)Γ(2z − 3

2
)

. . .

=

z terms
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(2z − 1

2
)(2z − 3

2
)⋯3

2
⋅ 1

2
⋅Γ(1

2
)

= (2z − 1)(2z − 3)⋯3 ⋅ 1
2z

√
π by Lemma 201 (26.5.1)

We also have, using Γ(z + 1) = zΓ(z),

Γ(2z + 1)
2zΓ(z + 1) = (2z)(2z − 1)(2z − 2)(2z − 3)⋯6 ⋅ 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1

2z(z)(z − 1)(z − 2)⋯3 ⋅ 2 ⋅ 1

= (2z)(2z − 1) ⋅ 2(z − 1) ⋅ (2z − 3) ⋅ 2(z − 2)⋯(2 ⋅ 3) ⋅ 5 ⋅ (2 ⋅ 2) ⋅ 3 ⋅ (2 ⋅ 1)
2z(z)(z − 1)(z − 2)⋯3 ⋅ 2 ⋅ 1

= (2z − 1)(2z − 3)⋯5 ⋅ 3 ⋅ 1 (26.5.2)



298 Chapter 26. Gamma Function

since there are also 2z 2′s in the numerator and each term in the denominator cancels
with its corresponding term in the numerator.
Comparing these two results (26.5.1) and (26.5.2) we have,

Γ(z + 1

2
) = Γ(2z + 1)

2z ⋅ 2z ⋅ Γ(z + 1)
√
π

⇒ 22zΓ(z + 1)Γ(z + 1

2
) = Γ(2z + 1)

√
π

⇒ 22zzΓ(z)Γ(z + 1

2
) = 2z ⋅ Γ(2z)

√
π (using Γ(z + 1) = z ⋅ Γ(z) on both sides)

⇒ 22z−1Γ(z)Γ(z + 1

2
) = Γ(2z)

√
π

The Gamma Function combines with other functions to give us some wonderful
results. For example Riemann used it in conjunction with his Zeta function, which
we will discuss in the final chapter.
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How many primes are there less than or equal to a given number x? The symbol
is π(x). By the late 18th century, tables of primes existed up to about 400,000. Gauss
is reputed to have hired an assistant whose main task was to determine primes. His
primary method was to divide any odd number x by the primes less than its square
root. Of course, the majority of numbers can be readily eliminated as divisible by
2,3 or 5.

● In 1798 Legendre conjectured π(x) = x

logx −A(x) where A(x) is a constant de-

pending on x.
● In 1792, the 15-year old Carl Gauss conjectured that π(x) and the logarithmic

integral of x defined by Li(x) =
x

∫
2

dt

log t
become equal as x→∞.

Since, by integration by parts,
x

∫
2

dt

log t
= x

logx
, this implies,

π(x) → x

logx
as x→∞

Just as the search to prove Fermat’s Last Theorem dominated the 20th century, so
the search to prove the Prime Number Theorem (PNT),

π(x) → x

logx
as x→∞

dominated the 19th century. Using complex analysis it was finally proved indepen-
dently in 1896 by de la Vallée Pousson and Hadamard. They used techniques of a
complex variable due to Riemann in his paper “On the number of primes less than a
given magnitude”’ which we will discuss in the final chapter.
It had taken so long to prove the theorem that almost no-one believed it could be
proved by elementary methods. Stunning the mathematical world of 1949, it was
proved, using elementary methods, again independently, by Selberg and Erdös. The
breakthrough they needed had been done 50 years before by the Russian mathemati-
cian Chebyshev.

To prove π(x) → x

logx
as x → ∞ which is equivalent to lim

x→∞
π(x)
x/ logx

= 1, Chebyshev

proved there exist positive constants C1,C2 such that,

C1 <
π(x)
x/ logx

< C2

Selberg and Erdös proved C1 = C2 = 1. We will follow the trail to Selberg’s proof.
We include as a final dessert in our prime number banquet, Bertrand’s Postulate:

There is always a prime between n and 2n if n > 2.

since its proof uses similar techniques.



Chapter 27

Counting the Primes

Course: Banquet Style
Ingredients
Prime numbers and π(x), the number of primes less than or equal to x.
Sieve of Erasthosthenes
Sets
Big-O and little-o notation
Möbius function
Greatest integer function
Directions
Use the Sieve of Erasthosthenes
Prove a theorem on the cardinality of the union of sets
Prove Legendre’s Theorem for π(x)
Follow Chebyshev in finding bounds for π(x)
Follow Selberg in proving the prime number theorem by elementary techniques.

Definition 102. prime and composite numbers
A prime number is a natural number greater than 1 that is not divisible by any other
number except itself and 1. In other words, it has no factors other than itself and 1.
Numbers that are not prime are called composite. In other words, they have factors
other than themselves and 1.

Example 121.
2,3,5,7,11,13,17,19,23,29,31, . . . are prime numbers. So is 197.
4,6,8,10,12,14,15,16,18,20,21,22,24,25,26,27,28,30, . . . are composite numbers. So
is 57 = 3 × 19. ◇

We note that
√

64 <
√

76 <
√

81 means
√

76 lies between 8 and 9. We further
note that one of each of the pairs of factors of 76 is less than 8 (1,2,4 < 8 ) and the
other is greater than 8 (76,38,19 > 8). Therefore in order to find the factors of 76,
it is sufficient to divide 76 by the numbers less than 8. In turn, since any composite
number less than 8 is the product of smaller primes (e.g., 4 = 2 × 2), to determine

301
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whether 76 is prime or composite, it is sufficient to divide it only by the primes less
than 8, namely, 2,5 and 7. Consequently we have this algorithm.

27.1 Algorithm for determining whether a number

is prime.

To determine whether a number is prime, divide it by the primes less than its square
root. If there are no remainders then the number is prime.

Example 122.

√
169 <

√
181 <

√
196⇒ 13 <

√
181 < 14,

so to determine whether 181 is prime, we divide it by 2,3,5,7,11,13. Note that divis-
ibility by 2 and 5 is obviously not true since it is not an even number and it does not
end in 0 or 5. For the others,

181 ≡ 1(mod 3), 6(mod 7), 5(mod 11), 12(mod 13)

so that 181 is a prime.

27.2 Sieve of Erasthosthenes

In ancient times, the Greek Mathematician Erasthosthenes developed a sieve to de-
termine prime numbers. You can do it for yourself using the table below.

1 2 3 4 5 6 7 8 9 10 11 12
13 14 15 16 17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32 33 34 35 36
37 38 39 40 41 42 43 44 45 46 47 48
49 50 51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70 71 72
73 74 75 76 77 78 79 80 81 82 83 84
85 86 87 88 89 90 91 92 93 94 95 96
97 98 99 100 101 102 103 104 105 106 107 108
109 110 111 112 113 114 115 116 117 118 119 120
121 122 123 124 125 126 127 128 129 130 131 132

The number 1 is not regarded as a prime number. The number 2 is a prime number,
so circle it and then go through the table and cross out every number divisible by 2,
that is every second number from 2 on, namely, 4, 6, 8, etc. You will see that the first
number not crossed out or circled is 3. So 3 is a prime. Circle it and then proceed
to cross out every third number from 3 on, namely, 6, 9, 12, etc. The next number
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not crossed out or circled is 5. So keep repeating the process until you reach 11. The
circled numbers are the prime numbers. The crossed out numbers are the composite
numbers.

You end up with:

2 3 5 7 11
13 17 19 23

29 31
37 41 43 47

53 59
61 67 71
73 79 83

89
97 101 103 107
109 113

127 131

The distribution of the primes has no apparent pattern.
It can easily be proved there is no non-constant polynomial function P (n) with

integer coefficients that generates the primes, but interestingly Euler first noticed (in
1772) that the quadratic polynomial P (n) = n2−n+41 generates primes for all n < 41.
They are,

41 43 47 53 61 71 83 97 113 131 151 173 197
223 251 281 313 347 383 421 461 503 547 593 641 743
797 853 911 971 1033 1097 1163 1231 1301 1373 1447 1523 1601

The differences between the primes are 2,4,6,8,. . .
For n = 41, P (n) produces the square number 1681 = 412 ending the streak.
p = 41 is the largest known value of p for which P (n) = n2 −n+ p generates primes up
to p2. Other values are p = 2,3,5,11,17. No other values of p are known.

27.3 π(x) - the number of primes ≤ x.
Definition 103. We define π(x) to be the number of primes less than or equal to a
given number x, that is,

π(x) = ∑
p≤x

1, p ∈ P

Example 123.
π(2) = 0, π(3) = 1, π(100) = 25, π(1,000) = 168, π(1,000,000) = 78,498

One of the earliest formulas for π(x) is due to Legendre. Its strict proof requires
a lemma from set theory.
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27.4 Cardinality of a Union of Sets

Definition 104. cardinality of a set
The cardinality ∣A∣ of a set A is the number of objects it contains.

Example 124.
A = {2,4,7} ⇒ ∣A∣ = 3

The cardinality of a union of sets is given by the following lemma.

Lemma 207.
Suppose A1,A2, . . . ,An are sets. Then,

∣A1 ∪A2 ∪ . . . ∪An∣
= ∑

1≤i≤n
∣Ai∣ − ∑

1≤i,j≤n
∣Ai ∪Aj ∣ + ∑

1≤i,j,k≤1

∣Ai ∪Aj ∪Ak∣ − . . .

+ (−1)m+1 ∑
1≤i1,i2,...,im≤n

∣A1 ∪A2 ∪A3 ∪ . . . ∪Am∣ + . . .

+ (−1)n+1∣A1 ∪A2 ∪A3 ∪ . . . ∪An∣

Proof.
The proof is by induction. We first prove the statement of the theorem for n = 2,
namely,

∣A1 ∪A2∣ = ∑
1≤i≤2

∣Ai∣ + (−1)3∣A1 ∪A2∣ = ∣A1∣ + ∣A2∣ − ∣A1 ∪A2∣

We first note if A∪B = φ1 or A,B are disjoint sets, then clearly ∣A∪B∣ = ∣A∣ + ∣B∣ and
by induction, if A1,A2, . . . ,An are all disjoint then,

∣A1 ∪A2 ∪ . . . ∪An∣ = ∑
1≤i≤n

∣Ai∣

Then in general noting A−B and A∩B are disjoint sets and that A = (A−B)∪(A∩B)
as we see from Figure 37,

A ∩BA −B B −A

A B

Figure 37

1The Greek letter phi, φ, is the symbol for the empty set, thus φ = { }.
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then,

A1 = (A1 −A2) ∪ (A1 ∩A2) ⇒ ∣A1∣ = ∣A1 −A2∣ + ∣A1 ∩A2∣ (27.4.1)

A2 = (A2 −A1) ∪ (A1 ∩A2) ⇒ ∣A2∣ = ∣A2 −A1∣ + ∣A1 ∩A2∣ (27.4.2)

Then (again referring to Figure 37) since,

A1 ∪A2 = (A1 ∩A2) ∪ (A1 −A2) ∪ (A2 −A1) (27.4.3)

and the sets on the right side are all disjoint, having no elements in common, then
rearranging (27.4.1),

∣A1 −A2∣ = ∣A1∣ − ∣A1 ∪A2∣
and rearranging (27.4.2),

∣A2 −A1∣ = ∣A2∣ − ∣A1 ∩A2∣
so, by (27.4.3),

∣A1 ∪A2∣ = ∣A1 −A2∣ + ∣A1 ∩A2∣ + ∣A2 −A1∣
= ∣A1∣ − ∣A1 ∩A2∣ + ∣A1 ∩A2∣ + ∣A2∣ − ∣A1 ∩A2∣
= ∣A1∣ + ∣A2∣ − ∣A1 ∩A2∣ (27.4.4)

Given sets A,B,C obey the distribution law of union over intersection,

(A ∪B) ∩C = (A ∩C) ∪ (B ∩C) (27.4.5)

which extends by induction to,

(A1 ∪A2 ∪ . . . ∪An) ∩B = (A1 ∩ b) ∪ (A2 ∩ b) ∪ . . . ∪ (An ∩B)

then, for n = 3,

∣A1 ∪A2 ∪A3∣ = ∣(A1 ∪A2) ∪A3∣
= ∣A1 ∪A2∣ + ∣A3∣ − ∣(A1 ∪A2) ∩A3∣ by (27.4.3)

= ∣A1∣ + ∣A2∣ − ∣A1 ∩A2∣ + ∣A3∣ − ∣(A1 ∩A3) ∪ (A2 ∩A3)∣ by (27.4.4) and (27.4.5)

= ∣A1∣ + ∣A2∣ − ∣A1 ∩A2∣ + ∣A3∣ − ∣A1 ∩A3∣ − ∣(A2 ∩A3∣ + ∣A1 ∩A3 ∩A2 ∩A3∣
= ∑

1≤i≤3

∣Ai∣ − ∑
1≤i,j≤3

∣Ai ∩Aj ∣ + ∣A1 ∩A2 ∩A3∣

So the statement is true for n = 3 also. We will omit the details of the inductive step
(it’s all about keeping the notation under control) and conclude inductively that,

∣A1 ∪A2 ∪ . . . ∪An∣
= ∑

1≤i≤n
∣Ai∣ − ∑

1≤i,j≤n
∣Ai ∪Aj ∣ + ∑

1≤i,j,k≤1

∣Ai ∪Aj ∪Ak∣ − . . .

+ (−1)m+1 ∑
1≤i1,i2,...,im≤n

∣A1 ∪A2 ∪A3 ∪ . . . ∪Am∣ + . . .

+ (−1)n+1∣A1 ∪A2 ∪A3 ∪ . . . ∪An∣
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27.5 Legendre’s Theorem

Definition 105. greatest integer function
We define the greatest integer function [x] to mean the greatest integer less than or
equal to the real number x. A useful way of interpreting [x] is to say, given [x], there
are a pair of successive integers n,n + 1 such that n ≤ x < n + 1 where [x] = n.

Example 125.
[1.6] = 1, [−2.4] = −3, [7] = 7

Note 36. Let’s investigate [2x] − 2[x].
There are two possibilities. With n ≤ x < n + 1 and 0 ≤ δ < 1

2
we have either of,

Case 1: x = n + 1

2
+ δ ⇒ [x] = n, making 2x = 2n + 1 + 2δ ⇒ [2x] = 2n + 1 giving

[2x] − 2[x] = 1.
Case 2: x = n + δ⇒ [x] = n, making 2x = 2n + 2δ⇒ [2x] = 2n giving [2x] − 2[x] = 0.

Theorem 208. (Legendre)
The number of primes less than or equal to a real number x, denoted π(x), is given
by,

π(x) = ∑
d∣P
µ(d) [x

d
] + π(

√
x) − 1

where P =
n

∏
k=1
pk is the product of all the primes pk less than or equal to x and µ(d)

is the Möbius function.

Proof.
The method we use to find all the primes less than x is to count all the numbers
divisible by any prime less than the square root of x. This means we eliminate all
the composite numbers less than x but we also eliminate the primes less than the
square root of x, however, we do not eliminate the number 1. Hence we will need the
correction term +π(√x) − 1. Let’s begin.

Let A1 be all the natural numbers less than or equal to x, that is ∣A1∣ = [x].
Let A2 be all the numbers less than x that are divisible by 2, then ∣A2∣ = [x

2
] .

Let A3 be all the numbers less than x that are divisible by 3, then ∣A3∣ = [x
3
] .

. . .
Finally, let Apn be all the numbers less than x that are divisible by pn where pn is

the nth and largest prime less than
√
x, then ∣Apn ∣ = [ x

pn
]

Let,

P =
pn

∏
p=2

p = ∏
p≤√x

p = 2 ⋅ 3 ⋅ 5 ⋅ 7 ⋅ 11⋯pn
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be the product of all the primes less than or equal to
√
x. Let µ(d) be the Möbius

function and p and pi, i ∈ Z+ denote primes. Thus, as we previously defined it,

µ(d) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if d = 1

0 if p2∣d
(−1)r if d = p1p2⋯pr, pi ≠ pj for i ≤ r ≤ j.

*****

Let’s first look at two examples of the general proof.
First, we note that if

√
x < 5 we have by,

∣Ai ∪A2∣ = ∣A1∣ + ∣A2∣ − ∣A1 ∩A2∣

that the number of composite numbers divisible by 2 or 3, that is, less than or equal
to x is,

[x
2
] + [x

3
] − [ x

2 ⋅ 3]

Therefore, the number of primes less than or equal to x would be,

[x] − [x
2
] − [x

3
] + [ x

2 ⋅ 3]

together with the correction term +π(√x) − 1.
Using our definition of P and the Möbius function, we write,

π(x) − π(
√
x) + 1 = [x] − [x

2
] − [x

3
] + [ x

2 ⋅ 3]

= µ(1) [x] + µ(2) [x
2
] + µ(3) [x

3
] + µ(2 ⋅ 3) [ x

2 ⋅ 3]

= ∑
d∣P
µ(d) [x

d
]

For the second example we note that if
√
x < 7 we have by,

∣Ai ∪A2 ∪A3∣ = ∣A1∣ + ∣A2∣ + ∣A3∣ − ∣A1 ∩A2∣ − ∣A1 ∩A3∣ − ∣A2 ∩A3∣ + ∣A1 ∩A2 ∩A3∣

that the number of composite numbers divisible by 2 or 3 or 5, that is, less than or
equal to x is,

[x
2
] + [x

3
] + [x

5
] − [ x

2 ⋅ 3] − [ x

2 ⋅ 5] − [ x

3 ⋅ 5] + [ x

2 ⋅ 3 ⋅ 5]
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Therefore, we have,

π(x) − π(
√
x) + 1

= [x] − [x
2
] − [x

3
] − [x

5
] + [ x

2 ⋅ 3] + [ x

2 ⋅ 5] + [ x

3 ⋅ 5] − [ x

2 ⋅ 3 ⋅ 5]

= µ(1) [x] + µ(2) [x
2
] + µ(3) [x

3
] + µ(5) [x

5
] + µ(2 ⋅ 3) [ x

2 ⋅ 3]

+ µ(2 ⋅ 5) [ x

2 ⋅ 5] + µ(3 ⋅ 5) [ x

3 ⋅ 5] + µ(2 ⋅ 3 ⋅ 5) [ x

2 ⋅ 3 ⋅ 5]

= ∑
d∣P
µ(d) [x

d
]

*****

The general proof follows by extending the sets Ai. Since,

∣
n

⋃
i=1

Ai∣ = ∣A1 ∪A2 ∪ . . . ∪An∣

= ∑
1≤i≤n

∣Ai∣ − ∑
1≤i,j≤n

∣Ai ∪Aj ∣ + ∑
1≤i,j,k≤1

∣Ai ∪Aj ∪Ak∣ − . . .

+ (−1)m+1 ∑
1≤i1,i2,...,im≤n

∣A1 ∪A2 ∪A3 ∪ . . . ∪Am∣ + . . .

+ (−1)n+1∣A1 ∪A2 ∪A3 ∪ . . . ∪An∣

then,

π(x) = ∑
d∣P
µ(d) [x

d
] + π(

√
x) − 1

Example 126.

∑
d∣2⋅3⋅5

µ(d) [48

d
] + π(

√
48) − 1

= µ(1) [48

1
] + µ(2) [48

2
] + µ(3) [48

3
] + µ(5) [48

5
] + µ(2 ⋅ 3) [ 48

2 ⋅ 3]

+ µ(2 ⋅ 5) [ 48

2 ⋅ 5] + µ(3 ⋅ 5) [ 48

3 ⋅ 5] + µ(2 ⋅ 3 ⋅ 5) [ 48

2 ⋅ 3 ⋅ 5] + 3 − 1

= (48 − 24 − 16 − 9 + 8 + 4 + 3 − 1) + 3 − 1

= 15

The primes less than or equal to 48 are 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47.
There are 15. ◇
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27.6 Approximations to π(x).
As the above example shows, the formula is a little tedious to apply. If we observe
that

x

d
= [x

d
] + r

d

where r ≡ x(mod d) so r < d, then since
r

d
is relatively small and may be positive or

negative, this suggests ignoring it. The above example then becomes, with correction
factor 3 − 1,

π(48) = 48

1
− 48

2
− 48

3
− 48

5
+ 48

6
+ 48

10
+ 48

15
− 48

30
+ 3 − 1

= 48(1 − 1

2
)(1 − 1

3
)(1 − 1

5
) + 2

≈ 48 ∏
p≤
√

48

(1 − 1

p
) + 2

In this particular example,

π(48) = 48 ∏
p≤
√

48

(1 − 1

p
) + 2

= 48 ⋅ 1

2
⋅ 2

3
⋅ 4

5
+ 2

= 12.8 + 2 = 14.8

In general, if,

π(x) = ∑
d∣P
µ(d) [x

d
] + π(

√
x) − 1,

we write,

πA(x) ≈ x
pn

∏
p=2

(1 − 1

p
) + π(pn) − 1

where pn is the largest prime less than or equal to the square root of x.
The following table shows the comparisons for various values of x.

x πA(x) π(x) % difference

1,000 163 168 3
5,000 666 669 0.4

10,000 1,227 1,229 0.2
40,000 4,201 4,203 0.05
80,000 7,910 7,837 0.9

1,000,000 81,132 88,710 9
100,000,000 6,084,577 5,761,455 6
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For small values of x the approximation is useful, but as x grows it becomes useless.
Mathematicians such as Meissel and Lehmer have improved the formula but this line
of attack on counting primes seems to be limited.

27.7 The Prime Number Theorem

The Prime Number Theorem (PNT) is,

lim
x→∞

π(x) logx

x
= 1

that is as x→∞ we have π(x) → x

logx
.

Using complex analysis, de la Vallée Pousson and Hadamard independently proved
the PNT in 1896. Stunning the mathematical world in 1949, it was proved, using
elementary methods, again independently, by Selberg and Erdös.

27.8 Chebyshev’s Theorem

The breakthrough, however, had been done 50 years before by the Russian mathe-
matician Chebyshev. To prove,

π(x) → x

logx

as x→∞ which is equivalent to,

lim
x→∞

π(x) logx

x
= 1

he proved there exist positive constants C1,C2 such that,

C1 <
π(x)
x logx

< C2.

The challenge to the mathematical world was to show C1 = C2 = 1 as x → ∞. Let us
consider how to approach this problem.

We will be using the great integer function in what follows. You may wish to
revisit the definition and Note 36 on 306. We again note a useful way of interpreting
[x] = n is to say there are a pair of successive integers n,n+ 1 such that n ≤ x < n+ 1.
We also have Note 36 on page 306 that [2x] − [x] = 0,1.

Lemma 209. For n ≥ 2 consider the prime factorization,

n! = ∏
p≤n

pkp = 2k13k35k5⋯,
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where kp ∈ Z+. Then the powers 2k2 ,3k3 , . . . are given for any prime p by,

kp =
∞
∑
r=1

[ n
pr

]

Proof. Consider the integers 1,2, . . . , n and their divisibility by a prime p where the
number of these integers divisible by p is denoted kp.
The ones divisible by p are p,2p,3p, . . . l1p where l1p ≤ n < (l1 + 1)p. Then,

l1p ≤ n < (l1 + 1)p
⇒ l1 ≤

n

p
< l1 + 1

⇒ l1 = [n
p
] where [n

p
] is the greatest integer function

Similarly, the ones divisible by p2 are p2,2p2,3p2, . . . , l2p2 where

l2p
2 ≤ n < (l2 + 1)p2 ⇒ l2 = [ n

p2
]

Similarly the number divisible by p3 is l3 = [ n
p3

] . Once we reach pr > n then we note

[ n
pr

] = 0. Thus [ n
ps

] = 0 for s > r to ∞. We conclude,

kp = [n
p
] + [ n

p2
] + [ n

p3
] + . . . + [ n

pr−1
] + 0 + 0 + . . .

⇒ kp =
∞
∑
r=1

[ n
pr

] (27.8.1)

Corollary 210.

logn! = ∑
p≤n

kp log p = ∑
p≤n

∞
∑
r=1

[ n
pr

] log p (27.8.2)

log(2n)! = ∑
p≤2n

∞
∑
r=1

[2n

pr
] log p (27.8.3)

Proof. Using (27.8.1) and the prime factorization of n! as in Lemma 209,

n! = ∏
p≤n

pkp

⇒ logn! = log∏
p≤n

pkp

= ∑
p≤n

log pkp

= ∑
p≤n

kp log p

= ∑
p≤n

∞
∑
r=1

[ n
pr

] log p
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Any value of n has its own values of kp as defined in the previous lemma so we can
subsitute 2n for n and obtain via 2n′s values of k′ps

log(2n)! = ∑
p≤2n

∞
∑
r=1

[2n

pr
] log p

Note we can increase the sum for logn! writing logn! = ∑
p≤2n

∞
∑
r=1

[ n
pr

] log p since for any

prime p such that n ≤ p ≤ 2n we have [ n
pr

] = 0.

Now we can find some Chebyshev-like boundaries for π(x).

Theorem 211.
For n ≥ 2,

1

6

n

logn
< π(n) < 9

n

logn

Proof. By the Binomial Theorem 85, page 130,

22n = (1 + 1)2n = (2n

0
) + (2n

1
) + (2n

2
) + . . . + (2n

2n
)

⇒ (2n

m
) < 22n for all 0 ≤m ≤ 2n

In particular if m = n, then (2n

n
) ≤ 22n.

On the other hand,

(2n

n
) = (2n)!

n!n!
= 2n

n

2n − 1

n − 1

2n − 2

n − 2
⋯2n − n + 1

1
⋅ ��n!

��n!
≥ 2n

since2
2n − k
n − k ≥ 2 for k = 0,1, . . . , n − 1.

Putting these two results together and taking logs gives,

2n ≤ (2n

n
) ≤ 22n⇒ n log 2 ≤ log (2n

n
) ≤ 2n log 2

Then, since3
1

2
< log 2⇒ n

2
< n log 2 and log 2 < 1⇒ 2n log 2 < 2n, we have,

n

2
< n log 2 ≤ log (2n

n
) ≤ 2n log 2 ≤ 2n (27.8.4)

2 2n − k
n − k = 2n − 2k + k

n − k = 2 + k

n − k ≥ 2

3log 2 = loge 2 = ln2 = 0.6931 . . .



27.8. Chebyshev’s Theorem 313

On the other hand, defining,

mp =
∞
∑
r=1

([2n

pr
] − 2 [ n

pr
])

we have,

log (2n

n
) = log

(2n)!
n!n!

= log(2n)! − 2 logn!

= ∑
p≤2n

∞
∑
r=1

[2n

pr
] log p − ∑

p≤2n

∞
∑
r=1

[ n
pr

] log p by (27.8.2 and (27.8.3)

= ∑
p≤2n

mp log p (27.8.5)

since for p > 2n, [2n

p
] − [n

p
] = 0. Also,

mp =
∞
∑
r=1

([2n

pr
] − 2 [ n

pr
]) (27.8.6)

= ∑
1≤r≤ log 2n

logp

([2n

pr
] − 2 [ n

pr
])

since [2n

pr
] = 0 if pr > 2n which means r > log 2n

log p
.

Now using Note 36 on page 306, [2x] − 2[x] = 0 or 1. Therefore we have,

[2n

pr
] − 2 [ n

pr
] = 0 or 1⇒ [2n

pr
] − 2 [ n

pr
] ≤ 1

so that by (27.8.6),

mp ≤ ∑
1≤r≤ log 2n

logp

1

= log 2n

log p
(27.8.7)

Putting (27.8.4), (27.8.5) and (27.8.7) together and noting ∑
p≤2n

1 = π(2n),

n

2
< log (2n

n
) = ∑

p≤2n

mp log p ≤ ∑
p≤2n

log(2n)
��
�log p ��

�log p = log(2n) ∑
p≤2n

1 = log(2n) ⋅ π(2n)

so that
n

2
< log(2n) ⋅ π(2n) giving,

π(2n) > 1

2

n

log(2n) = 1

4

2n

log(2n) (multiplying by
2

2
)
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Now, for even numbers,

π(2n) > 1

4

2n

log(2n) > 1

6

2n

log(2n) (since
1

4
> 1

6
)

whereas for odd numbers,

π(2n + 1) ≥ π(2n)

> 1

4

2n + 1

log(2n + 1)

> 1

4
⋅ 2n + 1

log(2n + 1) ⋅
2n

2n + 1
since

2n

2n + 1
< 1,

> 1

4
⋅ 2n + 1

log(2n + 1) ⋅
2

3

since n ≥ 1⇒ 2n ≥ 2⇒ 6n ≥ 4n + 2⇒ 2n

2n + 1
≥ 2

3

> 1

6

2n + 1

log(2n + 1)

So for all n we have,

π(n) > 1

6

n

logn

*****

We now show π(n) < 9
n

logn
. We insert a lemma.

Lemma 212.
mp = 1 if n < p ≤ 2n.

Proof. Since,

n < p ≤ 2n⇒ 1

n
> 1

p
≥ 1

2n
⇒ 1 > n

p
≥ 1

2
⇒ 1

2
≤ n
p
< 1

then,

[n
p
] = 0 and so [ n

pr
] = 0 for r ≥ 1 (27.8.8)

Also since if n < p and r > 1 then pr ≥ 2p > 2n so that,

[2n

pr
] =

⎧⎪⎪⎨⎪⎪⎩

0, if r > 1

1, if r = 1
(27.8.9)
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then using (27.8.9),

mp =
∞
∑
r=1

([2n

pr
] − 2 [ n

pr
])

= [2n

p
] −

∞
∑
r=2

[2n

pr
] − 2

∞
∑
r=1

[ n
pr

] (taking out the r = 1 term)

= [2n

p
] − 0 − 0 noting if [2n

pr
] = 0 then certainly [ n

pr
] = 0

= 1

*****

We return to the proof that π(n) < 9
n

logn
. From (27.8.5),

log (2n

n
) = ∑

p≤2n

mp log p

= ∑
p≤n

mp log p + ∑
n<p≤2n

mp log p

Since log (2n

n
) = ∑

p≤2n

mp log p then the smaller sum,

∑
n<p≤2n

mp log p < log (2n

n
) ≤ 2n by (27.8.4)

Since by Lemma 212 for n ≤ p ≤ 2n we have mp = 1 then,

∑
n<p≤2n

log p < 2n

***

Consider the special case, n = 2j−1, j = 1,2, . . . . Here,

∑
2j−1<p<2j

log p < 2 ⋅ 2j−1 = 2j

We sum this inequality over j = 1,2,3, . . . , k

Left side = ∑
20<p≤21

log p + ∑
21<p≤22

log p + . . . + ∑
2k−1<p≤2k

log p = ∑
p≤2k

log p

Right side = 2 + 22 + 23 + . . . + 2k =
k

∑
j=1

2k = 2k+1 − 2 < 2k+1



316 Chapter 27. Counting the Primes

where on the right side we used the sum of a geometric series,

a + ar + ar2 + . . . + ark−1 = a1 − rk
1 − r

Then,

∑
p≤2k

log p < 2k+1

Now in general any number lies between consecutive powers of 2, so if 2k−1 < n ≤ 2k

then 4(2k−1) = 2k+1 < 4n and,

∑
p≤n

log p ≤ ∑
p≤2k

log p < 2k+1 < 4n (27.8.10)

Furthermore, we find an estimate from below,

∑
p≤n

log p ≥ ∑√
n<p≤n

log p ≥ ∑√
n<p≤n

log
√
n = log

√
n ∑√

n<p≤n
1

where we replaced p with its lower bound
√
n.

Then since, ∑√
n≤p≤n

1 = ∑
p≤n

1 − ∑
p≤√n

1 = π(n) − π(√n),

∑
p≤n

log p = log
√
n (π(n) − π(

√
n))

⇒∑
p≤n

log p ≥ log
√
n (π(n) −

√
n) (27.8.11)

since π(√n) is less than
√
n.

We subtract ∑
p≤n

log p < 4n from (27.8.10) to obtain,

log
√
n (π(n) −

√
n) < 4n

⇒ π(n) < 4n

log
√
n
+
√
n, n ≥ 2. (27.8.12)

Consider the function f(x) = x

logx
. Let’s find its minimum point where f ′(x) = 0.

Differentiating, f ′(x) = logx − 1

(logx)2
= 0 ⇒ logx = 1 ⇒ x = e where e is the exponential

number.

Differentiating again, f ′′(x) =
(logx)2

1

x
− (logx − 1)(2 logx × 1

x
)

(logx)4
= 1

e
at x = e.

Since f(e) = e

log e
= e, then e is the global minimum of f(x) or e < x

logx
for all x.
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Putting x = √
n in f(x) = x

logx
this implies,

e ≤
√
n

log
√
n

for all n

1 ≤
√
n

e log
√
n

⇒
√
n ≤ n

e log
√
n

(27.8.13)

So by (27.8.12) and (27.8.13), noting log
√
n = 1

2
logn,

⇒ π(n) < 4n

log
√
n
+ n

e log
√
n
= 8n

logn
+ 1

e

2n

logn
< 9

n

logn

since
2

e
= 2

2.7.18 . . .
< 1. Our two results give us,

1

6
< π(n) logn

n
< 9

Chebyshev actually proved,

7

8
< π(x) logx

x
< 9

8

Before we proceed, we need some further notation.

27.9 Big-O and Little-o Notation

Definition 106. Big-O Notation
Let f and g be two functions defined on some subset of the real numbers. We say
f(x) = O(g(x)) if f(x) that has the property that,

lim
x→∞

∣f(x)∣
∣g(x)∣ <K

for some finite number K ∈ R.
Intuitively this means f does not grow faster than g.

Example 127.

lim
x→∞

∣2x +√
x∣

∣x∣ = 2⇒ 2x +
√
x = O(x)
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Definition 107. Little-o Notation
Let f and g be two functions defined on some subset of the real numbers. We say
f(x) = o(g(x)) if f(x) that has the property that,

lim
x→∞

∣f(x)∣
∣g(x)∣ = 0

Intuitively f(x) = o(g(x)) means g(x) is growing much faster than f(x) so that
∣f(x)∣
∣g(x)∣ → 0 as x increases in value.

Example 128.

lim
x→∞

∣x∣
x2

= 0⇒ x = o(x2).

Note 37. If a function g(x) consists of terms in powers of x, not necessarily integer
powers, then O(g(x)) is any power of x equal to or larger than the greatest power and
o(g(x)) is any power of x less than the greatest power

Example 129. If g(x) = 4x3 − 7x2 + 3
√
x = 4x3 − 7x2 + 3x

1
2 then,

O(g(x)) = x3, x4, etc.

o(g(x)) =
√
x,x, x2 ◇

If each of gi(x), i = 1,2,3 . . . satisfies O(gi(x)) = xi then,

O(g1(x)) +O(g2(x)) + . . . = xk

where k is the greatest of the powers of i.
If each of gi(x), i = 1,2,3 . . . satisfies o(gi(x)) = xi then,

o(g1(x)) + o(g2(x)) + . . . = xj

where j is the least of the powers of xi.

27.10 Selberg’s Proof of the PNT

Selberg’s proof of the Prime Number Theorem is set out in several texts including
Nagell’s “’Number Theory” and we will use that as a guide. There are 5 theorems
and 15 lemmas. Many of these are quite long. We will not prove any of these lemmas
so we just number them 1 to 15. We will assume them and prove the theorems. This
will give a taste of how Selberg proceeded and leave the garnishments for your further
study. The Pathway for Selberg’s proof of the PNT is illustrated diagrammatically
below. ”T167” is Theorem 167 and ”L9” is Lemma 9, etc.



27.10. Selberg’s Proof of the PNT 319

T216 PNT Equivalences

T216 T218

T216

T216

T216 L10

L12

L11

T167

T167

T167

T167 T219

PNT

L1

L2 L7

L9

L5 L13

L14

L15

L3

L6

L8

L4

Selberg’s Pathway to the PNT

27.10.1 Equivalences to PNT

Mathematicians realized early on that it is easier to deal with other functions than
π(x) that involved the logarithm function and in particular the property
logxy = logx + log y. Let’s first recall π(x).

Definition 108. pi function
We define the pi function, the number of primes p less than or equal to x by,

π(x) = ∑
p≤x

1



320 Chapter 27. Counting the Primes

That is as we progressively examine the numbers from 1 to x we add a 1 for each
prime we encounter.

Example 130.

π(20) = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 8 matching 2,3,5,7,11,13,17,19

π(60) = ∣{2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59}∣ = 17 ◇

Definition 109. theta function
We define the Theta Function by,

θ(x) = ∑
p≤x

log p

Example 131.
θ(60) = log 2 + log 3 + . . . + log 59

We now prove that the prime number theorem is equivalent to a statement for
either of these two functions, that is,

lim
x→∞

θ(x)
x

= lim
x→∞

π(x) logx

x
= 1

What Selberg actually proved is that as x→∞,

1 ≤ θ(x)
x

≤ 1⇒ lim
x→∞

θ(x)
x

= 1

We need several theorems and lemmas.

Theorem 213.

lim
x→∞

π(x)
x

= 0.

Proof. In Theorem 211, page 312 we proved,

1

6
< π(n) logn

n
< 9

This implies Chebyshev’s proof that there are positive constants C1,C2 such that,

C1
1

logx
< π(x)

x
< C2

1

logx
for all x ∈ R+

Since lim
x→∞

1

logx
= 0, by the Squeeze Theorem 65, page 93, we have,

lim
x→∞

π(x)
x

= 0
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Note 38.

We note 0 < log (1 + 1

n
) < 1

n
which we prove as follows. We put x = 1

n
in the series,

log(1 + x) = x − x
2

2
+ x

3

3
− x

4

4
+ . . . , 0 ≤ x < 2

and group the terms thus,

log (1 + 1

n
) = 1

n
+ (− 1

2n2
+ 1

3n3
) + (− 1

4n4
+ 1

5n5
) + . . .

Then each of the braketed pairs is of the form,

−1

nan
+ 1

(n + 1)an+1
= −(n + 1)a + n
n(n + 1)an+1

= n(1 − a) − a
n(n + 1)an+1

< 0 since a ≥ 2

Therefore log (1 + 1

n
) < 1

n
.

Theorem 214.
As x→∞,

θ(x) = π(x) logx + o(x)

Proof. Note,

π(n) − π(n − 1) =
⎧⎪⎪⎨⎪⎪⎩

1 if n = p
0 if n ≠ p

where p is a prime, so that,

logn × [π(n) − π(n − 1)] =
⎧⎪⎪⎨⎪⎪⎩

log p if n = p
0 if n ≠ p

Now noting π(1) = 0,

θ(x) = ∑
p≤x

log p

= ∑
2≤n≤x

logn [π(n) − π(n − 1)]

= log 2[π(2) − π(1)] + log 3[π(3) − π(2)] + log 4[π(4) − π(3)] + . . .
+ log[x][π(x) − π(x − 1)]

= π(2)[log 2 − log 3] + π(3)[log 3 − log 4] + . . .
+ π(x − 1)[log([x] − 1) − log[x]) + π(x) log[x]

(where we rearranged the terms in the previous line)

= −π(2) log
3

2
− π(3) log

4

3
+ . . . + π(x − 1) log[x]

log[x] − 1
+ π(x) log[x]

⇒ θ(x) = π(x) log[x] − ∑
2≤n≤x−1

π(n) log (1 + 1

n
) (27.10.1)
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We have replaced π(x−1) log[x]
log[x] − 1

with the last term in ∑
2≤n≤x−1

π(n) log (n + 1

n
) . We

can obviously do this if x−1 = n since then [x] = n+1 and π(x−1) = π(n). Otherwise
x − 1 ≤ n < x so π(x − 1) = π(n) and [x] = n.
Furthermore, since lim

x→∞
π(x)
x

= 0, for all ε > 0 there is a natural number N such that

for all integers n > N, we have π(n) ≤ εn. This is so since
π(x)
x

is getting smaller

and smaller as x→∞ so for any positive number ε,
π(x)
x

will be less than ε for some

value of x which we label N. Reverting to integers we can say for all ε > 0 we can

make
π(x)
x

< ε by choosing x = N. Using π(x) < εx together with the fact that, by

Note 38 above, log (1 + 1

n
) < 1

n
, and applying the sum to both sides, we have,

∑
2≤n≤x−1

π(n) log (1 + 1

n
) ≤ ∑

2≤n≤x−1

εn
1

n

≤ ε ∑
2≤n≤x−1

1

≤ ε(x − 2)
≤ εx

so that,

∑
2≤n≤x−1

π(n) log (1 + 1

n
) = o(x)

since we have the condition “for all ε” which means we can take ε→ 0.
By (27.10.1),

θ(x) = π(x) log[x] − ∑
2≤n≤x−1

π(n) log (1 + 1

n
)

= π(x) logx + o(x) (27.10.2)

Corollary 215.

lim
x→∞

θ(x)
x

= lim
x→∞

π(x) logx

x

Proof. Uing (27.10.2),

θ(x)
x

= π(x) logx

x
+ o(x)

x

⇒ lim
x→∞

θ(x)
x

= lim
x→∞

π(x) logx

x
+ lim
x→∞

o(x)
x
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and by definition of o(x), lim
x→∞

o(x)
x

= 0, so we have our result,

lim
x→∞

θ(x)
x

= lim
x→∞

π(x) logx

x
(27.10.3)

Note 39. The Prime Number Theorem can therefore be proved for either of the
following,

lim
x→∞

θ(x)
x

= 1 or lim
x→∞

π(x) logx

x
= 1

Selberg actually proved lim
x→∞

θ(x)
x

= 1 after Chebyshev proved the following result.

Theorem 216. (Chebyshev)
There exist positive constants C1,C2 such that,

C1x < θ(x) < C2x

Proof. Using (27.10.3),

C1 <
π(x) logx

x
< C2 ⇒ C1 <

θ(x)
x

+ o(x)
x

< C2 ⇒ C1 <
θ(x)
x

< C2

when x is sufficiently large since again lim
x→∞

o(x)
x

= 0.

27.10.2 Two Critical Theorems

As the pathway for Selberg’s proof of the PNT shows, there are two major theorems
T218 and T219 that are needed for the proofs of the final three lemmas L13, L14 and
L15 and thence the PNT itself. Let us now prove T218. We first need a lemma.

Lemma 217.
For all integers h ≥ 2,

(h − 1) log (1 + 1

h − 1
) < 1

Proof. We have from Theorem 145, page 216,

log(1 + x) = x − x
2

2
+ x

3

3
− x

4

4
+ . . . if − 1 < x < 1.

Putting x = 1

h − 1
we have,

log (1 + 1

h − 1
) = 1

h − 1
+ [− 1

2(h − 1)2
+ 1

3(h − 1)3
] + [− 1

4(h − 1)4
+ 1

5(h − 1)5
] + . . .
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If we group the terms in pairs as shown and multiply by h − 1 then,

(h − 1) log (1 + 1

h − 1
) = 1 + [− 1

2(h − 1)1
+ 1

3(h − 1)2
] + [− 1

4(h − 1)3
+ 1

5(h − 1)4
] + . . .

= 1 +
∞
∑
k=2

[− 1

k(h − 1)k−1
+ 1

(k + 1)(h − 1)k ]

But,

1

(k + 1)(h − 1)k −
1

k(h − 1)k−1
= 1

(h − 1)k−1
[ 1

(k + 1)(h − 1) −
1

k
]

= 1

(h − 1)k−1
[k − (k + 1)(h − 1)
k(k + 1)(h − 1) ]

= 1

(h − 1)k−1
[2k + 1 − h(k + 1)
k(k + 1)(h − 1) ]

which is less than 0 if h ≥ 2 since the numerator is (2 − h)k + (1 − h), making,

(h − 1) log (1 + 1

h − 1
) < 1

Theorem 218.

∑
p≤x

log p

p
= logx + φ(x)

where φ is a bounded function of x such that ∣φ(x)∣ < k, k ∈ R+.

Proof. From equation (27.8.2) of Corollary 210, page 311,

logn! = ∑
p≤n

∞
∑
r=1

[ n
pr

] log p

= ∑
p≤n

[n
p
] log p + ∑

p≤n

∞
∑
r=2

[ n
pr

] log p

(where we separated the r = 1 term)

≤ ∑
p≤n

[n
p
] log p + ∑

p≤n
[( n
p2

) + ( n
p3

) + . . .] log p

where we use [n
p
] ≤ (n

p
) . The second sum on the right side contains an infinite

geometric series with a = n

p2
and r = 1

p
< 1 hence, using S∞ = a

1 − r ,

logn! ≤ ∑
p≤n

[n
p
] log p + ∑

p≤n
( n/p2

1 − 1/p) log p

⇒∑
p≤n

[n
p
] log p ≥ logn! − ∑

p≤n
( n

p(p − 1)) log p (27.10.4)
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The introduction of θ(n) = ∑
p≤n

log p follows by applying ∑
p≤n

log p to each term of

n

p
> [n

p
] > n

p
− 1 to obtain,

∑
p≤n

(n
p
) log p > ∑

p≤n
[n
p
] log p > ∑

p≤n
(n
p
) log p − ∑

p≤n
log p

⇒ ∑
p≤n

(n
p
) log p > ∑

p≤n
[n
p
] log p > ∑

p≤n
(n
p
) log p − θ(n)

⇒ θ(n) + ∑
p≤n

[n
p
] log p > ∑

p≤n
(n
p
) log p (27.10.5)

From (27.10.3) and (27.10.4) we have,

θ(n) > ∑
p≤n

(n
p
) log p − logn! + ∑

p≤n
( n

p(p − 1)) log p

⇒ θ(n) > ∑
p≤n

(n
p
) log p − logn! + ∑

p≤n
( n

p − 1
) log p − ∑

p≤n
(n
p
) log p

⇒ θ(n) > − logn! + ∑
p≤n

(n
p
) log p, since

1

p − 1
> 1

p

But, C1 < θ(n)
n

< C2 implies
θ(n)
n

is bounded so ±(− 1

n
logn! + ∑

p≤n
(1

p
) log p) is also

bounded, say,

−α < 1

n
logn! − ∑

p≤n
(1

p
) log p < α (27.10.6)

where α is a function of n such that ∣α∣ <K,K ∈ R+.

***

We now apply Lemma 217 to the algebraic identity,

h = hh

(h − 1)h−1
⋅ (h − 1)h−1

hh−1
= hh

(h − 1)h−1
⋅ 1

(1 + 1

h − 1
)
h−1

for h ≥ 2. Taking logs, we have,

logh = h logh − (h − 1) log(h − 1) − (h − 1) log (1 + 1

h − 1
)

⇒ logh < h logh − (h − 1) log(h − 1) (27.10.7)
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Applying the Lemma, we also have the inequalities,

(h − 1) log (1 + 1

h − 1
) < 1

⇒ (h − 1) log ( h

h − 1
) < 1

⇒ (h − 1) logh − (h − 1) log(h − 1) < 1

⇒ h logh − logh − (h − 1) log(h − 1) < 1

⇒ h logh − (h − 1) log(h − 1) − 1 < logh (27.10.8)

and (27.10.6) together with (27.10.7) gives,

h logh − (h − 1) log(h − 1) − 1 < logh < h logh − (h − 1) log(h − 1)

and therefore,

n

∑
h=2

[h logh − (h − 1) log(h − 1) − 1] <
n

∑
h=2

logh <
n

∑
h=2

[h logh − (h − 1) log(h − 1)]

(27.10.9)

Now,

n

∑
h=2

[h logh − (h − 1) log(h − 1)]

= 2 log 2 − 1 log 1 + 3 log 3 − 2 log 2 + . . . + n logn − (n − 1) log(n − 1)
= n logn

and,
n

∑
h=2

−1 = −(n − 1)

and,
n

∑
h=2

logh = log 2 + log 3 + . . . logn = log 2 ⋅ 3⋯n = logn!

Hence (27.10.8) yields,

n logn − (n − 1) < logn! < n logn

⇒ logn − (n − 1)
n

< logn!

n
< logn (27.10.10)

We also have (27.10.5), namely,

−α < 1

n
logn! − ∑

p≤n
(1

p
) log p < α
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Subtracting, (27.10.9)-(27.10.5), we have,

logn − (n − 1)
n

+ α < ∑
p≤n

log p

p
< logn − α

⇒ −(n − 1)
n

+ α < ∑
p≤n

log p

p
− logn < −α

Hence, ∑
p≤n

log p

p
− logn is bounded by a function of n, so with x replacing n,

∑
p≤x

log p

p
= logx + φ

where φ is a bounded function of x such that ∣φ(x)∣ < k, k ∈ R+ so we can also write

∑
p≤√x

log p

p
= logx +O(1)

.

27.10.3 Selberg’s Asymptotic Formula

The crucial Theorem 219 in Selberg’s proof (and in that of Erdös) is of Selberg’s
asymptotic formula. In turn, the proof of the asymptotic formula requires two lem-
mas, L9 and L12. L9 was the end point of a series of known results largely dependent
on the Möbius function, while L12 is itself a major result due to Selberg, being the
culmination of a series of lemmas mostly emanating from Chebyshev’s Theorem 216.
Let us, for now, assume L9 and L12 and proceed to prove T219 and then the PNT.
We assume,

Lemma 9.

∑
d≤x

µ(d)
d

(log
x

d
)

2

= 2 logx +O(1)

Lemma 12.

∑
n≤x

f(n) = (logx)θ(x) + ∑
p≤√x

θ (x
p
) + o(x logx)

where, referencing Lemma 9, for λ(d) = µ(d) (log
x

d
)

2

we put f(n) = ∑
d∣n
λ(d).

Theorem 219. (Selberg’s Asymptotic formula)

θ(x) logx + ∑
p≤√x

θ (x
p
) log p − 2x logx = o(x logx) (27.10.11)
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Proof. According to Lemma 12, the left-hand side of the required equation is equal
to,

∑
n≤x

f(n) − 2x logx + o(x logx)

According to the definition of f(n) in Lemma 12 we have,

∑
n≤x

f(n) = ∑
n≤x
∑
d∣n
λ(d)

Hence4,

∑
d≤x

f(n) = ∑
d≤x

λ(d) [x
d
]

= ∑
d≤x

λ(d) (x
d
− εd) , 0 ≤ εd < 1

= ∑
d≤x

λ(d)x
d
− εd∑

d≤x
λ(d)

Now by definition,

λ(d) = µ(d) (log
x

d
)

2

⇒∣εdλ(d)∣ = ∣εdµ(d)∣ (log
x

d
)

2

= (log
x

d
)

2

= o(x logx)

⇒εd∑
d≤x

λ(d) = o(x logx)

Hence,

∑
n≤x

f(n) = ∑
d≤x

λ(d)x
d
+ o(x logx)

= ∑
d≤x

x
µ(d)
d

(log
x

d
)

2

+ o(x logx)

4Why is ∑
n≤x
∑
d∣n
λ(d) = ∑

d≤x
λ(d) [x

d
]?

Let’s take an example with x = 5. Then,

∑
n≤5
∑
d∣n

λ(d) = ∑
n=1
∑
d∣1

λ(1) + ∑
n=2
∑
d∣2

λ(2) + ∑
n=3
∑
d∣3

λ(3) + ∑
n=4
∑
d∣4

λ(4) + ∑
n=5
∑
d∣5

λ(5)

= λ(1) + (λ(1) + λ(2)) + (λ(1) + λ(3)) + (λ(4) + λ(2) + λ(1)) + (λ(1) + λ(5))
= 5λ(1) + 2λ(2) + λ(3) + λ(4) + λ(5)

while,

∑
d≤5

λ(d) [5

d
] = λ(1) [5

1
] + λ(2) [5

2
] + λ(3) [5

3
] + λ(4) [5

4
] + λ(5) [5

5
]

= 5λ(1) + 2λ(2) + λ(3) + λ(4) + λ(5)
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By Lemma 9,

x∑
d≤x

µ(d)
d

(log
x

d
)

2

= 2 logx +O(1)

⇒ ∑
n≤x

f(n) = 2x logx + o(x logx) +O(1))

Hence the left side of the Theorem’s equation (27.10.10) becomes,

θ(x) logx + ∑
p≤√x

θ (x
p
) log p − 2x logx

= ∑
n≤x

f(n) − 2x logx + o(x logx)

= 2x logx + o(x logx) − 2x logx + o(x logx) +O(1)
= o(x logx)

Note O(1) is “absorbed by” o(x logx) and o(x logx) + o(x logx) = o(x logx).

27.10.4 Proof of the Prime Number Theorem

Definition 110. limit inferior, limit superior
We define the limit inferior, lim inf, and the limit superior, lim sup, to be the limiting
bounds of a function f(x) as x→∞ and write

lim inf
x→∞

f(x) < f(x) < lim sup
x→∞

f(x)

Theorem 220. (Prime Number Theorem)

lim
x→∞

θ(x)
x

= 1

Proof. Let a = lim infx→∞
θ(x)
x

and A = lim supx→∞
θ(x)
x

. We want to prove a = A = 1.

We first prove a +A = 2.
Choose x large so that

θ(x) = ax + o(x)
Then since5,

θ(x) ≤ Ax + o(x) ⇒ θ (x
p
) ≤ A(x

p
+ o(x))

it follows from Selberg’s asymptotic formula,

θ(x) logx + ∑
p≤√x

θ (x
p
) log p − 2x logx = o(x logx) (27.10.12)

5Note if θ(x) equals its lim inf then it must be less than or equal to its lim sup and vice versa.
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that6,

ax logx + o(x logx) + ∑
p≤√x

A
x

p
log p ≥ 2x logx + o(x logx)

Using Chebyshev’s result in Theorem 218 that,

∑
p≤√x

log p

p
→ logx +O(1) as x→∞

we have,

ax logx + o(x logx) +Ax logx ≥ 2x logx + o(x logx)
⇒ a +A ≥ 2.

On the other hand we can choose x so large that,

θ(x) = Ax + o(x)

Then, since
θ(x) ≥ ax + o(x)

it immediately follows as before that,

Ax logx + o(x logx) + ∑
p≤√x

a
x

p
log p ≤ 2x logx + o(x logx)

from which we get,
a +A ≤ 2

Thus,
a +A = 2

We now write Selberg’s asymptotic formula in Theorem 219 in the form,

θ(x)
x

+∑
p≤x

θ(x/p)
x/p

log p

p logx
= 2 +O ( 1

logx
)

We choose x large so that
θ(x/p)
x/p is near A. Since a + A = 2 it follows from the

asymptotic formula and Chebyshev’s Theorem 218 that ∑
p≤x

log p

p logx
→ 1 as x → ∞,

that
θ(x)
x

must be near a for most primes p ≤ x. If S denotes the set of primes for

which this is not true, then we have,

∑
p≤x
p∈S

log p

p

∑
p≤x

log p

p

→ 0 as x→∞

6Note o(x) is “absorbed by” o(x logx).
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Now we choose a small prime q ∈ S such that
θ(x/q)
x/q is near a. Rewriting the asymp-

totic formula with x replaced by
x

q
, the same argument as above leads us to conclude

that
θ(x/q)
x/q is near A for most primes p ≤ x

q
. It follows that

θ(x/p) ≈ ax/p

for most primes p ≤ x, and,
θ(x/pq) ≈ Ax/pq

for most primes p ≤ x/q.
A contradiction is obtained (using Erdös’s idea of non-overlapping intervals which we
have not discussed) unless a = A and therefore,

a = A = 1

Let us now consider the outline of the pathways to the two Lemmas 9 and 12.

27.10.5 Pathway to Lemma 9

The Theorem and Lemmas leading to Lemma 9 all depend on the Möbius function,
studied earlier in Chapter 24. These results were well-known. We proved the first
two earlier.

Theorem 166.

∑
d∣n
µ(d) = 0

Lemma 1. (Euler Macheroni Constant and Harmonic Series)
There exists a constant γ such that,

∑
n≤x

1

n
= logx + γ +O (1

x
)

Lemma 2.
There exists a constant c such that,

∑
n≤x

logn

n
= 1

2
(logx)2 + c +O ( logx

x
)

We use lemmas 1 and 2 to prove Lemma 3.

Lemma 3.
If τ(n) denotes the number of positive dividers of n then,

∑
n≤x

τ(n)
n

= 1

2
(logx)2 + 2γ logx + γ2 − 2c +O ( logx√

x
)
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We need only Theorem 166 to prove Lemmas 6 and 8.

Lemma 6.

∣
x

∑
d=1

µ(d)
d

≤ 1∣

Lemma 8.

∑
d∣n
µ(d)τ (n

d
) = 1

Next, we use Lemmas 1, 6 and 8 together with Theorem 164 to prove,

Lemma 7.

∑
d≤x

µ(d)
d

log
x

d
= O(1)

Finally, we use Lemmas 1, 6, 7 and 8 to prove Lemma 9.

Lemma 9.

∑
d≤x

µ(d)
d

(log
x

d
)

2

= 2 logx +O(1)

27.10.6 Pathway to Lemma 12

The Theorem and Lemmas leading to Lemma 12 depend on the Möbius function but
also on the critical theorem of Chebyshev that there exist bounding constants C1,C2

such that,

C1 <
θ(x)
x

< C2

Lemma 4 was also a well-known lemma from the study of the Möbius function.

Lemma 4.
Defining φh(n) = ∑

d∣n
µ(d)(log d)h, we have,

φh(n) = 0

if n is divisible by more than h different primes.

We finally switch to sums over primes to prove Lemma 12. The sequence of
lemmas is,

Lemma 10.

∑
p≤x

(log p) (log
x

p
) = o(x logx)
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Lemma 11.

∑
pα≤x

log p = O(x), α ∈ N

Finally, we can obtain,

Lemma 12.

∑
n≤x

f(n) = (logx)θ(x) + 2 ∑
p≤√x

θ (x
p
) + o(x logx)

where for λ(d) = µ(d) (log
x

d
)

2

we put f(n) = ∑
d∣n
λ(d).

27.11 Lemmas 13-15

Finally we need Lemmas 13, 14 and 15 that feed into the PNT.

Lemma 13.

If lim sup
x→∞

θ(x)
x

= A and lim inf
x→∞

θ(x)
x

= a then a +A = 2.

The proof of Lemma 13 has been included in our proof of the PNT.

Lemma 14.

If λ is a given number greater than a and if the sum S(x) = ∑
log p

p
extends over all

primes p ≤ x and such that θ (x
p
) ≥ λx

p
then the quotient

S(x)
logx

tends to 0 for x→∞.

Lemma 15.
If µ is a given positive number < A and if the sum

R(x) = ∑( log p

p
)( log q

q
)

extends over all the primes p and q that satisfy the conditions,

p ≤
√
x, q ≤

√
x

p
, θ ( x

pq
) ≤ µx

pq
,

then the quotient
R(x)

(logx)2
tends to 0 for x→∞.
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Bertrand’s Postulate

Bertrand postulated (an educated “guess”) that there is always a prime number be-
tween any integer greater than 1 and double that integer. That is, for every natural
number n > 1, there is a prime number p such that n < p < 2n. This is now a theorem.

Course: Dessert
Ingredients
Primes
Binomial Coefficients and Binomial Theorem
Factorials
Logarithms
Directions

Study the binomial coefficient (2n

n
) and derive inequalities for it in terms of powers

of 2 and powers of prime numbers.
Find the highest powers of the primes that divide n!
Prove Bertrand’s conjecture

28.1 Preliminaries

Lemma 221.

The product ∏
r≤p≤n

p is a divisor of (n
r
) so ∏

r≤p≤n
p < (n

r
).

Proof. We may assume r < n
2

since given,

(n
r
) = ( n

n − r) =
n!

(n − r)!r! ,

then if r > n
2

then,

−r < −n
2
⇒ n − r < n − n

2
= n

2

334
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So if we have (n
r
) with r > n

2
then we replace it with ( n

n − r) with r < n
2
.

Then since1 the formula

n(n − 1)⋯(n − r + 1) = (n
r
) ⋅ r(r − 1)⋯1

shows any prime in the range n to n− r+1 is bigger than r and must therefore divide

(n
r
). Accordingly, the product ∏

r≤p≤n
p is a divisor of (n

r
).

Lemma 222.

2(2k + 1

k + 1
) ≤ 22k+1

Proof. We first note (2k + 1

k + 1
) = (2k + 1

k
). Then,

2(2k + 1

k + 1
) = (2k + 1

k
) + (2k + 1

k + 1
)

≤ (2k + 1

0
) + (2k + 1

1
) + . . . + (2k + 1

k
) + (2k + 1

k + 1
) + . . . + (2k + 1

2k + 1
)

which is the binomial expansion of (1 + 1)2k+1 = 22k+1.

Theorem 223.
Let n ≥ 2 be an integer, then ∏

p≤n
p < 4n where the product on the left is of all primes

less than or equal to n.

Proof. The proof is by induction.
Basis step: If n = 2 then the statement 2 < 42 is obviously true.
Assumption step: Let us now assume the statement is true of all integers less than n,
that is, ∏

p≤n−1

p < 4n−1 is true. Since there are no primes between 2k and 2k+1 we may

assume n is odd, say n = 2k + 1. Then the assumption is ∏
p≤2k

p < 42k for all integers

less than or equal to 2k and, in particular since k + 1 < 2k our assumption becomes

∏
p≤k+1

p < 4k+1.

Inductive step: We want to prove ∏
p≤n

p < 4n is true for n > k + 1.

From Lemma 221 we have ∏
k+1<p≤n

p < ( n

k + 1
).

From Lemma 222 we have (2k + 1

k + 1
) < 22k.

1n

2
> r⇒ n > 2r⇒ n − r + 1 > 2r − r + 1⇒ n − r + 1 > r + 1 > r.
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From the inductive assumption we have ∏
p≤k+1

p < 4k+1.

Hence,

∏
p≤n

p = ∏
p≤k+1

p ⋅ ∏
k+1<p≤n

p

< 4k+1 ⋅ ( n

k + 1
)

= 4k+1 ⋅ (2k + 1

k + 1
)

< 4k+1 ⋅ 22k

= 4n.

We have already encountered kp and mp in Chapter 27 but we will repeat the
introductory lemmas and corollaries.

Lemma 224.
For n ≥ 2, n ∈ Z, consider the prime factorizations

n! = ∏
p≤n

pkp = 2k23k3⋯, kp ∈ Z+

(2n)! = ∏
p≤2n

plp = 2l23l3⋯, lp ∈ Z+

Then kp =
∞
∏
r=1

[ n
pr

] and lp =
∞
∏
r=1

[2n

pr
] .

That is, n! contains the prime factor p kp times and (2n)! contains the prime factor
p lp times.

Proof. Consider the integers 1,2,3, . . . , n.
The ones divisible by p are p,2p,3p, . . . ,m1p where m1p ≤ n < (m1 + 1)p. Then,

m1p ≤ n < (m1 + 1)p⇒m1 ≤
n

p
<m1 + 1⇒m1 = [n

p
] .

Similarly, the ones divisible by p2 are p2,2p2,3p2, . . . ,m2p2 where

m2p ≤ n < (m2 + 1)p⇒m2 = [ n
p2

] .

Noting [ n
pr

] = 0 for pr > n, we conclude kp =
∞
∏
r=1

[ n
pr

] .

Similarly, lp =
∞
∏
r=1

[2n

pr
] .
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Corollary 225.

The binomial coefficient (2n

n
) contains the prime factor p exactly,

mp =
∞
∑
k=1

([2n

pk
] − 2 [ n

pk
])

times. That is, mp is the largest power of p that divides (2n

n
).

Proof. Since (2n

n
) = (2n)!

n!n!
, by Lemma 224 the numerator contains the prime factor

p exactly
∞
∑
k=1

[2n

pk
] times while the denominator contains the prime factor p exactly

2
∞
∑
k=1

[ n
pk

] times. So (2n

n
) contains the prime factor p exactly

mp =
∞
∑
k=1

([2n

pk
] − 2 [ n

pk
])

times.

Corollary 226.

logn! = ∑
p≤n

kp log p = ∑
p≤n

∞
∑
r=1

[ n
pr

] log p

log(2n)! = ∑
p≤2n

kp log p = ∑
p≤2n

∞
∑
r=1

[2n

pr
] log p

Proof. Using Lemma 224,

n! = ∏
p≤n

pkp ⇒ logn! = ∑
p≤n

kp log p = ∑
p≤n

∞
∑
r=1

[ n
pr

] log p

Similarly,

(2n)! = ∑
p≤2n

∞
∑
r=1

[2n

pr
] log p

Corollary 227.

pmp ≤ 2n (28.1.1)

Proof. By Corollary 226, with,

mp =
∞
∑
k=1

([2n

pk
] − 2 [ n

pk
]) ,
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we have,

log (2n

n
) = log

(2n)!
n!n!

= log(2n)! − 2 logn!

= ∑
p≤2n

∞
∑
r=0

[2n

pr
] log p − 2∑

p≤n

∞
∑
r=0

[ n
pr

] log p

= ∑
p≤2n

mp log p,

where we replaced ∏
p≤n

with ∏
p≤2n

since beyond 2n, [2n

p
] = 0 and [n

p
] = 0. Also,

mp =
∞
∑
k=1

([2n

pk
] − 2 [ n

pk
])

⇒mp = ∑
1≤r≤ log 2n

logp

([2n

pk
] − 2 [ n

pk
]) (28.1.2)

since [2n

pr
] = 0 if pr > 2n or r > log 2n

log p
.

Now, for x ∈ R, we have x = [x] + δ,0 ≤ δ < 1, so that,

[2x] − 2[x] = 2[x] + 2δ − 2[x] = 2δ =
⎧⎪⎪⎨⎪⎪⎩

0 if 0 ≤ δ < 1
2

1 if δ ≥ 1
2

Therefore,

[2n

pr
] − 2 [ n

pr
] = 0 or 1

⇒ [2n

pr
] − 2 [ n

pr
] ≤ 1

⇒mp ≤ ∑
1≤r≤ log 2n

logp

1 (using(28.1.2))

⇒mp ≤
log 2n

log p

⇒mp log p ≤ log 2n

⇒ log pmp ≤ log 2n

⇒ pmp ≤ 2n.
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Corollary 228.
If

√
2n < p then mp ≤ 1.

Proof.
Let

√
2n < p. By Corollary 227,

pmp ≤ 2n⇒mp ≤
log 2n

log p

Using p ≥
√

2n⇒ log p > 1

2
log 2n we have,

mp ≤
log 2n

log p

⇒mp <
log 2n

1
2 log 2n

⇒mp < 2

⇒mp ≤ 1

Corollary 229.

If
2n

3
< p ≤ n then mp = 0.

Proof. First,

2n

3
< p ≤ n⇒ 3

2
> n
p
≥ 1

⇒ [n
p
] = 1

⇒ [ n
pr

] = 0 if r > 1.

Second,

2n

3
< p ≤ n⇒ 3 > 2n

p
≥ 2⇒ [2n

p
] = 2

⇒ [2n

pr
] = 0 if r > 1.

Therefore, separating out the terms with r > 1,

mp =
∞
∑
r=1

([2n

pr
] − 2 [ n

pr
])

= [2n

p
] − 2 [n

p
] +

∞
∑
r=2

([2n

pr
] − 2 [ n

pr
])

= 2 − 2 + 0 = 0
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Lemma 230.

4n ≤ 2n(2n

n
)

Proof. Considering the binomial expansion of (1 + 1)2n = 22n = 4n we have,

4n = (1 + 1)2n

=
2n

∑
k=0

(2n

k
)

= (2n

0
) +

2n-1 terms
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(2n

1
) + (2n

2
) + . . . + (2n

n
) + . . . + ( 2n

2n − 2
) + ( 2n

2n − 1
)+(2n

2n
)

= 2 +

2n-1 terms
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(2n

1
) + (2n

2
) + . . . + (2n

n
) + . . . + ( 2n

2n − 2
) + ( 2n

2n − 1
)

since (2n

0
) = (2n

2n
) = 1

≤ (2n

n
) +

2n−1terms
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(2n

n
) + (2n

n
) + . . . + (2n

n
) since (2n

n
) > 2

≤ 2n(2n

n
)

28.2 Bertrand’s Postulate

Theorem 231. (Bertrand’s Postulate)
For every natural number n > 1 there is a prime number p such that n < p < 2n.

Proof. The proof is by contradiction. Let’s assume for some natural number n > 1

there are no primes p such that n < p < 2n. By Corollary 225, page 337, (2n

n
) contains

the prime factor p exactly

mp =
∞
∑
r=1

([2n

pr
] − 2 [ n

pr
])

times and obviously does not contain any prime larger than 2n. We can therefore
write,

(2n

n
) = ∏

p≤2n

pmp
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Applying the assumption that there are no primes p with n < p < 2n we can write,

(2n

n
) = ∏

p<n
pmp

Applying Corollary 229, which states “if
2n

3
< p ≤ n then mp = 0” we can limit the

sum further to

(2n

n
) = ∏

p≤ 2n
3

pmp

We split this product into

(2n

n
) = ∏

p≤
√

2n

pmp ⋅ ∏√
2n<p≤ 2n

3

pmp

By Corollary 228, which showed “if
√

2n < p then mp ≤ 1” the second product is less
than ∏√

2n<p≤ 2n
3

p and certainly therefore less than ∏
p≤ 2n

3

p yielding,

(2n

n
) ≤ ∏

p≤
√

2n

pmp ⋅ ∏
p≤ 2n

3

p

Applying Corollary 227 which showed “pmp ≤ 2n” we then have,

(2n

n
) ≤ ∏

p≤
√

2n

2n ⋅ ∏
p≤ 2n

3

p

Applying Theorem 223 which showed “∏
p≤n

p < 4n” to the second product yields,

(2n

n
) ≤ ∏

p≤
√

2n

2n ⋅ 4 2n
3

We almost there. The product ∏
p≤
√

2n

2n is 2n raised to the power of the number of

primes less than
√

2n. This number is clearly less than

√
2n

2
since every second integer

is even and we can omit the number 1, giving,

(2n

n
) ≤ (2n)

√
2n
2

−1 ⋅ 4 2n
3 (28.2.1)

Finally, by Lemma 230, we have the fact that

2n(2n

n
) ≥

n

∑
k=0

(2n

k
) = 4n
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so that,

1

2n(2n
n
)
≤ 1

4n
(28.2.2)

Multiplying (28.2.3) and (28.2.4) yields,

1

2n
< (2n)

√
2n/2−1 ⋅ 4 2n

3

4n

Multiplying by 2n,

1 < (2n)
√

2n/2

4
n
3

⇒ 4
n
3 < (2n)

√
2n/2

⇒ 4
2n
3 < (2n)

√
2n (by squaring both sides.)

Then, taking logs,

log 4
2n
3 < log(2n)

√
2n⇒ 2n

3
log 4 <

√
2n log 2n

Putting n = 22k+1 gives,

2

3
(22k+1) log 4 <

√
22k+2 log(22k+2)

=
√

22(k+1) ⋅ (k + 1) ⋅ log(22)
= 2k+1 ⋅ (k + 1) ⋅ log 4

Cancelling, we have,
2

3
2k < k + 1⇒ 2k < 3

2
(k + 1)

This is false if k ≥ 3 or n = 22k+1 = 27 = 128 so the assumption that for every natural
number n > 1 there are no primes p such that n < p < 2n is false for all n > 128. We
can manually check values of n less than 128 or we can note it suffices to check that

2,3,5,7,13,23,43,83,163

is a sequence of primes where each is smaller than twice the previous one.



Part XI

After-Glow

Riemann
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The German mathematician Bernard Riemann was a master mathematician, a
ground-breaker. His work opened up research fields combining analysis with geometry,
revolutionizing integral calculus, developing complex variable theory and opening up
topology.

However, he wrote only one short 8-page article on number theory which was pub-
lished in 1859 as “On the number of primes less than a given magnitude”. The article
contained a comment reminiscent of the comment Fermat left in the margin of his
copy of Diophantus’ Arithmetica now known as Fermat’s Last Theorem. Riemann’s
comment is known as the Riemann Hypothesis. It has now defied proof for or to
the contrary for over 150 years. There is currently a $1,000,000 prize for a proof or
counter-proof.

Enrico Bombieri, a major contributor to 20th century number theory states “In
the opinion of many mathematicians, the Riemann Hypothesis is . . . probably the
most important open problem in pure mathematics”.

A host of mathematical proofs contain the caveat that “if the Riemann Hypothesis
is true, then . . .!”

The mathematical world is holding its breath.



Chapter 29

The Riemann Hypothesis

Course: Post-prandial
Ingredients
The Riemann Zeta Function
The Gamma Function
Bernoulli Numbers
Directions
Follow Riemann’s thinking as he expounds his ground-breaking paper on the number
of primes less than a given magnitude.

29.1 First Steps with Riemann

In his paper Riemann takes as his starting point the Euler Zeta Function together
with the product formula from Theorem 185 on page 272,

ζ(s) =
∞
∑
n=1

1

ns
=∏

p

1

1 − 1

p

, Re(s) > 1 (29.1.1)

He combines this with Euler’s Gamma Function,

Γ(s) = ∫
∞

0
e−xxs−1 dx, s > −1 (29.1.2)

= (s − 1)! if s ∈ N (29.1.3)

= lim
n→∞

n!ns

s(s + 1)(s + 2)⋯(s + n) (29.1.4)

= 1

s

∞
∏
n=1

(1 + s
n
)
−1

(1 + 1

n
)
s

(29.1.5)

where the last three results were proved in Chapter 26 (Theorem 196, Theorem 198,
Lemma 195).
Equation (29.1.5) shows the limit of Equation (29.1.4) exists for all s except

345
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s = 0,−1,−2,−3, . . . . In particular, Γ(s) is an analytic (think, differentiable in C)
function of the complex variable s which has simple poles at s = 0,−1,−2,−3, . . . . It
has no zeros. Euler’s ζ(s) is defined only for Re(s) > 1. Riemann defined a function
ζ(s) which is the same as Euler’s when s > 1 but is valid (analytic) for all s except
for a simple pole at s = 1. The mathematical process for doing this is called analytic
continuation. There is a theorem in complex analysis which states that if such an
extended function in the complex plane agrees with the real function on the Cartesian
plane, then this complex function is unique.

Let us follow Riemann’s reasoning.

29.2 The Riemann Zeta Function

We start with

Γ(s) = ∫
∞

0
e−xxs−1 dx

Putting nx for x gives,

Γ(s) = ∫
∞

0
e−nxns−1xs−1 (n dx)

⇒ Γ(s)
ns

= ∫
∞

0
e−nxxs−1 dx

Taking the infinite sum over both sides and assuming we can take the summation
inside the integral gives,

Γ(s)
∞
∑
n=1

1

ns
= ∫

∞

0

∞
∑
n=1

e−nxxs−1 dx

The infinite sum of the interior geometric series on the right side is,

∞
∑
n=1

e−nx = e−x + (e−x)2 + . . . = e−x

1 − e−x =
1

ex − 1

As a result, Riemann obtained,

∞
∑
n=1

1

ns
= 1

Γ(s) ∫
∞

0

xs

ex − 1

dx

x
(29.2.1)

A full understanding of what follows requires a knowledge of the simpler findings of
integration over a path on the complex number plane. But we can get the general idea.

Next, Riemann considered this contour integral on the C plane,

∫
∞

∞

(−x)s
ex − 1

dx

x
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where the path of integration is from +∞ along the real axis to a circle radius δ taken
counterclockwise around the origin and then returning along the real axis to +∞ thus,

δ

x

iy

Figure 38

Just as we can separate an integral on an interval (or path) on the real number plane
into for example,

∫
b

a
f(x) dx = ∫

c

a
f(x) dx + ∫

b

c
f(x) dx

so we are able to write,

∫
∞

∞

(−x)s
ex − 1

dx

x
= ∫

δ

∞

(−x)s
ex − 1

dx

x
+ ∫

∣x∣=δ

(−x)s
ex − 1

dx

x
+ ∫

∞

δ

(−x)s
ex − 1

dx

x

where the integral around the circle of radius δ is an integral around all values of x
for which the magnitude of x is ∣x∣ = δ.
Let us recall the polar representation x = reiθ of complex numbers together with the
inverse function relationship elogx = x ⇒ xs = es logx and Euler’s equation e±πi = −1,
then we have,

(−x)s = (e±πix)s = (e±πielogx)s = es(logx±πi)

� For the path from +∞ to δ along the real axis we can write (−x)s = es(logx−iπ)

using the minus value here since the path is to the left.

� For the path around the circle radius δ we can write x = δeiθ so that ∣x∣ = δ is

replaced by 0 ≤ θ ≤ 2π. Then,
dx

x
= δie

iθ

δeiθ
dθ = i dθ so that,

∫
∣x∣=δ

. . .
dx

x
= ∫

2π

0
. . . i dθ

� For the path from δ to ∞ back along the real axis we can write (−x)s = es(logx+iπ)

using the plus sign here since the path is to the right.

It is then a fact that, for s > 1 as δ → 0, the middle integral around the circle
approaches zero, giving,
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∫
∞

∞

(−x)s
ex − 1

dx

x
= ∫

0

∞

(−x)s
ex − 1

dx

x
+ ∫

∞

0

(−x)s
ex − 1

dx

x

= ∫
0

∞

es(logx−iπ)

ex − 1

dx

x
+ ∫

∞

0

es(logx+iπ)

ex − 1

dx

x

= −∫
∞

0

es(logx−iπ)

ex − 1

dx

x
+ ∫

∞

0

es(logx+iπ)

ex − 1

dx

x

= ∫
∞

0
(eiπs − e−iπs) xs

ex − 1

dx

x
since es logx = xs

From Corollary 121, page 174, we have sin θ = e
iθ − e−iθ

2i
. Then,

∫
∞

∞

(−x)s
ex − 1

dx

x
= 2i sinπs∫

∞

0

xs

ex − 1

dx

x

From Theorem 200, page 291 in our study of the Gamma Function we can use,

sinπs = π

Γ(s)Γ(1 − s)

to obtain

∫
∞

∞

(−x)s
ex − 1

dx

x
= 2i

π

Γ(s)Γ(1 − s) ∫
∞

0

xs

ex − 1

dx

x
,

so that multiplying both sides by
Γ(1 − s)

2πi
,

Γ(1 − s)
2πi ∫

∞

∞

(−x)s
ex − 1

dx

x
= Γ(1 − s)

2πi
⋅ 2i ⋅ π

Γ(s)Γ(1 − s) ∫
∞

0

xs

ex − 1

dx

x

= 1

Γ(s) ∫
∞

0

xs

ex − 1

dx

x

making,
Γ(1 − s)

2πi ∫
∞

∞

(−x)s
ex − 1

dx

x
=

∞
∑
n=1

1

ns

where we used Equation (29.2.1) in the final step.
In other words, if ζ(s) is defined by the formula,

ζ(s) = Γ(1 − s)
2πi ∫

∞

∞

(−x)s
ex − 1

dx

x

then, for Re(s) > 1, ζ(s) is equal to Euler’s Zeta Function, ζ(s) =
∞
∑
n=1

1

ns
, s > 1.



29.3. The pole of ζ(s) 349

Definition 111. Riemann Zeta Function

ζ(s) = Γ(1 − s)
2πi ∫

∞

∞

(−x)s
ex − 1

dx

x

is called the Riemann Zeta Function. It is identical with the Euler Zeta function for
Re(s) > 1.

29.3 The pole of ζ(s)
Since, using (29.1.4),

Γ(1 − s) = lim
n→∞

1 ⋅ 2 ⋅ 3⋯n
(1 − s)(2 − s)(3 − s)⋯(n − s)n

1−s

has simple poles (think “infinite discontinuities”) at s = 1,2,3, . . . but at s = 2,3,4, . . .

the Riemann and Euler functions coincide at ζ(s) =
∞
∑
n=1

1

ns
which has no poles at

s = 2,3,4, . . . , then the integral ∫
∞

∞

(−x)s
ex − 1

dx

x
must have simple zeros at s = 2,3,4, . . . ,

that cancel1 the simple poles of Γ(1 − s).

At s = 1, Γ(1 − s) also has a simple pole and this coincides with the fact that

ζ(1) =
∞
∑
n=1

1

n1
is the divergent Harmonic series. In other words ζ(s) has just the

simple pole at s = 1. Thus, the Riemann Zeta Function,

ζ(s) = Γ(1 − s)
2πi ∫

∞

∞

(−x)s
ex − 1

dx

x
(29.3.1)

defines a function which is analytic at all points on the complex plane except for the
simple pole at s = 1.

29.4 The Trivial Zeros of ζ(s)
Recall the Bernoulli numbers are generated by the infinite series,

x

ex − 1
=

∞
∑
m=0

Bm

m!
xm (29.4.1)

1You may wish to revisit Section 26.2 on page 286. For example
1

x2 − 1
has divisions by zero

(think, simple poles) at x = ±1. So if the product f(x) × 1

x2 − 1
has no divisions by zero at all then

for some other function g(x), f(x) must be (x2 − 1) ⋅ g(x) where the zeros due to f(±1) cancel the

divisions by zero of
1

x2 − 1
.
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Note also from Corollary 197 on page 289 that

Γ(n + 1) = n! (29.4.2)

When s = −n with δ = 1, where δ is as in Figure 38, Equation (29.3.1) becomes,

ζ(−n) = Γ(n + 1)
2πi ∫

∞

∞

(−x)−n
ex − 1

dx

x

= n!

2πi ∫
∞

∞

x

ex − 1
(−1)n(x)−n−1dx

x

= n!

2πi ∫
∞

∞
(
∞
∑
n=0

Bm

m!
xm)(−1)nx−n−1dx

x
(29.4.3)

= n!

2πi

∞
∑
n=0

Bm

m! ∫
∞

∞
(−1)nxm−n−1dx

x
(29.4.4)

Now,

∫
∞

∞
xm−n−1dx

x
= ∫

1

∞
xm−n−1dx

x
+ ∫

∣x∣=1
xm−n−1 dx

x
+ ∫

∞

1
xm−n−1 dx

x

= ∫
∣x∣=1

xm−n−1 dx

x

since for real powers the first and third integrals cancel by ∫
1

∞ = −∫
∞

1

Now on ∣x∣ = 1 which is a circle of radius 1 centered at the origin we have,

x = eiθ, 0 ≤ θ ≤ 2π and
dx

x
= ie

iθ

eiθ
= idθ,

Hence,

∫
∣x∣=1

xm−n−1 dx

x
= ∫

2π

0
i eiθ(m−n−1 dθ

= [ i

i(m − n − 1)e
iθ(m−n−1)]

2π

o

provided m − n − 1 ≠ 0

= i

i(m − n − 1) (e2πi(m−n−1) − 1)

= 1 − 1 = 0 since e2πi = 1

unless m = n + 1, in which case,

∫
2π

0
i xm−n−1 dθ = ∫

2π

0
i dθ = [iθ]2π

0 = 2πi

Accordingly, in the infinite sum of Bernoulli numbers, only the term in Bn+1 survives,
giving, from (29.4.4),

ζ(−n) = (−1)n n!

2πi

Bn+1

(n + 1)! ⋅ 2πi = (−1)nBn+1

n + 1
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Since all the odd Bernoulli numbers are 0 then Bn+1 = 0 for n = 2k, k ≥ 1 making,

ζ(−2k) = 0 for k ≥ 1⇒ ζ(−2) = ζ(−4) = ζ(−6) = . . . = 0

The values s = −2,−4,−6, . . . are called the trivial zeros of ζ(s). The Riemann Hy-

pothesis is that the other or non-trivial zeros of ζ(s) have Re(s) = 1

2
. Let’s examine

this more closely. We continue to follow Riemann.

29.5 Functional Equation of ζ(s)
We will deal with Re(s) > 1 so we can use Euler’s Gamma function which is equivalent
to Riemann’s for Re(s) > 1. We begin with,

Γ(s
2
) = ∫

∞

0
e−xx

s
2
dx

x

We substitute x = n2πx⇒ dx

x
= n

2πdx

n2πx
= dx
x

to obtain,

Γ(s
2
) = ∫

∞

0
e−n

2πx (nsπ s
2x

s
2 ) dx

x

⇒ 1

ns
π−

s
2 Γ(s

2
) = ∫

∞

0
e−n

2πxx
s
2
dx

x
, Re(s) > 1

⇒
∞
∑
n=1

1

ns
π−

s
2 Γ(s

2
) =

∞
∑
n=1
∫

∞

0
(e−n2πx)x s2 dx

x
, Re(s) > 1

⇒ π−
s
2 Γ(s

2
) ζ(s) = ∫

∞

0
(
∞
∑
n=1

e−n
2πx)x s2 dx

x
, Re(s) > 1 using ζ(s) =

∞
∑
n=1

1

ns

= ∫
∞

0
Ψ(x)x s2 dx

x
, where Ψ(x) =

∞
∑
n=1

e−n
2πx

= ∫
∞

1
Ψ(x)x s2 dx

x
+ ∫

1

0
Ψ(x)x s2 dx

x
(29.5.1)

If, in the integral on the right, we put x = 1

x
, so that

dx

x
= − 1

x2
xdx = −dx

x
, and note

the limits of integration change with 0 to 1 becoming ∞ to 1, we have,

∫
1

0
Ψ(x)x s2 dx

x
= −∫

1

∞
Ψ(1

x
)x− s2 dx

x

= ∫
∞

1
Ψ(1

x
)x− s2 dx

x

Assuming Jacobi’s functional equation of the Psi function, namely,

1 + 2Ψ(x)

1 + 2Ψ(1

x
)
= 1√

x
⇒ Ψ(1

x
) =

√
x(1 + 2Ψ(x)) − 1

2
= x 1

2 Ψ(x) + x
1
2

2
− 1

2
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we have from (29.5.1),

⇒ π−
s
2 Γ(s

2
) ζ(s) = ∫

∞

1
Ψ(x)x s2 dx

x
+ ∫

∞

1
[x 1

2 Ψ(x) + x
1
2

2
− 1

2
]x− s2 dx

x

= ∫
∞

1
Ψ(x) [x s2 + x 1−s

2 ] dx
x
+ 1

2 ∫
∞

1
[x s−12 + x− s2 ] dx

x

Now,
∞
∫
1

x−a
dx

x
= 1

a
for a > 0 so the second integral becomes,

1

2
[ 1

(s − 1)/2 −
1

s/2] = 1

s(s − 1) for s > 1.

Therefore for s > 1,

π−
s
2 Γ(s

2
) ζ(s) = ∫

∞

1
Ψ(x) [x s2 + x 1−s

2 ] dx
x
− 1

s(s − 1) (29.5.2)

If we put s = 1 − s we have,

π−
1−s
2 Γ(1 − s

2
) ζ(1 − s) = ∫

∞

1
Ψ(x) [x 1−s

2 + x s2 ] dx
x
− 1

s(s − 1) (29.5.3)

and we note that the right side remains the same as it was in (29.5.2). Hence, (29.5.2)
and (29.5.3) together give,

π−
s
2 Γ(s

2
) ζ(s) = π− 1−s

2 Γ(1 − s
2

) ζ(1 − s) (29.5.4)

This is called the functional equation of the Zeta function. It says the left side is
invariant (unchanged) when 1 − s is substituted for s.

29.6 The Non-Trivial Zeros of ζ(s)
We have from (29.1.4),

Γ(s
2
) = lim

n→∞
n!n

s
2

s

2
(s

2
+ 1)(s

2
+ 2)⋯(s

2
+ n)

Except for
s

2
one of each of the terms in the denominator is zero when s = −2,−4,−6, . . . ,

corresponding to the trivial zeros of ζ(s) which in the product Γ(s
2
) ζ(s) will there-

fore cancel out.
Also we know ζ(s) has a pole (think infinite discontinuity) at s = 1. Therefore the
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left side of the functional equation, π−
s
2 Γ(s

2
) ζ(s) has poles only at s = 0,1.

Therefore the function,

ξ(s) = s(s − 1)π− s2 Γ(s
2
) ζ(s)

formed by multiplying the left side of (29.5.4) by s(s − 1) is an entire function, (no
discontinuties), meaning it is analytic (differentiable) for all s. It has the simple
functional equation,

ξ(s) = ξ(1 − s)

since,

ξ(1 − s) = (1 − s)(−s)π− 1−s
2 Γ(1 − s

2
) ζ(1 − s)

= s(s − 1)π− 1−s
2 Γ(1 − s

2
) ζ(1 − s)

= s(s − 1)π− s2 Γ(s
2
) ζ(s) by (29.5.4)

= ξ(s)

We have eliminated the trivial zeros of ξ(s) by the preceding discussion.
It follows that the non-trivial zeros of ξ(s) are the zeros of ζ(s). But ζ(s) has no
zeros at all for Re(s) > 1.
Then ξ(s) = ξ(1 − s) tells us that ξ(s) has no zeros at all2 for Re(s) < 0. Thus, all
the non-trivial zeros of both ξ(s) and therefore ζ(s) lie in the so-called critical strip
0 ≤ Re(s) ≤ 1. See Figure 39 below.

Im(s)

Re(s)10

critical strip

critical line

● ●●
1
2

Figure 39

2For example if s = 1 + δ > 1 is excluded then so is 1 − s = 1 − 1 − δ = −δ < 0



354 Chapter 29. The Riemann Hypothesis

We can go further. If s = 1

2
+ it is a zero of ξ(s) then,

ξ(s) = ξ(1 − s)

⇒ ξ (1

2
+ it) = ξ (1 − 1

2
− it) = ξ (1

2
− it)

So if ξ (1

2
+ it) = 0 then ξ (1

2
− it) = 0. This tells us that all the non-trivial zeros of

ζ(s) are equally spaced on either side of the critical line Re(s) = 1

2
.

29.7 Riemann Hypothesis

The Riemann Hypothesis is that all the non-trivial zeros of ζ(s) actually lie on the

critical line meaning they all have Re(s) = 1

2
.

It turns out that finding non-trivial zeros of ζ(s) is tedious but relatively straight-
forward, being achieved through the method of Euler-Maclaurin summation. Com-
puters have been used to calculate the zeros for t in ζ(s) = ζ(σ + it) up to 4.2 trillion.

In all cases, Re(s) = σ = 1

2
. Strong evidence, but not a proof!

If you are interested in the conclusion to Riemann’s paper, you can find a trans-
lation in “Riemann’s Zeta Function” by H.M. Edwards.
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absolute value, 39, 55
algebraic integer, 62, 190
algebraic number, 62, 190
angle, 155
antiderivative, 88
area, 28
area function, 92
arithmetic function, 249
arithmetic progression, 232
associates, 66
associativity, 19

Bernoulli numbers, 196
Big-O notation, 317
binary operations, 257
binomial coefficient, 128
binomial theorem, 130

cardinality of a set, 304
change of variables, 99
chinese remainder theorem, 119
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commutativity, 19
complete residue system, 233
complex conjugate, 56
complex number plane, 56
complex numbers, 9, 56
composite number, 301
composition of functions, 207
congruence, 67, 118, 233
convergence of infinite series, 102
coset multiplication, 261
cosine fiunction, 158
cyclic group, 262

cyclic subgroup, 262

definite integral, 92
degree, 156
derivative, 82
derivative of a function at a point, 82
differentiable, 82
differentiation

chain rule, 88
distributivity, 19
divisible, 63
divisor, 63

euclidean algorithm, 113
Euler gamma function, 293
Euler product, 272
Euler’s totient function, 236, 255
Euler-Mascheroni constant, 284
Euler-Riemann Zeta function, 271
even function, 198
even integer, 21
exponential function, 153

factorial, 128
Fermat’s two squares theorem, 132,

145
First Fundamental Theorem of

Calculus, 94
Fundamental Theorem of Calculus

First, 94
Second, 95

gamma function, 284
Gaussian integers, 132
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complex conjugate, 133
division, 134
Euclidean algorithm, 139
magnitude, 133
norm, 133
prime, 135
relatively prime, 136
sum and product, 132
unit, 134

generalized Bernoulli function, 199
generator, 147
geometric series, 103
geometric series convergence, 103
gradient of curve, 81
gradient of line, 81
greatest common divisor, 22, 40
greatest integer function, 306
group and group axioms, 258
groups

Zn, 259
abelian, 258
axioms, 258

associative, 258
closure, 258
identity, 258
inverses, 258

cancellation law, 258
commutative, 258

holomorphic function, 286
hyperbolic sine function, 224

identity
additive, 19
multiplicative, 19

incongruence, 67
indefinite integral, 88, 89
infinite series, 100
integers, 9

axioms, 18
even, 21
odd, 21

integral test for convergence, 104
integrand, 88, 92

inverse functions, 207

least common multiple, 266
Legrendre symbol, 246
limit inferior, 329
limit superior, 329
limits of integration, 92
linear combination, 41
linear congruence, 237
linear equation, 237
little-o notation, 318
logarithmic function, 209

Möbius function, 250
magnitude of complex number, 56
mathematical proofs

contradiction, 22
mathematical induction, 23

multiplicative function, 250
multiplicative group Z/nZ, 261

natural exponential function, 154
natural numbers, 9
natutal logarithmic function, 210
norm, 63

odd function, 198
odd integer, 21
order of a

group, 263
order of a group element, 148, 263

p-series test, 105
partial sum, 102
Pascal’s triangle, 128
pi function, 319
polar coordinates on complex number

plane, 57
pole, 286
prime number, 232, 301
primes in k(ρ), 66
primitive Pythagorean triples, 31
pythagorean theorem, 29
Pythagorean triples, 31
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quadratic residue, 243

radian, 157
ratio test for convergence, 104
rational numbers, 9
real numbers, 9
relatively prime, 236
residue, 67, 118, 233
Riemann Hypothesis, 354
Riemann zeta function, 349
roots of unity, 174
rules of differentiation, 84

constant multiple rule, 86
constant rule, 84
extended power rule, 87
power rule, 85
product rule, 86
quotient rule, 87
sum rule, 85

second fundamental theorem of
calculus, 95

set, 8
set notation, 8
sine function, 158
slope of line, 81
slope of tangent, 81
smooth function, 168

tan function, 158
taylor series, 168
the χ function, 277
theta function, 320
triangle inequality in C, 60

unit circle, 158
unitary operations, 257
unity, 64

zeta function, 271


