Answer all the questions.

1 Triglycerides are triesters and are found in fats and oils.

The structure of a triglyceride found in some goats' milk is shown below.

1	a)	This triglyceride is	hydrolyse	ed with hot ac	nueous sodium	hvdroxide
ı	a	i i ilis iligiyeende is	Hydroryst	s u willi nol al	Jucous souluili	HYULUXIUE

(i)	Give the systematic name of the alcohol that is formed by this hydrolysis.			
	[1]			

(ii)	Draw the structures	of the other	organic	products of	this hydrolysis

[3]

(b) Suggest why people who consume a large quantity of this type of goats' milk might be more at risk of suffering from coronary heart disease.

In your answer, you should use appropriate technical terms, spelled correctly.
[2]

[Total: 6]

Turn over

2 4-Aminophenol is an organic compound that can behave as an acid and a base.

4-aminophenol

(a)	State how 4-aminopheno	ol can behave as a b	ase.
-----	------------------------	----------------------	------

[1]

(b) 4-Aminophenol is produced by the reduction of 4-nitrophenol.

Write an equation to show the production of 4-aminophenol from 4-nitrophenol. Use [H] to represent the reducing agent.

[1]

(c) 4-Nitrophenol can be produced from 4-bromophenol.

- Complete the mechanism for this reaction.
- Use $^{\dot+}$ NO $_2$ as the electrophile. Include any intermediate and the products. In the mechanism for this reaction, NO $_2$ substitutes for Br on the ring.

[4]

(d) The flowchart below shows some reactions of 4-aminophenol.

Identity the reagent in reaction I.

F4.
 [I]

(ii) Name the organic product of reaction II.

(iii) Write the equation for reaction II.

[1]

(iv) In the box on the flowchart, draw the structure of the organic compound formed by reaction III. [1] (e) The Sandmeyer reaction can be used to replace a diazonium group, N_2^+ , with a halogen atom, \mathbf{X} , on an aromatic ring.

The reagent used for the reaction is a copper(I) halide, CuX.

Compound **C**, shown below, can be synthesised using **only** 4-aminophenol and other standard laboratory reagents. The flowchart on the next page shows this synthesis.

compound C

(i)	State a possible use f	or compound C	•

.....[1]

- (ii) On the flowchart on the next page:
 - state the reagents and conditions used for reaction 1
 - suggest the structure of compound B
 - suggest the reagent used for reaction 2
 - state the conditions used for **reaction 3**.

[5]

[Total: 16]

Turn over

- 3 Many modern textiles are created using a mixture of natural and synthetic polymers.
 - (a) Silk is a natural fibre. It is made up of two main proteins, fibroin and sericin.

A section of a **fibroin** strand is shown below.

(i) Proteins are natural condensation polymers.

` '	, ,
	State what is meant by a condensation polymer.

(ii) A student hydrolysed a sample of fibroin protein. She analysed the amino acids that were formed from the hydrolysis. She found that fibroin contained the amino acid glycine, H₂NCH₂COOH.

Draw the structures of the **two** other amino acids that make up the section of fibroin shown in the diagram above.

[2]

(iii) The isoelectric point of glycine is 5.8.

Define the term isoelectric point and draw the structure of glycine at its isoelectric point.

isoerectric point

[2]

- **(b)** The student then hydrolysed a section of sericin protein. She analysed the amino acids formed using Thin-Layer Chromatography (TLC).
 - (i) Name the process by which TLC separates amino acids.

.....[1]

(ii) The chromatogram the student obtained, and a table of $R_{\rm f}$ values for amino acids, are shown below.

Estimate the $R_{\rm f}$ value for the amino acid found at **X**. Hence identify the amino acid found at **X**.

Amino acid	R _f value
alanine	0.38
aspartic acid	0.15
glycine	0.26
leucine	0.75
methionine	0.58
threonine	0.35

.....

(c) Quiana is a synthetic polymer that can be spun into a soft, silky fabric.

The monomers used to make Quiana are shown below.

$$O$$
 $(CH_2)_6$
 O
 O
 O

$$H_2N$$
 NH_2

Draw the repeat unit of the polymer formed from these two monomers.

(d)	Polymer D has been developed by the textile industry. The repeat unit of polymer D is shown
	below.

(i) Polymer **D** is a condensation polymer.

Draw the structure of each of the monomers that make up polymer **D**.

[2]

(ii) Polymer **D** reacts with a third monomer to form an addition polymer. The repeat unit of this polymer is shown below.

addition polymer

Draw the structure of the third monomer.

[1]

[Total: 13]

4 Compound **E**, shown below, is an alcohol that is found in oak wood. It is formed by the breakdown of cellulose.

Compound **E** can be converted into compound **G** as shown in the flowchart below.

(a) (i) Complete the flowchart to show the structure of the organic compound **F** and the reagent needed for **reaction 2**. [1]

	(ii)	What would you observe during reaction 1?
		[1]
	(iii)	In reaction 1 , compound E was heated under reflux with excess $\rm K_2Cr_2O_7/H_2SO_4$.
		Suggest why these conditions were used, rather than the reaction mixture being distilled during the process.
		[1]
	(iv)	Name the type of reaction taking place in reaction 2 .
		[1]
(b)		scribe a chemical test that you could use to detect the presence of a carbonyl group in an anic compound.
	Rea	agent
	Obs	servation
		[2]
(c)	Con	npound E is a single stereoisomer.
	(i)	Draw the skeletal formula of one other stereoisomer of compound E and state the type of stereoisomerism.
		tune of storesisemenism
		type of stereoisomerism[2]

- (ii) 4.56g of compound **E** was converted into compound **G** using the method shown in the flowchart on page 12.
 - 3.15 g of compound **G** was formed.

Calculate the percentage yield of compound **G**.

Give your answer to three significant figures.

The M_r of compound **E** is 160.0.

(iii) Compound **G** is heated for several hours under reflux, in the presence of a concentrated sulfuric acid catalyst. An ester and a small inorganic molecule are formed.

Complete the equation below to show the **two** products formed by this reaction.

[2]

[Total: 13]

- 5 A chemist isolated compound **L** from the leaves of a common garden herb. He analysed the compound using a number of techniques.
 - (a) Compound L contains C, H and O only. Elemental analysis shows that L has the percentage composition by mass: C, 73.15%; H, 7.37%.

The mass spectrum of **L** has a molecular ion peak at m/z = 164.

Show that the molecular formula of ${\bf L}$ is ${\bf C}_{10}{\bf H}_{12}{\bf O}_2$.

[2]

(b) The ^{13}C NMR spectrum of compound L is shown below.

How many different carbon environments (types of carbon) are present in a molecule of compound ${\bf L}$?

.....[1]

(c) The ^1H NMR spectrum of compound L, $\text{C}_{10}\text{H}_{12}\text{O}_2$, is shown below. One of the signals has been enlarged to help its analysis.

(i)	A signal at δ = 0 ppm results from tetramethylsilane (TMS). TMS had been added to the sample of compound L before the NMR spectrum was run.
	State why TMS was added.
	[1]
(ii)	The ¹ H NMR spectrum includes an integration trace.
	What information can be deduced about compound L from the integration trace?
(iii)	Using the information given in parts (a), (b) and (c) of this question, determine the structure of compound L.
^	Show all your reasoning.
	In your answer, you should use appropriate technical terms, spelled correctly.
	structure of compound L

Turn over

[7]

END OF QUESTION PAPER

[Total: 12]