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Abstract 

Recent studies assert that natural resource abundance (particularly minerals) has adverse 

consequences for economic growth.  This paper subjects this “resource curse” hypothesis to 

critical scrutiny.  Our central point is that it is inappropriate to equate development of mineral 

resources with terms such as “windfalls” and “booms.”  Contrary to the view of mineral 

production as mere depletion of a fixed natural “endowment,” we show that so-called 

“nonrenewable” resources have been progressively extended through exploration, technological 

progress, and advances in appropriate (often country-specific) knowledge.  Indeed, minerals 

constitute a high-tech knowledge industry in many countries.  Investment in such knowledge 

should be seen as a legitimate component of a forward-looking economic development program. 

 

 

 

 

  

 

                                                 
* This paper draws upon our earlier paper, “Resource-Based Growth Past and Present,” prepared as a background 
paper for the World Bank Latin American and Caribbean Regional Office report, From Natural Resources to the 
Knowledge Economy (2002). 
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Many observers, including economists, believe that reliance on natural resources has 

adverse consequences for economic growth.  Richard M. Auty writes flatly: “[S]ince the 1960s, 

the resource-poor countries have outperformed the resource-rich countries compared by a 

considerable margin” (2001, p. 840).  Although concern over the efficacy of resource-based 

development is centuries old, the recent cycle begins with Sachs and Warner (1995, 1997), who 

presented evidence of an inverse statistical relationship between natural resource based exports 

(agriculture, minerals and fuels) and growth rates during the period 1970-1990.  Summarizing 

and extending this research (to 1989) several years later, Sachs and Warner conclude: “What the 

studies based on the post-war experience have argued is that the curse of natural resources is a 

demonstrable empirical fact, even after controlling for trends in commodity prices…Almost 

without exception, the resource-abundant countries have stagnated in economic growth since the 

early 1970s, inspiring the term ‘curse of natural resources’. Empirical studies have shown that 

this curse is a reasonably solid fact” (2001, pp. 828, 837).  This thesis has been widely 

disseminated and is now often encountered in the popular press (Surowiecki 2001). 

 Much of the profession has sufficient confidence in the resource-curse hypothesis that a 

second generation of studies sets out to explain the mechanisms through which the effect 

operates.  Many candidates have to do with economic processes, from the Dutch disease 

(crowding out of other more promising sectors) to market volatility to nonsustainability (taken as 

axiomatic for nonrenewable resources such as minerals).  But the most recent literature 

highlights the link between particular natural resources and poor governmental policies and 

institutions.  For example, Sala-I-Martin and Subramanian (2003) find that “stunted institutional 

development – a catch-all for a range of related pathologies, including corruption, weak 

governance, rent-seeking, plunder, etc. – is a problem intrinsic to countries that own natural 

resources such as oil and minerals” (p. 5).   Isham et al (2003) argue that the problem is specific 

to what they call “point source” resources such as oil, minerals, and plantation crops, while 

natural resource exports that are “diffuse” do not seem to have these pathological consequences. 

 In this paper we subject this literature to critical scrutiny.  We concentrate on minerals, in 

part for reasons of our own expertise but also because oil and other minerals have been fingered as 

the primary culprits in this melodrama.  Problems of agricultural development belong in a very 

different policy category, involving as they often do the employment of large portions of the 
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population.  In that case, human resource issues are at least as pressing as the natural resource 

content of their economic activity.  Renewable resources such as forests also raise distinct policy 

questions, though much of what we argue may apply to these sectors as well. 

 The resource curse literature pays little attention to the economic character of mineral 

resources, nor to the concept of “resource abundance.”  Theirs is indeed a black box approach.  

Virtually without exception, these studies equate the export of mineral products with “resource 

abundance,” seen as a simple reflection of an exogenously given geological “endowment.”  

When the revenues from this activity are described, terms such as “windfalls” and “booms” are 

generally not far behind.  This synonymy is a matter of implicit assumption rather than analysis 

or demonstration, generally unquestioned and all too often unrecognized. On closer scrutiny, 

each step in this chain of equivalences is questionable.  

 To begin, comparative advantage in resource products is not equivalent to “resource 

abundance.”  The elementary theory of international trade teaches that every country has a 

comparative advantage in something.  A comparative advantage in natural resources may simply 

reflect an absence of other internationally competitive sectors in the economy – in a word, 

underdevelopment.  Since indices of “development” are inherently imperfect, this statistical bias 

is not addressed by adding a host of additional variables into a cross-country regression.  Studies 

that use more appropriate measures of mineral abundance (such as reserves per capita or the 

level of natural resource exports per worker) do not find that these variables are negatively 

associated with growth rates (Maloney 2002, Stijns 2003). 

 Historical studies show that successful resource-based development is not primarily a 

matter of geological endowment.  The United States was the world’s leading mineral economy in 

the very historical period during which the country became the world leader in manufacturing 

(roughly between 1890 and 1910).  Resource intensity was a pervasive feature of U.S. 

technological and industrial development.  But with the aid of hindsight, we know that the 

country’s mineral endowment was not particularly favorable.  Instead, the U.S. developed its 

mineral potential well ahead of countries on other continents, including Latin America, on the 

basis of large-scale investments in exploration, transportation, geological knowledge, and the 

technologies of extraction, refining, and utilization.  It is fair to say that the minerals sector 

constituted a leading edge of the knowledge economy in U.S. history. 
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 The minerals sector is no less linked to advances in knowledge and technological 

capabilities in the modern world.  Indeed, it is one of the high-tech industries of the global 

economy.  Fears of impending scarcity have been overwhelmed by technological progress in 

exploration, extraction, and substitution over the past two centuries, a fact well known to 

resource economists (such as Krautkraemer 1998 and Tilton 2003), though it rarely arises in the 

resource-curse literature.  Less well known is the fact that returns to investments in country-

specific minerals knowledge have stayed high in recent decades, so that production and reserve 

levels have continued to grow in well-managed resource economies.  Many other resource-based 

economies have performed poorly, not because they have overemphasized minerals, but because 

they have failed to develop their mineral potential through appropriate policies. 

 These issues matter precisely because of their relevance for policy decisions.  What  

doctor would offer the diagnosis that their patient’s condition is hopeless and has been so from 

day one, attributing his ills to an ill-fated factor endowment?  By way of contrast: if tropical-

zone countries have suffered from a long-term bias in technology in favor of the temperate zone 

(Sachs 2001), we can hope to mitigate this outcome by finding ways to redirect the evolution of 

technology.  But that is not what the resource-curse proponents offer.  Isham et al conclude: “Our 

results suggest how entrenched – and ‘environmentally determined’ – poor institutions can 

be…So these results, in a certain sense, further raise cautions about casual attempts at 

institutional reform.  Poor institutions are deeply rooted” (p. 26). 

 Poor institutions may certainly be deeply rooted, but such diagnoses are dangerous 

because they confuse symptoms with the disease.   Would lenders and donors consider as 

evidence of “reform” decisions to suspend programs of minerals exploration, curtail the training 

of mining engineers, and terminate contracts with international mining companies?  Perhaps not, 

but how else should policy-makers understand the implications of a thesis that a country would 

be better off not knowing about its underground wealth potential?  On the other hand, perhaps an 

appreciation of the knowledge-based character of the minerals sector might lead resource-curse 

advocates to reformulate their position and rethink its policy implications.  Our position is that 

investment in minerals-related knowledge is a legitimate component of a forward-looking 

economic development program. 
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Historical Background: The United States as a Resource-Based Economy 

According to the figures of Angus Maddison, the United States overtook the United Kingdom in 

GDP per Worker-Hour as of 1890, and moved into a decisive position of world productivity leadership 

by 1913 (1991, Chapter 2 and Table C.11).  Perhaps surprisingly, in the same historical phase the US 

also overtook the previous world leader in GDP per Worker-Hour, Australia.  In a neglected footnote, 

Maddison writes: “In defining productivity leadership, I have ignored the special case of Australia, 

whose impressive achievements before the First World War were due largely to natural resource 

advantages rather than to technical achievements and the stock of man-made capital” (p. 45, note 1).  

Resource-based leadership, it seems, is a second-class variety, not to be confused with the real thing. 

How unexpected it is, therefore, to find that in 1913 the United States was the world’s dominant 

producer of virtually every one of the major industrial minerals of that era. Here and there a country 

rivaled the US in one or another mineral – France in bauxite, for example – but no other nation was 

remotely close to the United States in the depth and range of its overall mineral abundance.  

Furthermore, there is reason to believe that the condition of abundant resources was a significant factor 

in shaping if not propelling the US path to world leadership in manufacturing.  The coefficient of 

relative mineral intensity in US manufacturing exports actually increased sharply between 1879 and 

1914, the very period in which the country became the manufacturing leader (Wright 1990, pp. 464-

468). Cain and Paterson (1986) find a significant materials-using bias in technological change in nine of 

twenty US manufacturing industries between 1850 and 1919, including many of the largest and most 

successful cases. A study of the world steel industry in 1907-09 put the US at a par with Germany in 

total factor productivity (15 percent ahead of Britain), but the ratio of horsepower to worker was twice 

as large in America as in either of the other two contenders (Allen 1979, p. 919).  Resource abundance 

was evidently a distinguishing feature of the American economy; yet economists do not seem inclined to 

downgrade US performance on this account.   

The Endogeneity of American Mineral Resources 

There is good reason to reject the notion that American industrialization should be 

somehow downgraded because it emerged from a setting of unique resource abundance: On 

closer examination, the abundance of American mineral resources should not be seen as merely a 

fortunate natural endowment, but is more appropriately understood as a form of collective 

learning, a return on large-scale investments in exploration, transportation, geological 
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knowledge, and the technologies of mineral extraction, refining, and utilization.  This case is set 

out in detail by David and Wright (1997), and may be briefly summarized here. 

 For one thing, the United States was not always considered minerals-rich.  Writing in 

1790, Benjamin Franklin declared: “Gold and silver are not the produce of North America, 

which has no mines.”  (In 18th century, “mine” referred to an outcropping or deposit of a 

mineral.)  Harvey and Press note that prior to 1870, Britain was self-sufficient in iron ore, 

copper, lead and tin, and “Britain was easily the most important mining nation in the world” 

(1990, p. 65). US lead mine production did not surpass that of Britain until the late 1870s.  

Leadership in coal came even later.  Despite a vastly larger area, US coal production did not pass 

Germany’s until 1880, and Britain’s only in 1900.  Leadership or near-leadership in copper, iron 

ore, antimony, magnesite, mercury, nickel, silver and zinc all occurred between 1870 and 1910.  

Surely this correspondence in timing cannot have been coincidental. 

In direct contrast to the notion of mineral deposits as a nonrenewable “resource 

endowment” in fixed supply, new deposits were continually discovered, and production of nearly 

all major minerals continued to rise well into the twentieth century – for the country as a whole, 

if not for every mining area considered separately.  To be sure, this growth was to some extent a 

function of the size of the country and its relatively unexplored condition prior to the westward 

migration of the nineteenth century.  But mineral discoveries were not mere byproducts of 

territorial expansion.  Some of the most dramatic production growth occurred not in the Far West 

but in older parts of the country: copper in Michigan, coal in Pennsylvania and Illinois, oil in 

Pennsylvania and Indiana.  Many other countries of the world were large, and (as we now know) 

well endowed with minerals. But no other country exploited its geological potential to the same 

extent.  Using modern geological estimates, David and Wright show that the US share of world 

mineral production in 1913 was far in excess of its share of world reserves (Table 1). Mineral 

development was thus an integral part of the broader process of national economic development. 

David and Wright identify the following elements in the rise of the American minerals 

economy: (1) an accommodating legal environment; (2) investment in the infrastructure of public 

knowledge; (3) education in mining, minerals, and metallurgy. 

It would be mistaken to view the encouragement to mining as flowing exclusively from a 

simple well-specified system of rights and incentives, because much of the best US mineral land 
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was transferred into private hands outside of the procedures set down by federal law. Nearly six 

million acres of coal lands were privatized between 1873 and 1906, for example, mostly 

disguised as farmland.  Most of the iron lands of northern Minnesota and Wisconsin were 

fraudulently acquired under the provisions of the Homestead Act.  Nevertheless, whether through 

official or unofficial procedures, the posture of American legal authority towards mining was 

permissive and even encouraging well into the twentieth century. 

This discussion may convey the impression that the rise of US mineral production was an 

exercise in rapid exhaustion of a nonrenewable resource in a common-property setting. Although 

elements of such a scenario were sometimes on display during periodic mineral “rushes,” 

resource extraction in the US was more fundamentally associated with ongoing processes of 

learning, investment, technological progress and cost reduction, generating a many-fold 

expansion rather than depletion of the nation’s resource base.  A prime illustration is the United 

States Geological Survey.  Established in 1879, the USGS was the most ambitious governmental 

science project of the nineteenth century. The agency was successor to numerous state-sponsored 

surveys and to a number of more narrowly focused federal efforts.  It was highly responsive to 

the concerns of western mining interests, and the practical value of its detailed mineral maps 

gave the USGS, in turn, a powerful constituency in support of its scientific research.  The early 

twentieth-century successes of the USGS in petroleum were instrumental in transforming 

attitudes within the oil industry toward trained geologists and applied geological science. 

 The third factor was education.  By the late nineteenth century, the US emerged as the 

world’s leading educator in mining engineering and metallurgy.  The early leader was the 

Columbia School of Mines, opened in 1864; some twenty schools granted degrees in mining by 

1890.  After a surge in enrollment during the decades bracketing the turn of the twentieth 

century, the University of California at Berkeley became the largest mining college in the world.  

The most famous American mining engineer, Herbert Hoover – an early graduate of Cal’s arch 

cross-bay rival, Stanford – maintained that the increasing assignment of trained engineers to 

positions of combined financial and managerial, as well as technical responsibility, was a 

distinctive contributing factor to US leadership in this sector.  A manpower survey for military 

purposes in 1917 identified 7,500 mining engineers in the country, with a remarkably broad 

range of professional experience, domestic and foreign. 
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The Case of Copper 

Between 1900 and 1914, the copper mines in the United States produced more than ten 

times as much copper as did the mines of Chile; but this vast differential was not based on 

superior geological endowment.  Figure 1 shows that Chilean copper production exceeded that of 

the USA until the 1880s, and nearly recovered its relative standing by the 1930s.  During the 

1880-1920 era of US ascendancy, however, there was no comparison. The rapid growth of US 

copper production illustrates the ways in which investment and technology can expand a 

country’s resource base, effectively creating new natural resources from an economic standpoint. 

The pure native coppers of the Great Lake region were indeed a remarkable gift of nature, 

but the capital requirements for profitable exploitation of this potential were immense.  Along 

with the railroads, the copper companies of Michigan pioneered in the organization of the giant 

integrated business enterprise. Advances in the 1870s and 1880s reflected technological 

developments in drilling and blasting such as the use of nitroglycerine dynamite and rock drilling 

machines powered by compressed air.  Steam engines were adapted to hoist ore from the deepest 

mines in the country, as well as in stamping and other surface operations.  Beginning in the 

1870s, national totals were augmented by production from newly discovered deposits in Arizona 

and Montana, but Michigan copper continued to grow absolutely until the 1920s. 

What truly propelled the copper industry into the twentieth century was a revolution in 

metallurgy, overwhelmingly an American technological achievement.  In the 1880s and 1890s, 

the major breakthroughs were the adaptation of the Bessemer process to copper converting and 

the introduction of electrolysis on a commercial scale for the final refining of copper.  These 

advances made possible a nearly complete recovery of metal content from the ore.  The dramatic 

new development of the first decade of the twentieth century was the successful application of 

the Jackling method of large-scale, non-selective mining using highly mechanized techniques to 

remove all material from the mineralized area – waste as well as metal-bearing ore.  

Complementary to these techniques, indeed essential to their commercial success, was the use of 

the oil flotation process in concentrating the ore.  Oil floatation called for and made possible 

extremely fine grinding, which reduced milling losses sufficiently to make exploitation of low-

grade “porphyry” coppers commercially feasible. 
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Together these technological developments made possible a steady reduction in the 

average grade of American copper ore, as shown in Table 2. By contrast, in copper-rich Chile – 

where output was stagnant – yields averaged 10-13 percent between 1890 and 1910 (Przeworski 

1980, pp. 26, 183, 197).  From these facts alone, one might infer that the US had simply pressed 

its internal margin of extraction further than Chile, into higher-cost ores.  But Figure 1 makes it 

evident that the real price of copper was declining during this period, confirming that the fall in 

yields was an indicator of technological progress. Indeed, the linkage between yield reduction 

and the expansion of ore reserves was exponential, because of the inverse relationship between 

the grade of ore and the size of deposits (Lasky 1950).  Advances in technology thus led directly 

to an expansion of American mineral wealth. 

Historians differ on the reasons for the Chilean lag.  In the mid-nineteenth century, the 

Chilean industry was comparable to and probably superior to that of the US in its technological 

sophistication.  But the supply of high-grade ores began to decline in the 1880s, and in contrast 

to the US, Chile did not respond to this deterioration with either new discoveries or technological 

adaptation.    Political historians stress the lack of national consensus in support of the industry, 

and the predominance of revenue motives in government policy.  Economists tend to emphasize 

the obstacles posed by large fixed capital requirements in transportation and other forms of 

infrastructure, as well as in mining and processing facilities. American copper benefited from 

much greater investment in engineering skills, geological knowledge, and transport facilities 

(Maloney 2002, pp. 126-128).  Scale economies were not independent of the legal and political 

regime, however; in Chile, for example, the mining code discouraged the consolidation of 

individual mining claim (Culver and Reinhart 1989, p. 741). 

Whatever the precise mixture of explanation, the important point is that Chile’s problem 

was not its mineral endowment, but delay in developing its resource potential.  The barriers were 

real, but large US companies found profitable what the Chileans did not, and investments by 

Guggenheim and Anaconda after the turn of the century began the long-term reversal of the 

industry’s fortunes.  Through massive investments in railroads, roads, steamships, water and 

housing, these private firms in effect created their own infrastructure. 



 9
Resource-Rich Underachievers 

Isham et al (2003) write: “Certain types of natural resources are thus predisposed to 

generating an influence on the long-run level of development: ergo, North America’s resource 

base enabled it to become rich, but South America’s did not” (p. 10).  Once again, they have it 

backwards.  What was true of Chilean copper was also true of other areas of the world that are 

now known to be richly endowed with mineral resources: Latin America, Russia, Canada, even 

Australia – a country whose economic performance has been impugned for its excessive reliance 

on natural resources. European settlement of Latin America was largely motivated by the search 

for precious metals; but the Spanish and Portuguese rulers had little interest in possible spillover 

benefits from gold and silver mining to broader mineral development.  Table 2 deploys the same 

methodology as Table 1 to show that as of 1913, the countries of Latin America had barely made 

a beginning at exploiting their potential in zinc, lead, bauxite, iron ore, phosphate rock and 

petroleum.  Contemporaries and historians have found many rationalizations for this pattern of 

underachievement.  But the proximate impediment seems to have been a lack of accurate 

knowledge about the extent and distribution of mineral deposits.  A 1913 report by Orville A. 

Darby, calling attention to enormous undeveloped deposits of high-grade iron ore in Brazil, 

attracted great interest in that country.  Yet even in the 1930s experts cautioned that “a belief that 

South America is a vast reservoir of untouched mineral wealth is wholly illusory” (Bain and 

Read 1934, p. 358).  Somehow the illusions metamorphosed into real resource endowments 

within sixty years, as mining investments blossomed throughout Latin America in the 1990s. 

 Australia was a leading gold-mining country in the nineteenth century, but Table 3 shows 

that Australia was an under-achiever in virtually every other mineral, particularly coal, iron ore 

and bauxite.  In a nation with a strong mining sector and a cultural heritage similar to that of the 

US, why should this have been so?   

 Here too it is easy to identify adverse factors that may have discouraged resource 

exploitation.  The population of Australia has been small relative to its area, and the harsh 

climate of the large desert areas has discouraged migration from the coast.  But similar 

conditions prevailed in much of the western USA.  States like Montana, Utah and Arizona are 

not famous for their gentle climates.  Australia did invest in institutions of learning related to 

mining (such as geological surveys, mining schools, and museums) and indications are that "a 
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viable and independent technological system did develop in the years approximately 1850 to 

1914" (Inkster, 1990, p. 43).  Yet Australia lagged well behind other developed countries in  

engineers per capita (Edelstein, 1988, p. 14), and was heavily dependent upon foreign science.  

Into the 1880s, most large Australian mines were managed by Cornishmen, who had much 

practical experience but were untrained in metallurgy and resistant to new technology.  The 

emerging Australian technological system was distinctly informal, reliant upon outside science, 

and lacking in scale economies relative to the U.S.  In the early twentieth century, as Britain fell 

behind in minerals education and research, and as protectionist policies inhibited inflows of 

knowledge embodied in goods and people, the relative pace of learning in the Australian 

minerals sector decreased substantially.  In a 1977 lecture at the University of Queensland, 

Raymond J. Stalker (a Professor of Mechanical Engineering) stated that "on the eve of the 

Second World War, the 'self-image' of Australia was that of a relatively unsophisticated and 

technologically dependent dominion of the British Empire" (as quoted in Magee, 1996).   

Arguably as a result of the above factors in conjunction with low mineral prices, by the 

1930s Australians had become pessimistic about the possibilities for further expansion of their 

natural resources.  Sinclair (1976, p. 201) speaks of "a greatly reduced willingness to underwrite 

a process of development based primarily on the exploitation of natural resources."  In parallel 

with growing concerns in other countries about the extent of natural resource supplies, 

Australians deemed it prudent to conserve minerals for domestic industries.  Pessimism led to 

misguided policies and lack of survey effort.  In 1938, when Australia had recently begun to 

export iron ore on a small scale and gave promise of expanding this traffic, the government 

imposed an embargo on all iron ore shipments in an effort to conserve the remaining supply – 

effectively raising a barrier to exploration that remained in place for the next 25 years.  The 

policy was justified by a report to the Commonwealth in May 1938: “it is certain that if the 

known supplies of high grade ore are not conserved Australia will in little more than a generation 

become an importer rather than a producer of iron ore” (quoted in Blainey 1993, p. 337).  As late 

as the 1950s, the accepted view was that Australian minerals were fated to diminish over time.  

A 1951 report stated:  

We have been utilizing several of our basic metals at an ever-increasing rate and, with 
The development of many of the so-called backward nations, it appears likely that that 
rate will not diminish in the future; demand is likely to increase.  We have not an un- 
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limited supply of these metals available to us by economic processes as known today, 
nor is there any indication that sources other than the kind of ore-deposits worked today 
will become available to us.  The capacity for production of some metals cannot be 
increased indefinitely…Periods of shortage such as we have experienced will recur more 
frequently. [Australian Bureau of Mineral Resources, Geology and Geophysics (1951)] 
 

However, when the policy regime changed in the 1960s, lifting the embargo and offering state 

encouragement to exploration and construction of new ore terminals, a rapid series of new 

discoveries opened up previously unknown deposits, not only of iron ore but of copper, nickel, 

bauxite, uranium, phosphate rock and petroleum. By 1967 proved reserves of high-grade iron ore 

were already more than 40 times the level of 10 years earlier (Warren 1973, p. 215).   

 Prior to the 1960s, Australians accepted any number of unscientific rationalizations for 

the absence of important minerals such as petroleum: oil could not be found south of the equator; 

Australia’s rocks were too old to contain oil; the country had been so thoroughly scoured by 

prospectors that surely nothing valuable could remain to be found. But this very attitude could 

lead to lethargic and therefore self-confirming search behaviors.  Geologist Harry Evans recalled 

his own classic “rational expectations” reaction when a search party from the Weipa mission on 

the Cape York Peninsula found extensive outbreaks of bauxite in 1955: “As the journey down 

the coast revealed miles of bauxite cliffs, I kept thinking that, if all this is bauxite, then there 

must be something the matter with it; otherwise it would have been discovered and appreciated 

long ago.”  Indeed there was nothing wrong with it: by 1964 Weipa held about one-quarter of the 

known potential bauxite in the world (Blainey 1993, p. 332). 
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The Rise of Petroleum: Causes and Implications 

The leading global mineral story of the twentieth century has been petroleum.  In its 

origins and growth as an American specialty, petroleum illustrates the themes of this essay very 

well: mineral development as a knowledge industry; evolving institutional relationships among 

government agencies, academic institutions, and private corporations; and national economic 

strength emerging from a resource base. The usefulness of the liquid mineral originally known as 

“rock oil” was first recognized in the US, which dominated world production for more than a 

century.  New discoveries led to an ever-widening range of uses in the twentieth century.  It 

would seem to be a classic example of a nation building comparative advantage around its 

resource base. Yet we now know that from a world perspective, the United States was not 

particularly well endowed with petroleum.  Paradoxically, American technology launched a 

worldwide, century-long movement away a mineral for which the United States has enormous 

reserves (coal) in favor of a liquid mineral in which the domestic supply is drying up, and for 

which geographic linkages between resources and industry have been substantially weakened.  

Before petroleum, the role of applied science in industry was negligible.  When the first 

oil well was put down at Titusville, Pennsylvania, in 1859, the techniques used were well known 

from centuries of drilling deep wells for brine and water. As discoveries moved on to more 

difficult terrain, drilling was facilitated by technological improvements, such as the replacement 

of the cable drill by the rotary drill.  The rotary drill was first applied to petroleum 1900, and was 

responsible for bringing in the Spindletop gusher of 1901.  In addition to advances in machinery, 

the application of petroleum geology was critical.  At the Columbia School of Mines, the 

curriculum included instruction in the drilling of artesian, brine and oil wells, while Charles F. 

Chandler, its dean and professor of applied chemistry, devised the flash-point test for kerosene, 

and was the foremost chemical consultant for the industry at the time.  During the 1880s and 

1890s several pioneer American geologists were employed as consultants by oil operators to help 

locate deposits in the Appalachian fields (Williamson et al 1963, p. 441). 

The major breakthroughs for petroleum geology came in the two decades after the turn of 

the century.  At least forty professional geologists and geological engineers were employed in 

California between 1900 and 1911, probably more than in any other oil region of the world at the 

time.  Working with reliable field data published by the U.S. Geological Survey, these early 
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graduates of the University of California and Stanford were influential in popularizing the 

anticlinal theory of the structure of oil-bearing strata.  While the major elements of the theory 

had been worked out before 1900, the discovery in 1911 of the rich Cushing pool in Oklahoma 

dramatically demonstrated that anticlines were favorable places to find oil. In 1914 the 

Oklahoma Geological Survey published a structure-contour map of the Cushing field clearly 

indicating that the line separating oil from water was parallel to the surface structure contours.  

For the next 15 years most new crude discoveries were based on the surface mapping of 

anticlines. Prior to the 1920s, oil development outside of the US and Canada was almost entirely 

based on surface seepage.  Because of the absence of detailed structural maps, major potential 

fields in other parts of the world had been passed over (Owen 1975, p. 437). 

It was not geology but this investment in geological knowledge that explains the long 

American domination of world oil production (Figure 2). Other producing centers eventually 

emerged, most notably in the Middle East, which collectively passed the United States in 1960.  

The rich oil potential of the Middle East had long been suspected, but its exploitation was 

delayed by political turmoil and international rivalries.  As late as 1948, estimated reserves in 

North America and the Middle East were closely matched.  By the 1980s, total world reserves 

surpassed anything dreamed of in 1948. The Middle East held by far the largest share, but oil 

reserves in virtually every other continent have come to surpass those of North America.  To 

some extent this trend towards globalization reflects the many years of depletion of the US stock.  

But the more important influence has been the spread of exploration around the world, using 

advanced science-based techniques, and with drilling capabilities that make even deep offshore 

wells commercially viable.  If all the oil extracted in the US since 1859 were put back in the 

ground, North America would still be a minor player in the world oil production picture today. 

Oil and Economic Development 

The historical American specialization in petroleum was thus not primarily a matter of 

endowment but of learning.  One might well question, however, just what contribution this 

historical path has made to American economic development in general.  Many modern analysts 

believe that the advent of petroleum has led to economic deterioration if not ruin for “petro-

states” such as Venezuela (e.g., Karl 1997).  Does the extended American love affair with oil 

have any lessons to offer on this score? 
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The discoveries of oil in the San Joaquin Valley, at Signal Hill, Santa Fe Springs and 

Huntington Beach did not bring economic ruin to southern California (Rhode 1990).  Before 

1900, California was a remote, peripheral economy. Between 1900 and 1930, California (not 

Texas) became the leading oil state in the nation, and the result was a “sudden awakening” of the 

regional economy.  Spurred not just by jobs in oil but also by the dramatic fall in the cost of 

energy, California’s share of national income nearly doubled; contrary to Dutch disease models, 

the size of the state’s manufacturing sector quadrupled.  One clear lesson from California: do not 

restrict the indicators of progress to per capita income.  With the rush of population, California’s 

per capita income continued its slow downward convergence toward the national average.  But 

the state was launched on its modern course of leadership in technology and innovation. 

The transition from coal to oil entailed learning of many kinds, as California became the 

world’s first oil-fueled economy. Potential users had to “learn to burn” the new fuel, convert 

burners and establish fuel supply networks.  The Southern Pacific Railroad began using fuel oil 

on a permanent basis after 1895, and switched over completely after 1900.  The state’s electric 

utilities and sugar refining led the way, as virtually all of the large fuel consumers switched. 

With oil came a commitment to the gasoline-powered automobile, as California came to 

symbolize the high-mobility American lifestyle of the twentieth century.  Although opinions are 

undoubtedly divided about the value of this lifestyle for humanity, one cannot deny that the 

institutions of higher learning that petroleum geology helped to put on the map – Berkeley and 

Stanford to name two – have evolved into world-class research universities. 

The developmental contribution of oil was not limited to California.  With the rise of 

petrochemicals in the 1920s, petroleum was instrumental in the transition of US manufacturing 

from traditional mass production to science-based technologies.  Prior to 1920, there was little 

contact between oil companies and the chemical industry.  The rise of the US to world stature in 

chemicals was associated with a shift of the feedstock from coal tar to petroleum.  Working in 

close partnership with M.I.T., New Jersey Standard’s research organization in Baton Rouge, 

Louisiana, produced such important process innovations as hydroforming, fluid flex coking, and 

fluid catalytic cracking.  As the chemical engineer Peter Spitz has written: “regardless of the fact 

that Europe’s chemical industry was for a long time more advanced than that in the United 

States, the future of organic chemicals was going to be related to petroleum, not coal, as soon as 
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the companies such as Union Carbide, Standard Oil (New Jersey), Shell, and Dow turned their 

attention to the production of petrochemicals” (Spitz 1988, p. xiii).  Progress in petrochemicals is 

an example of new technology built on a resource-based heritage.   

The Case of Norway* 

The reader may accept this analysis as history, and yet protest that it has little relevance 

for the newer oil-producing nations of the world.  How could such newcomers expect to 

contribute to what is now an extremely advanced science-based world petroleum technology?  In 

rebuttal, consider the example of Norway, in which the first commercial discoveries of oil 

occurred only in 1969.  In many ways the Norwegian experience parallels that of California.  

Though not poor by world standards, Norway in the 1960s was remote and structurally 

underdeveloped.  Yet in fairly short order, the country was able to reorient its traditional 

engineering skills from shipbuilding, to become a full partner in the adaptation of oil exploration 

and drilling technologies to Norwegian conditions.  Virtually from the start, negotiations with 

international oil companies emphasized the transfer of competence and control to Norway 

(Anderson 1993, pp. 98-100). With the establishment of a state-owned company (Statoil) in 

1973, and investment in the training of petroleum engineers at the Norwegian Technical 

University and Rogaland Regional College, “recipient competence” was transformed into 

“participant competence,” making it possible to speak of an independent Norwegian oil industry.   

The Norwegian industry became expert at producing deepwater drilling platforms; 

initially designed to overcome immediate production bottlenecks, the platforms came to be 

export goods, as they proved useful for offshore drilling in other parts of the world.  A distinctive 

approach to exploration developed at the University of Oslo’s Department of Geology, focusing 

on the properties of different types of sandstone as reservoir rock and the flow of water and oil in 

sediment basins, has come to be known as the “Norwegian school of thought” regarding oil 

exploration.   As a result, forecasts of impending depletion have been repeatedly overturned and 

reserve estimates adjusted upward (Anderson 1993, p. 159, Noreng 2002, pp. 213-214).   In 

effect, these advances in technology and in the infrastructure of knowledge have extended the 

quantity of Norway’s petroleum reserves, and they have allowed Norwegians to participate in the 

process as well-paid professionals, not just as passive recipients of windfall economic rents.
                                                 
*  This section draws upon unpublished research by Ole Andreas Engen, Odd Einar Olsen and Martin Gjelsvik if the 
Rogaland Research Institute in Stavanger, Norway. 
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The Case of Venezuela 

 Granted, Norway sets a high standard for national administrative competence and 

responsible democratic government, “the complete antithesis of Venezuela” according to Karl 

(1997, p. 217). Oil-rich Venezuela, on the other hand, is one of the world’s “most tremendous 

development failures” (Rodriguez and Sachs 1999, p, 277). After a strong performance from the 

1920s to the 1970s, overall economic growth in Venezuela has been negative for twenty years or 

more.  This dismal performance certainly shows that a favorable mineral endowment is no 

guarantee of sustained economic progress.  But what exactly went wrong in Venezuela? 

 Rodriguez and Sachs (1999) believe that the problem is that natural resource industries 

“which rely on exhaustible factors of production, cannot expand at the same rate as other 

industries” (p. 278).  They characterize the decline in Venezuelan oil exports per capita as a 

“simple depletion of a natural resource” (p. 284).  But this interpretation is untenable.  Despite 

the intra-governmental conflict described by Karl, Venezuela’s state-owned oil development 

agency (PDVSA) has had considerable success in developing technologies appropriate for the 

unusual concentration of heavy oil in the Orinoco Belt.  Country-specific advances in heavy-oil 

technology led to a significant upward jump in reported Venezuelan reserves beginning in the 

1980s, and the level of reserves has been rising since then.  Aided by collaborative research 

agreements with BO Petroleum (a company with Canadian experience in heavy oil), PDVSA 

developed a new fuel (orimulsion) for use by power utilities and heavy industry.  Orimulsion has 

favorable market prospects, because it has a potential for gasification, can be used in a combined 

fuel cycle, and is environmentally friendly (Brossard 1993, pp. 170-177).   

 Nor can the growth implosion be traced to Dutch-disease distortions, or unfavorable 

externalities associated with oil.  As Ricardo Hausman points out in a persuasive critique, 

“Venezuela’s growth collapse took place after 60 years of expansion, fueled by oil.  If oil 

explains slow growth, what explains the previous fast growth? Moreover, the growth collapse 

occurred when oil revenues were declining, so that the Dutch disease should ave operated in 

reverse, facilitating the growth of output in nonoil tradables: it did not happen” (2003, p. 246). 

 Hausman shows that the decline in the nonoil Venezuelan economy is traceable to a 

massive rise in real interest rates, dating from the country’s loss of bond rating in the wake of its 
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1983 default.  He attributes the subsequent continuation of low bond ratings to “distributive 

conflict surrounding the allocation of the decline in oil revenues” (264). 

 Unquestionably, this diagnosis of Venezuela’s growth implosion draws upon and perhaps 

thereby confirms some of the components of some of the critiques of resource-based 

development. Excessive reliance on a single commodity for export earnings is unwise, especially 

if the market in question is volatile and if it provides the major source of government revenues. 

As economists have long advised, it is imprudent for governments to make major spending 

commitments during periods of rapid revenue growth, as though this growth could be 

extrapolated into the indefinite future.  In such a situation, adverse shocks are extremely stressful 

for any society, and in the case of Venezuela, it may have been more than the society could 

withstand (perhaps exposing underlying weaknesses in its political institutions). 

 But ill-considered extrapolation of oil and other mineral revenues during the 1970s was a 

pathology by no means unique to Venezuela.  Manzano and Rigobon (2001) show that the 

Sachs-Warner natural resource variable (primary exports divided by GDP, which they refer to as 

“resource abundance”) is highly correlated with the growth of debt in the 1970s.  Manzano and 

Rigobon argue that high resource prices led countries to borrow internationally, using their 

resource reserves as collateral (perhaps implicitly), leaving a debt overhang” when this asset 

bubble burst in the 1980s.  They show that the debt to GDP ratio for 1981 fully accounts for the 

apparent adverse effect of natural resources on growth rates during 1970-1990.  

 However one may assign responsibility for these events, the central point is that they 

should be understood as elements of a specific historical episode, not as recurring or inherent 

features of resource development.  Still less does it constitute evidence for the transience of oil 

wealth.  Much of the resource-curse literature simply assumes nonsustainability, making no 

distinction between demand-side fluctuations and the determinants of long-run supply.  
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Minerals and Economic Development: Modern Success Stories in Latin America 

 Venezuela shows that there are risks of policy failure associated with resource-based 

growth, but this does not justify a conclusion that resource development itself is mistaken as 

national policy.  Indeed, the essence of the policy failures described by Ascher (1999, Chapter 6) 

is not an excessive expansion of resource-based activity, but political interference with 

incentives to develop these resources more fully.  At times of fiscal crisis, cash-poor 

governments in Mexico and Venezuela chose to raid the investment budgets of state-owned oil 

companies, weakening their research and development programs.  Such knowledge and human 

capital expenditures should properly be seen as a positive part of infrastructure investment. The 

successes of well-managed resource-based regimes illustrate some of the possibilities. 

Having neglected their resources for generations, and having stifled incipient expansion 

in more recent decades through misguided state policies, many Latin American countries turned 

the corner in the 1990s.  The turnaround was fostered by reforms encouraging foreign investment 

in mining and increasing the security of mining investments – sometimes including privatization 

of mining companies, but also with strong roles for state geological agencies (World Bank 1996).  

Latin America is now the world’s fastest growing mining region, well ahead of Australia, 

Canada, Africa and the US in its share of spending on exploration (Engineering and Mining 

Journal, January 2002, p. 29). The business press regularly reports new discoveries, new 

investment projects to develop existing deposits, and new technological developments that 

extend the mining potential of particular areas.  The leaders in this burgeoning new minerals 

growth are Chile, Peru and Brazil.  Argentina has yet to experience major minerals success, but 

maintains a high level of exploration activity, knowing that “the country as a whole is 

underexplored compared to its neighbors” (Mining Journal, April 20, 2001). 

 

Chile 

 The resurgence of Chilean copper production in the first half of the twentieth century 

took place in the absence of strong domestic technical capacity.  According to Patricio Meller, 

“in the 1950s, one could have learned more about Chilean copper in foreign libraries than in 

Chilean ones…[Nor] was there training of Chilean engineers and technicians specializing in 

copper” (1991, p. 44).  It took thirty years (1925-1955) for the government to recognize the need 
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to build such a capacity and about ten years to train Chilean specialists (p. 45).  The 

enhancement of technical expertise did not prevent disastrous policy mis-steps, culminating in 

the nationalizations of 1971. But the new mining code of 1983 strengthened private rights in 

mining concessions, though the state-owned copper mining company (Codelco) retained more 

than half of the country’s copper production. 

Since 1990, Chile has been “Latin America’s star economy” (Economist, December 1, 

2001), growing at an average annual rate around eight percent. The mining industry has been 

central to this growth, accounting for 8.5 percent of GDP and 47 percent of all exports during the 

decade. Copper is still Chile’s most important mineral, but its expansion has not deterred 

diversification within the sector or within the economy more broadly.  Chile now also exports 

substantial quantities of potassium nitrate, sodium nitrate, lithium, iodine, and molybdenum. 

The Engineering and Mining Journal notes that “investment plans are…coming into the 

pipeline at a higher-than-average rate in Chile;” planned mine projects rose to US$10.7 billion in 

2001 (January 2002, pp. 29-30).  As the Mining Journal comments: “Without successful 

exploration, many such projects would not have come to fruition.”  The state mineral 

development company (Codelco) has been very active in exploration activity.  Typical reported 

projects include: $7 million “to continue delineating the Gaby Sur porphyry copper deposit 

located in Region II;” “Codelco plans to spend US$20 million during 2001 quantifying reserves 

at the Mina project in the north;” “Codelco was also active in a number of exploration joint 

ventures;” “Codelco is in talks to form a partnership with Ventanas, the copper smelter and 

refinery complex owned by another state body, Enami” (Mining Journal May 1, 2001).   The 

relationship between ore grade and reserve quantity is illustrated by reports such as the one 

stating that “estimated resources at Escondida, which include resources used to define ore 

reserves, have increased significantly due to the release for the first time of low grade ore which 

is below the current concentrator cut-off grade but above the economic cut-off grade” (ibid.).  

Investments in exploration and processing continue to expand for an array of other minerals, 

even as production of almost every Chilean mineral continues to rise.  In early 2002, Couer 

d’Alene Mines Corp. announced the discovery of high-grade gold and silver deposits on its 

Cerro Bayo property in southern Chile but noted that “only a small portion of the Cerro Bayo 

property has been explored” (Skillings Mining Review, February 2, 2002, p. 15). 
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Peru 

 Peruvian mining is considered the region’s “greatest success story.”  After the 

privatization program started in 1992, mining exports doubled to $3.01 billion by 1999. As of the 

end of 2001, Peru ranked second in the world in production of silver and tin, fourth in zinc and 

lead, seventh in copper and eighth in gold.  Mining Magazine reports: “There is a determination 

that the mining sector should play an even larger role in the economy and a number of legal 

instruments are now in place aimed at promoting foreign investment...As mining regimes go, 

Peru’s can be fairly described as possessing an enabling environment” (May 1, 2001). The 

president of Codelco, Juan Villarzu, “liken(s) the country to Chile in the early 1990s” (Mining 

Magazine, January 2002, p. 12). That present development is far below potential is confirmed by 

such reports as: “Iscaycruz is one of the world’s highest-grade zinc mines, but at present operates 

on only 1,000 ha of the 52,000 ha it holds in concessions” (ibid.). 

Yet Peru appears to be on its way to reaching this potential.  For instance, "Roque 

Benavides, chief executive of Compania de Minas Buenaventura, is forecasting that by 2008, 

output will have climbed to 1.38Mt for copper, 1.16 Mt for zinc, and 146 Mt for gold" (Mining 

Magazine January 2002, p. 6; increases relative to 2000 of 145, 28, and 11 percent, respectively).  

A US$3.2 billion project began production at Antamina in 2001 and is expected to yield 675 

million lbs. of copper over the first ten years (Mining Engineering December 2002, p. 21).  In 

Yanacocha, "exploration efforts (by Minera Yanacocha, Latin America's largest gold producer) 

indicated major copper sulfide deposits under the gold deposits…Yanacocha may someday 

become a major copper producer in addition to gold" (ibid., p. 21).  In May of 2002, Barrick 

Gold Corp. announced the discovery of an estimated 3.5 million ounces of gold at its Alta 

Chicama property in southern Peru (Skillings Mining Review May 4, 2002, p. 8).  Substantial 

investments in mineral processing facilities are also underway (Mining Engineering December 

2001, p. 21).   

 

Brazil 

 Brazil is the leading industrial nation of the region, though the share of the mining 

sector is low relative to its neighbors.  Following an intensive government investment program in 

prospecting, exploration and basic geologic research (highlighted by the Radar Survey of the 
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Amazon Region Project), mineral production grew at more then 10 percent per year in the 

1980s. Exploration was interrupted between 1988 and 1994, because of restrictions imposed by 

the Constitution of 1988 on foreign participation in mining.    These restrictions were lifted in 

1995, and the government mining company (CVRD) was privatized in 1997 (US Geological 

Survey 1999). Mineral exploration activities expanded significantly in the 1990s, increasing both 

production and Brazil’s reserves of most minerals. Currently Brazil produces more than 60 

mineral commodities and is the world’s largest exporter of iron ore. 

At present, Brazil has only one copper mine and imports substantial amounts of copper.  

Because of a number of major discoveries in the Carajas region in Para State, however, Brazil 

expects “to occupy a prominent position in world copper production beginning in the period 

2003-2005" (Mining Journal April 20, 2001).  Production capacity for bauxite, which has 

already risen dramatically over the past two decades, is expected to increase further, with 

Brazil’s largest bauxite producer planning to finish a $200US million expansion by the end of 

2002 (Mining Engineering, March 2002, p. 10). 

 
Australia 

The most striking success story is Australia.  Beginning in the 1960s, Australia witnessed 

a simultaneous resurgence of successful minerals search and economic growth.  Figure 3 

showcases a few of the dramatic increases in Australian minerals production.  Contrary to earlier 

fears, increased production has not diminished mineral reserves.  From 1989 to 1999, Australian 

mineral reserves expanded alongside production for all but one (bauxite) of the seven major 

minerals in Figure 3..  As the Mining Journal reports, "There have been 136 gold discoveries 

since 1970…In other mineral sectors and against a background of difficult commodity prices, 

(more) recent Australian successes include an entirely new mineral sands province, the Murray 

Basin; the development of lateritic nickel deposits such as Murrin Murrin, Cawse and Bulong, 

and sulphide nickel deposits such as Black Swan, Cosmos and RAV 8; and major zinc and 

copper discoveries such as Century, Cannington and Ernst Henry" (April 5, 2002, p. 244).  The 

Australian minerals sector has created much more wealth than it has depleted; the real value of 

Australia's subsoil assets increased by almost 150 percent from 1990 to 1998, while the real 

value of the mining sector's capital stock increased by 40 percent over the same period, almost 

twice the rate for all other industries (Stoeckel 1999, pp. 18-19). 
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The case of Australia demonstrates that expansion of a country's minerals base can go 

hand in hand with economic growth and technological progress.  The Australian minerals 

sector's share of GDP expanded through the mid-1980s (Figure 3) as Australia reversed more 

than a century of relatively slow GDP growth.  New and old Australian industries also benefited. 

Manufacturing industries with important connections to minerals include: metal and steel 

products, autos, industrial equipment, petroleum products, ships, and chemicals.   

The Australian minerals sector is knowledge intensive.  In the past ten years, income 

from Australian intellectual property in mining has grown from $40 million a year to $1.9 billion 

a year, a larger sum than that earned by the wine export industry.  R&D expenditures by the 

mining sector accounted for almost 20 percent of R&D expenditure by all industries in 1995-96 

(Stoeckel 1999, p. 17), a disproportionate contribution relative to the sector's share of GDP.  The 

mining sector's contributions to Australia's human capital are also relatively large.  From July to 

September of 1996, the mining sector spent an average of $896 per employee on training, while 

the average for all industries was $185; over the same period, the proportion of payroll spent on 

training was 5.8 percent for mining and 2.5 percent for all industries (Stoeckel 1999, p. 18).   

As Australia’s mineral production has flourished since the abandonment of the passive 

conservation policies of the 1930s, the country has emerged as one of the world’s leaders in 

mineral exploration and development technology.  "Australia leads the world in mining software 

and now supplies 60 to 70 per cent of mining software worldwide" (Stoeckel 1999, p. 25).  

Australia's unique geology calls for unique science; for example, World Geoscience, an 

Australian company, is a leader in the development of airborne geophysical survey techniques.  

Industry leaders have put forward an ambitious technological vision known as the “glass Earth 

project,” a complex of six new technologies that would allow analysts to peer into the top 

kilometer of the Earth’s crust to locate valuable mineral deposits.  One executive stated: “The 

discovery of another Mt. Isa or Broken Hill – and we think they are out there – would lift us to 

fifth [place in the world]” (Cave 2001).  Yet many of the technologies coming out of Australia's 

particular geological conditions find applications in other parts of the world and "Australian 

mining companies search the world for minerals, (with) the bigger Australian companies now 

spending 30-40 per cent of their exploration budgets offshore" (Stoeckel 1999, p. 31).   
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The Development Potential of Minerals 

 

 Economists have known for some time that Harold Hotelling’s theoretical prediction, that 

the scarcity and relative prices of nonrenewable resources would rise inexorably over time, has 

not been borne out by the facts of history.  Jeffrey Krautkraemer’s recent comprehensive survey 

of the evidence reaches the following conclusions:  

 For the most part, the implications of this basic Hotelling model have not been consistent 
with empirical studies of nonrenewable resource prices and in situ values.  There has not 
been a persistent increase in nonrenewable resource prices over the past 125 years… 
Economic indicators of nonrenewable resource scarcity do not provide evidence that 
nonrenewable resources are becoming significantly more scarce.  Instead, they suggest 
that other factors of nonrenewable resource supply, particularly the discovery of new 
deposits, technological progress in extraction technology, and the development of 
resource substitutes, have mitigated the scarcity effect of depleting existing deposits. 
(1998, pp. 2066, 2091). 
 

But Krautkramer’s analysis, like virtually all economic writing on this subject (cf. Tltion 2003), 

is conducted at the level of the entire market supply for a commodity, which is to say the world 

as a whole. Although this may be appropriate for testing the Hotelling thesis, these conclusions 

leave open the possibility that the specter of depletion has only been staved off at the global level 

– i.e., in large part through the opening up of new or previously underexplored territories.  What 

has not been appreciated is that the process of ongoing renewal of nonrenewable resources has 

operated within individual countries as well as across continents.   

Table 4 displays average annual growth rates of mine production for eight major minerals 

in six relatively well-managed mineral-producing nations.   The strong positive growth rates for 

the world as a whole in the reinforce Krautkraemer’s point.  But equally striking is the vigorous 

production growth of nearly every mineral in nearly every country.  The one notable exception 

(among the minerals displayed in Table 4) is lead mining, for which production has declined in 

the world as a whole.  This decline is presumably related to lead’s unique position as a 

recyclable; two-thirds of consumption consists of scrap recovery, thus reducing demand for the 

newly mined mineral.  For a true mineral economic success story like Australia, however, 

production growth has continued for every one of the minerals on the list, lead included.  For the 

group taken as a whole, it is remarkable that production has expanded country by country across 

a twenty-year period during which real minerals prices have drifted downward. 
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Many economists are aware of the global historical evidence but remain in the grip of 

the intuition that because minerals are nonrenewable, eventually they must grow scarcer -- these 

forms of advance serve only to “mitigate” the Hotelling forecast, so that “finite availability…has 

not yet led to increasing economic scarcity of nonrenewable resources” (Krautkraemer 1998, p. 

2103, emphasis added). But if examples of successful country-specific mineral development are 

so numerous, the question arises whether common underlying processes in such countries may 

exist, and this possibility in turn leads to reconsideration of the sustainability of nonrenewable 

resources as a base for economic development. 

Certainly we are not qualified to make pronouncements about the geographical 

distribution of minerals in the earth’s crust, much less within particular countries.  But a cursory 

reading of the geological literature on mineral stocks convinces us that most geologists would 

not be surprised by the patterns we have described.  DeVerle P. Harris, for example, notes in a 

recent survey article that “ore deposits of a specific kind, e.g., massive sulfide copper, are created 

from common crustal material by earth processes that are characteristic of that deposit type.  

Consequently, such deposits exhibit some common characteristics irrespective of where they 

occur, e.g., in the African or North American continents” (1993, p. 1035). 

 Among these characteristics are deposit size; average grade; intradeposit grade variation; 

and depth to deposit.  Mapping the statistical properties of these distributions is now the object of 

sophisticated, large-scale computer modeling, such as the Minerals Availability System (MAS) 

of the U.S. Bureau of Mines.  The broad picture that emerges from such investigations is that the 

underlying elasticities of mineral supply are very high with respect to any number of physical 

and economic margins.  The more that is learned about the effects of deposit features on 

“discoverability,” and the information gain that occurs from continued exploration within 

regions, the more it is evident that the potential for expansion of the resource base – the 

economically meaningful concept of mineral resource endowment – is vast if not unlimited. 

 In the important case of copper, an example of a geophysical relationship that would 

underlie open-ended progress is the proposition that there is an inverse relationship between the 

average grade of deposits and the mineral tonnage available at that grade. Harris and Skinner 

report that a belief in such a relationship is strongly held among specialists (1982, pp. 312-313).  

Although Harris (1993) suggests that the available statistical evidence may suffer from sampling 
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and truncation biases (i.e., the contamination of geologic data by economics), it nonetheless 

seems that the long-term decline in the average yield of copper ore (depicted in Table 2) has 

continued through the twentieth century, supporting an ongoing increase in copper production, 

even while the real price of the mineral has fallen.  If similar relationships are common, it is not 

difficult to imagine a future in which extension of the minerals frontier can continue indefinitely. 

 From the standpoint of development policy, a crucial aspect of the process is the role of 

country-specific knowledge.  Although the deep scientific bases for progress in minerals are 

undoubtedly global, it is in the nature of geology that location-specific knowledge continues to 

be important.  Sometimes this has to do with unique features of the terrain, affecting the 

challenge of extraction.  At other times, heterogeneity in the mineral itself calls for country-

specific investments in the technologies of manufacture and consumption.  The petroleum 

industries of Norway and Venezuela, respectively, provide examples of these two possibilities.  

More generally, in virtually all the countries we have examined, the public-good aspects of the 

infrastructure of geologic knowledge have justified state-sponsored or subsidized exploration 

activities, often with significant payoffs to provincial or national economies. 

 Perhaps the clearest recent example of the importance of country-specific knowledge 

comes from the United States, a country that has extracted more minerals for a longer time 

period than any other nation on earth, and yet is still among the world’s mining leaders.  Tilton 

and Landsberg (1999) recount the technological breakthroughs that revived American copper 

mining in the 1980s and 1990s, after it had been pronounced dead by observers in the mid 1980s.  

The primary vehicle was not new discoveries and newly opened mines, but development and 

application of the solvent extraction-electrowinnowing (SX-EW) process, which separates the 

mineral from the ore more effectively and is especially useful for the leaching of mine dumps 

from past operations.  Although this technology will ultimately become global, its near-term 

impact has been most significant in countries like the US, which have substantial accumulated 

waste piles of oxide copper minerals, and where copper deposits are located largely in arid 

regions.  The SX-EW process is also best suited for countries with stringent environmental 

regulations, which require recovery of sulfur emissions from smelting operations, thus providing 

a low-cost source of sulfuric acid for the SX-EW process.  Thus there is a symbiotic relationship 

between the new SX-EW process and traditional technology (ibid, p. 131). 
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Conclusion 

Contrary to long-entrenched intuition, so-called “nonrenewables” can be progressively 

extended through exploration, technological progress, and investments in appropriate knowledge. 

We suggest that such processes operate within countries as well as for the world as a whole.  The 

countries we have reviewed are by no means representative, but they are far from homogeneous, 

and together they refute the allegation that resource-based development is “cursed.”   

 The resource price escalation of the 1970s did indeed constitute an exogenous 

unanticipated windfall boom from the perspective of many minerals-based economies. It is 

obvious in retrospect that those boom times were destined to end, and perhaps one can argue that 

even then, countries (and lenders) should have been more aware of the ephemeral character of 

the boom and planned accordingly.  Without doubt, many countries made poor use of these one-

time gains. Nothing in this paper offers any guarantees against corruption, rent-seeking, and 

mismanagement of mineral and other natural resources.  But the experience of the 1970s stands 

in marked contrast to the 1990s, when mineral production steadily expanded through purposeful 

exploration and ongoing advances in the technologies of search, extraction, refining, and 

utilization; in other words, by a process of learning.  It would be a major error to take the decade 

of the 1970s as the prototype for minerals-based development. 

 What is at stake in this debate?  The resource curse hypothesis seems anomalous as 

development economics, since on the surface it has no clear policy implication, but stands as a 

wistful prophecy: countries afflicted with the “original sin” of resource endowments have poor 

growth prospects.  The danger of such ostensibly neutral ruminations, however, is that in practice 

they may influence sectoral policies.  Minerals themselves are not to blame for problems of rent-

seeking and corruption. Instead, it is largely the manner in which policy makers and businesses 

view minerals that determines the outcome. If minerals are conceived as fixed stocks, and 

mineral abundance as a “windfall” unconnected to past investment, then the problem becomes 

one of divvying up the bounty rather creating more bounty. Minerals are not a curse at all in the 

sense of inevitability; the curse, where it exists, is self-fulfilling.   Studies have shown that 

insecure ownership has adverse effects on production and exploration in minerals as it does in 

other industries (Bohn and Deacon 2000).   
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Table 1: U.S. Share of World Totals (%) 

  
  
 1913 output 1989 reserves 1989 reserves plus 

cumulative 1913-1989 
production 

1989 reserve base plus 
cumulative 1913-1989 
production 

Petroleum 65 3.0 19.8  
Copper 56 16.4 19.9 18.5 
Phosphate 43 9.8 36.3 15.4 
Coal 39 23.0 23.3  
Bauxite 37 0.2 0.5 0.5 
Zinc 37 13.9 14.0 15.6 
Iron ore 36 10.5 11.6 7.4 
Lead 34 15.7 18.1 18.8 
Gold 20 11.5 8.6 8.4 
Silver 30 11.7 16.3 17.6 

 
 
Sources: David and Wright (1997), using data from: Minerals Yearbook; The Mineral Industry--Its 

Statistics, Technology and Trade (supplement to Engineering and Mining Journal); American 

Petroleum Institute, Basic Petroleum Data Book, Vol. X (September 1990); National Coal 

Association, International Coal; COE/EIA, Annual Prospects for World Coal Trade (1991). 
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Table 2: Latin American1 Share of World Totals (%) 

   
 
 1913 output 1989 reserves 1989 reserves plus 

cumulative 1913-1989 
production 

1989 reserve base plus 
cumulative 1913-1989 
production 

Petroleum 7.4 13.4 21.8  
Copper 12.6 32.1 26.5 28.9 
Phosphate 0.0 5.2   
Coal 0.2 1.1 1.0  
Bauxite 0.0 27.2 29.4 30.0 
Zinc 0.6 11.1 12.1 10.2 
Iron ore 0.02 12.5 12.0 9.7 
Lead 4.8 10.7 13.2 11.8 
Gold 5.6 4.4 4.4 4.3 
Silver 38.6 30.3 30.3 27.8 

1South America plus Mexico and Caribbean. 
 
Sources: David and Wright (1997), using data from: Minerals Yearbook; The Mineral Industry--Its 

Statistics, Technology and Trade (supplement to Engineering and Mining Journal); American Petroleum 

Institute, Basic Petroleum Data Book, Vol. X (September 1990); National Coal Association, International 

Coal; COE/EIA, Annual Prospects for World Coal Trade (1991); C. J. Schmitz (1979), World Non-

Ferrous Metal Production and Prices 1700-1976, London: Frank Cass; B. R. Mitchell (1983), 

International Historical Statistics: The Americas and Australia, Detroit, MI: Gale Research Co. 
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Table 3: Australian Share of World Totals (%) 

   
 
 1913 output 1989 reserves 1989 reserves plus 

cumulative 1913-1989 
production 

1989 reserve base plus 
cumulative 1913-1989 
production 

Copper 4.7 5.1 3.8 5.5 
Coal 0.9 8.6 8.9  
Bauxite 0.0 20.2 20.5 20.5 
Zinc 21.8 13.2 11.1 13.5 
Iron ore 0.06 9.9 9.1 14.5 
Lead 21.8 20.0 15.3 16.8 
Gold 9.9 4.3 3.4 3.6 
Silver 7.5 10.0 7.5 7.8 

 
 
Sources: David and Wright (1997), using data from: Minerals Yearbook; The Mineral Industry--Its 

Statistics, Technology and Trade (supplement to Engineering and Mining Journal); American Petroleum 

Institute, Basic Petroleum Data Book, Vol. X (September 1990); National Coal Association, International 

Coal; COE/EIA, Annual Prospects for World Coal Trade (1991); C. J. Schmitz (1979), World Non-

Ferrous Metal Production and Prices 1700-1976, London: Frank Cass; B. R. Mitchell (1983), 

International Historical Statistics: The Americas and Australia, Detroit, MI: Gale Research Co. 
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Table 4: Average Annual Growth Rates of Mine Production for Selected Mineral/Country Pairs,  
     1978-2001 

 
 

 Australia Brazil Canada Chile Peru Mexico WORLD*
Bauxite 3.41 7.72     2.15 
Cobalt 5.30  6.43    -0.17 
Copper 5.77 16.89 -0.22 6.93 1.96 4.81 2.80 
Gold 14.04 4.45 5.14 9.49 16.39 9.02 2.43 
Lead 2.08 -6.32 -3.54 -0.67 1.83 -0.63 -1.20 
Nickel 3.03 8.93 1.69    2.56 
Silver 3.73 5.47 1.03 8.12 2.90 2.61 2.60 
Zinc 4.17 2.98 -0.62 13.17 2.96 2.63 1.07 

 
 

Note: Growth rates are coefficients in a log-linear trend regression 
Brazilian copper production in 1979 set equal to that of 1978 (100 metric tons). 
 
*1978-2000 

 
Sources: Non-Ferrous Metals Yearbooks (selected years from 1978 to 1998) and Minerals 
Yearbook (2001). 
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Figure 1: Copper mine production, United States and Chile, and real U.S. price of copper, 
1845-1976
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Source: C. J. Schmitz (1979), World Non-Ferrous Metal Production and Prices, 1700-1976, 
London: Frank Cass, pp. 63-78 and 270-72. 
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Figure 2: Crude oil production by area and real US price of oil, 1857-1998
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Sources: Production: American Petroleum Institute, Basic Petroleum Data Book (1999), Section 

VI, Table 1: “World Crude Oil Production by Area (Thousands of Barrels);” and Section VI, Table 10: 

“Historical World Crude Oil Production by Area: 1857-1946 (Thousands of Barrels).”  Prices:1859-1931: 

U.S. Bureau of Mines, Mineral Resources of the United States; 1932-1976: Minerals Yearbooks; 1977-

1995: U.S. Energy Information Administration, Monthly Energy Review.  Price deflators: Bureau of Labor 

Statistics and Paul David and Peter Solar, "A Bicentenary Contribution to the History of the Cost of 

Living in America," Research in Economic History, vol. 2 (1977), pp. 1-80, Table 1, pp. 16-17. 
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Sources: Schmitz (1979) and American Bureau of Metal 

Statistics, Non-Ferrous Metal Yearbook, various years. 
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