

1

Chapter 8: Basic Formal Ontology at Work (DRAFT: This chapter has evolved and is different in the book.)

In this chapter, after brief descriptions of the basic ideas associated with an ontology-building

tool called Protégé and the Web Ontology Language (OWL), we provide a few examples of

domain ontologies that utilize BFO as an upper-level ontology, complete with Protégé

screenshots. We do this in order to give the reader an opportunity to see how the principles and

recommendations from the previous chapters have been applied to actual domains. Numerous

ontologies, projects, institutions, and groups have applied the best practices described in this

book when constructing and developing their domain ontologies, as table 8.1 shows.1

Table 8.1: Ontologies, Projects, Institutions, and Groups Utilizing BFO

Ontologies Utilizing BFO

ACGT Master Ontology Alzheimer Disease Ontology Adverse Event Ontology

Adverse Event Reporting Ontology AFO Foundational Ontology Actionable Intelligence Retrieval

System

Bank Ontology Beta Cell Genomics Application

Ontology

BioAssay Ontology

Bioinformatics Web Service

Ontology

Biological Collections Ontology Biomedical Ethics Ontology

Biomedical Grid Terminology BioTop BIRNLex

Blood Ontology Body Fluids Ontology Cancer Cell Ontology

Cancer Chemoprevention Ontology Cardiovascular Disease Ontology Cell Behavior Ontology

Cell Cycle Ontology Cell Expression, Localization,

Development and Anatomy Ontology

Cell Line Ontology

Cell Ontology Chemical Entities of Biological Interest CHRONIOUS Ontology Suite

Clusters of Orthologous Groups

Analysis Ontology

Cognitive Paradigm Ontology Common Anatomy Reference Ontology

Communication Standards Ontology Conceptual Model Ontology Coriell Cell Line Ontology

CPR Ontology Document Act Ontology Drug Interaction Ontology

Drug Ontology Drug-drug Interaction Ontology Earth Sciences Ontologies

Eagle-I Research Resource Ontology Email Ontology Emotion Ontology

Environment Ontology Epidemiology Ontology Evolution Ontology

Experimental Factor Ontology ExposÃ© Financial Report Ontology

Flybase Drosophila Ontology Fission Yeast Phenotype Ontology Foundational Model of Anatomy

Gastrointestinal Ontology Gene Regulation Ontology General Information Model

Health Data Ontology Trunk Human Interaction Network Ontology Human Physiology Simulation

Ontology

Infectious Disease Ontology Information Artifact Ontology Interdisciplinary Prostate Ontology

Project

Lipid Ontology Mental Disease Ontology Mental Functioning Ontology

Middle Layer Ontology for Clinical

Care

Military Ontology MIRO and IRbase

Model for Clinical Information Nanoparticle Ontology, Ontology for

Cancer Nanotechnology Research

NeuroPsychological Testing Ontology

Neuroscience Information

Framework

Neuroscience Information Framework

Standard

Neural Electromagnetic Ontologies

2

Ocular Disease Ontology OntoAlign++ Ontologized Information - BIobank

Ontology of Clinical Research Ontology for Biomedical Investigations Ontology for Drug Discovery

Investigations

Ontology for General Medical

Science

Ontology for Guiding Appropriate

Antibiotic Prescribing

Ontology for Newborn Screening and

Translational Research

Ontology for Mental Health and

Quality of Life

Ontology of Biobanking Administration Ontology for Parasite LifeCycle

Ontology for Rehabilitation

(Traumatic Brain Injury)

Ontology of Data Mining Ontology of Medically Related Social

Entities

Ontology of Vaccine Adverse Events Ontology-Based eXtensible Data Model Oral Health and Disease Ontology

Parasite Experiment Ontology Petrochemical Ontology Phenotypic Quality Ontology

Plant Ontology Population and Community Ontology Proper Name Ontology

Protein-Ligand Interaction Ontology Proteomics Data and Process Provenance

Ontology

Protein Ontology

RNA Ontology Saliva Ontology Semantic HER

Senselab Ontology Sequence Ontology Sleep Domain Ontology

Semanticscience Integrated Ontology Spatiotemporal Ontology for the

Administrative Units of Switzerland

Special Nuclear Materials Detection

Ontology

Subcellular Anatomy Ontology Time Event Ontology Translational Medicine Ontology

Universal Core Semantic Layer Vaccine Ontology Xenopus Anatomy Ontology

YAMATO yOWL Zebrafish Anatomical Ontology

Projects, Institutions, and Groups Utilizing BFO

AstraZeneca - Clinical Information

Science

Berkeley Bioinformatics Open-Source

Projects

Biomedical Knowledge Engineering

Lab at Seoul National University

Brain Operation Database CTSAconnect Darwin Core

Data-Tactics Corporation DOQS: Data-Oriented Quality Solutions DSpace at NTNUA

Dumontier Lab eagle-i Consortium Elsevier Smart Content Strategy

EuPathDB GoodOD HIGHFLEET

Influenza Research Database INRIA Lorraine Research Unit Kobe University, Graduate School of

Medicine, Department of Sociomedical

Informatics

Language and Computing Medical University Graz - Informatics,

Statistics and Documentation

National Center for Multi-Source

Information Fusion

Ontology Research Group Qualitative Spatiotemporal Unit Referent Tracking Unit

OntoCAT OntoCOG OntoMaton

openEHR Open PHACTS Praxis

REMINE Saitama University - Faculty of Liberal

Arts

Science Commons - Neurocommons

Skeletome University Hospital Erlangen –

Radiology

University of Arkansas, Biomedical

Informatics Medical Center

University of Augsburg, Computer

Science, Software Methodologies for

Systems

University of South Alabama School of

Computing, South Biomedical

Informatics Group

University of Texas Southwestern

Medical Center

University of Washington -

Structural Informatics Group

Virus Pathogen Resource VIVO

1. Protégé Ontology Editor and BFO

In this book, our focus lies in giving researchers the theoretical semantic tools—rather than the

actual computational algorithmic or implementational tools—for the construction of domain

ontologies with the help of BFO. That said, at present there exists an ontology-building tool

3

known as Protégé that generates the Web Ontology Language (OWL), which is one technique

that has been deployed for classification, search, and analytics concerning data and information

(more will be said about OWL below).2

Figure 8.1: BFO in Protégé

As noted on the website’s homepage (http://protege.stanford.edu/), Protégé is a “free,

open-source ontology editor and framework for building intelligent systems.” This software can

be downloaded quickly onto one’s computer, and contains tutorials and other information

relevant to the navigation of the various tabs, so that one can start composing a domain ontology

with the help of BFO that will contain information that is maximally interoperable with other

domain ontologies.3

http://protege.stanford.edu/

4

The latest OWL for BFO may always be found at BFO’s website (http://www.ifomis.org/

bfo/); simply import the OWL for BFO into Protégé, and start populating the subtypes of the

BFO categories and relations. At various points in this chapter, we will feature screenshots of

ontologies that have been produced using Protégé (version 4.3) such as the one in figure 8.1,

which is the homepage for BFO rendered in Protégé.

Figure 8.2: BFO Continuants and Occurrents in Protégé

Figure 8.2 contains a screenshot from Protégé of BFO entities that is consistent with our

recommendation from the fourth chapter that the terms in an ontology should be associated with

a unique alphanumeric identifier (UAI) as well as a unique human-readable definition. For

example, BFO_0000002 is the UAI for BFO’s continuant, and it is highlighted in the left panel,

while the name ‘continuant’ along with its definition can be found near the bottom of the right

panel. Notice in the screenshot in figure 8.1 that there is a tab called OntoGraf that is the third

http://www.ifomis.org/%20bfo/
http://www.ifomis.org/%20bfo/

5

one from the right at the top of the page. This feature in Protégé enables one to produce a visual

representation of the ontology’s categories and relationships, as can be seen in figure 8.3, which

highlights the BFO term ‘object aggregate’ and its parents in BFO’s taxonomy.

Figure 8.3: BFO’s ‘Object Aggregate’ Displayed in OntoGraf

2. The Web Ontology Language (OWL)

Protégé is a tool that enables one to produce ontologies in the Web Ontology Language (OWL).

OWL evolved from two sources that were combined in the early 2000s: the US Defense

Advanced Research Projects Agency (DARPA) Agent Markup Language (DAML) and the

European Union’s Ontology Inference Layer (OIL).4 By 2002 the DAML+OIL extension had

been approved for use by the World Wide Web Consortium (W3C), which is the main standards

organization for the Web (http://www.w3.org). The committee approving DAML+OIL was

comprised of now-well-known working ontologists such as Ian Horrocks, Peter Patel-Schneider,

Jim Hendler, Deb McGuinness, and the person credited with inventing the Web itself, Tim

Berners-Lee. In December of 2003 OWL was proposed as a recommendation by the W3C with

the following abstract, which still holds true today:

http://www.w3.org/

6

The OWL Web Ontology Language is designed for use by applications that need to

process the content of information instead of just presenting information to humans.

OWL facilitates greater machine interpretability of Web content than that supported by

XML, RDF, and RDF Schema (RDF-S) by providing additional vocabulary along with a

formal semantics. OWL has three increasingly expressive sublanguages: OWL Lite,

OWL DL, and OWL Full.5

In the next several sections, we will parse the main ideas in this abstract.

2.1 Hypertext Markup Language (HTML) and Extensible Markup Language (XML)

Hypertext Markup Language (HTML) was developed by Tim Berners-Lee in the late 1980s and

was designed to allow Web developers to display information in a way that is accessible to

humans for viewing via Web browsers. Figure 8.4 shows the several lines of the HTML behind

the first Web page that Berners-Lee built and published on line on August 6, 1991.6

Figure 8.4: Part of the HTML Behind the First Web Page

However, HTML’s primary limitation is that it does not provide much capability to

describe information in ways that facilitate the use of software programs to find or interpret it.

Thus, in 1998 the W3C recommended using the Extensible Markup Language (XML) that allows

information to be more accurately described utilizing tags that are machine-readable, machine-

interpretable, as well as human-interpretable. Put simply in the words of the members of W3C’s

7

XML Working Group: “XML is the universal format for structured documents and data on the

Web. It allows you to define your own mark-up formats.”7 Figure 8.5 contains two screenshots:

the left one is the first few lines of the HTML behind CNN’s website homepage; the right one is

XML related to a book catalogue. Notice that the tags in the XML—<author>, <title>, <genre>,

etc.—are more human-readable and understandable than the HTML with its <meta http-equiv>

kinds of tags.

Figure 8.5: Examples of HTML and XML

2.2 Resource Description Framework (RDF)

XML has a limited capability to describe the relationships between and among entities, however,

which prompted researchers to develop Resource Description Framework (RDF) on top of XML

in the late 1990s. RDF became a W3C recommendation in February of 1999.8 RDF is a language

based on the idea of modeling entities and relationships with a simple Subject-Predicate-Object

format known as a triple. Because RDF mimics the structure of human language this way, it

8

allows for a computational model of entities and relationships that has greater expressivity and

semanticity than can be found in XML alone.

Table 8.2: Examples of Triples Associated with RDF

 Subject Predicate Object

English sentence: “This CD... has as its artist... Bob Dylan.”

RDF rendering: cd Artist Bob Dylan

English sentence: “This CD... was produced in the country... USA.”

RDF rendering: cd Country USA

English sentence: “This CD... was produced by the company... Columbia.”

RDF rendering: cd Company Columbia

English sentence: “This CD... has as its price... 10.90.”

RDF rendering: cd Price 10.90

English sentence: “This CD... has as its year of production... 1985.”

RDF rendering: cd Year 1985

Figure 8.6: Example RDF and Graph

9

The resource part of RDF refers to the fact that the subject, predicate, and object of a

triple each has its own Uniform Resource Identifier (URI) that can be utilized to locate it on the

Web or in some database consisting of such URIs. Figure 8.6 shows some RDF and a graph

associated with a description of Bob Dylan’s 23rd studio album, Empire Burlesque, released by

Columbia Records in 1985. Here, the URI for the CD in this fake CD shop is http://www.recshop

.fake/cd#, while the triples in table 8.2 can be found in the RDF.

A machine can be set up to read the RDF, and someone who works at the fake CD shop

can query the database composed of triples—called a triplestore—and receive detailed

information about Dylan’s recording. Further, because the subjects, predicates, and objects are

tagged with URIs, this information can be placed on the Web so that anyone in the world could

query the fake CD shop’s inventory and database to learn about Dylan’s recording. A few

standard examples of RDF include:

- rdf:subject, referring to the subject of the RDF statement

- rdf:predicate, referring to the predicate of the RDF statement

- rdf:object, referring to the object of the RDF statement

- rdf:type, which is used to denote an instance of a class

- rdf:property, referring to the class of properties

- rdf:XMLLiteral, referring to the class of XML literal values

Notice also that the example RDF in figure 8.6 uses “xmlns…” in the second line of

code, which refers to the designation of an XML namespace followed by the standard syntax:

xmlns: prefix = “URI” (in this case, xmlns: rdf = “http://www.w3.org/1999…”). RDF is built on

XML—in fact, often one sees and hears researchers talking about “the RDF/XML code” working

behind the scenes of a certain ontology—and this is just one example of XML acting as a subset

language for RDF.9

10

2.3 Simple Protocol and RDF Query Language (SPARQL)

Just as tuples are queried with Structured (or Standard) Query Language (SQL) in a standard

relational database, so too, triples are queried in a triplestore database with Simple Protocol and

RDF Query Language (SPARQL). In early 2008 SPARQL 1.0 became an official W3C

recommendation, while SPARQL 1.1 became a W3C recommendation in March of 2013.10

A simple SPARQL query asking for all of the predicates in a triplestore database is formed like

this:

SELECT DISTINCT ?predicate

WHERE { ?subject ?predicate ?object }

ORDER BY ?predicate

Looking again at the RDF in figure 8.5 (reprinted below), we could write several SPARQL

queries about Bob Dylan’s album, Empire Burlesque. For example, a SPARQL query about the

company that produced the album looks like this:

SELECT ?company

WHERE { <http://www.recshop.fake/cd/Empire Burlesque> ?company. }

And the result of the query would be: Columbia. Replacing ?company in the query with ?country

would result in USA, while ?price would result in 10.90, ?year would result in 1985, and ?artist

would result in Bob Dylan.

11

2.4 RDF Schema (RDF-S)

Immediately after RDF began to be used in the early 1990s, RDF Schema (RDF-S) was

developed as a way to share RDF vocabulary as well as structure RDF resources (again, URIs)

so that they may be saved in a triplestore database and queried with SPARQL.11 A simple

SPARQL query asking for all of the subclasses of a class in a triplestore database is formed like

this:

SELECT ?subject ?object

WHERE { ?subject rdfs:subClassOf ?object }

Additionally, researchers began enriching the RDF by adding vocabulary and associated

semantics for classes, subclasses, properties, sub-properties, and instances/individuals/members.

A few standard examples of RDF-S include:

- rdfs:label, which refers to a string of text describing the resource

- rdfs:comment, referring to a potentially longer comment about the resource, also often

used as a place to put a definition or description

- rdfs:seeAlso, denoting links to other relevant resources

- rdfs:literal, referring to something that is a primitive data type

- rdfs:subClassOf, whereby the statement “X rdfs:subClassOf Y” means that (1) all

instances of class X are also an instance of class Y and (2) all the properties of Y are also

properties of X

- rdfs:domain, which refers to the set of all things to which some property applies

- rdfs:range, which refers to the set of values that the property can accept

By adding elements such as rdfs:subClassOf, rdfs:domain, rdfs:range, and others, RDF-S was

able to augment the expressivity of RDF.

Figure 8.7: Transitivity Written Into RDF-S

12

However, almost immediately after RDF-S was developed researchers began to see that it

was still too weak to describe entities and relationships in sufficient detail. Further, given that

many of these same researchers had been doing work in artificial intelligence, they wanted a

language that could enable machine reasoning.12 While RDF-S allows for the subClassOf

relationship, it does not enable transitivity, for example. Once it is stated in RDF-S that “X

rdfs:subClassOf Y” and “Y rdfs:subClassOf Z” there is no way for RDF-S to generate the

obvious statement that “X rdfs:subClassOf Z” other than by writing it into the code, as has been

done in figure 8.7.

Besides the transitive property of relationships, RDF-S is unable to account for inverse,

functional, symmetric, reflexive, and other basic properties of relationships that we mentioned in

the previous chapter. It is impossible to say in RDF-S, for example, that part_of is the inverse of

has_part or that adjacent_to is symmetrical.

 Further, although RDF-S added the ability to specify the domain and range of entities,

there is no ability to constrain or localize the domain or the range. For example, it is not possible

to designate that the range of has_offspring is person when applied to persons, but then is dog

when applied to dogs, cat when applied to cats, aardvarks when applied to aardvarks, and so on.

Also, there are no existence or cardinality constraints in RDF-S. One cannot say, for example,

that all instances of person have a mother that is also a person, or that persons have exactly two

parents.13

2.5 Basic Features of OWL

These problems with RDF-S—and others—prompted researchers to develop OWL, and many of

the same researchers working on the W3C recommendations for DAML+OIL also worked on the

recommendations for OWL that were published in the early to mid 2000s. A key feature of OWL

13

is its basis in Description Logic (DL)—specifically, SHOIN and SHOIN(D)—which emerged out

of the artificial intelligence community in the mid-1980s and has a formal semantics based on

mathematical set theory and first-order logic with its use of quantified variables.14 Thus, in

contradistinction to XML, RDF, and RDF-S, OWL allows for:

a. Universal (∀) quantification, called the owl:allValuesFrom restriction in OWL.

b. Existential (∃) quantification, utilizing the owl:someValuesFrom or owl:hasValue

restrictions in OWL.

c. Cardinality through owl:cardinality, owl:minCardinality, and owl:maxCardinality.

d. The Booleans and, or, and not, which in OWL are called owl:intersectionOf,

owl:unionOf, and owl:complementOf.

e. Properties to be added to relationships, to include inverse (owl:inverseOf), functional

(owl:FunctionalProperty), inverse functional (owl:InverseFunctionalProperty), transitive

(owl:TransitiveProperty), symmetric (owl:SymmetricProperty), asymmetric

(owl:AsymmetricProperty), reflexive (owl:ReflexiveProperty), and irreflexive

(owl:IrreflexiveProperty).

f. The inference that “X is_a Z” from “X is_a Y” and “Y is_a Z” for entities and

relationships through owl:subClassOf and owl:subPropertyOf, given that transitivity is a

property of the is_a relationship.

g. The specification of the equivalence of entities or relationships through

owl:equivalentClass and owl:equivalentProperty, as well as various kinds of differences

between and among entities or relationships through owl:differentFrom,

owl:AllDifferent, and owl:distinctMembers.

h. The specification of two types of properties: object properties and datatype properties. In

conjunction with the designation of a domain and range, an object property

(owl:ObjectProperty) specifies a relationship between two individuals (instances,

members)—as in, “wing part_of airplane” or “wrist adjacent_to hand”—while a datatype

property (owl:DatatypeProperty) specifies a relationship between an individual and a data

type value (integer, double, float, string, boolean, etc.); datatype properties in OWL are

often equivalent to the notion of attributes in some modeling languages, such as the

Unified Modeling Language (UML).

In order to generate automated inferences with OWL on some computational platform—

for example, the inference that “X is_a Z” from “X is_a Y” and “Y is_a Z”—one must use a

semantic reasoner (also sometimes referred to as an inference engine), which is a piece of

software that can infer logical consequences from a set of asserted facts or axioms. The reasoners

usually paired with OWL are set up to utilize first-order predicate logic to execute the inferences,

and perform standard DL checks of the ontology to: ensure that the ontology does not contain

14

any contradictory facts (consistency checking); make sure that the subclass relations between

every named class are computed to create the complete class hierarchy (basic classification

checking); determine whether it is possible for a class in the ontology to have any instances

(concept satisfiability checking); and compute the direct classes for any instance in the ontology

(realization checking).15 Protégé comes stock with a reasoner developed by Ian Horrocks called

Fast Classification of Terminologies++ (FaCT++), but many ontologists also download

reasoners such as Clark & Parsia’s Pellet Reasoner (http://clarkparsia.com/pellet/protege/), Franz

Inc.’s RacerPro Reasoner (http://franz.com/agraph/racer/), and Information Systems Group’s

HermiT OWL Reasoner (http://hermit-reasoner.com/) as plug-ins for Protégé.

2.6 OWL Lite, OWL DL, and OWL Full

OWL actually consists of three languages with increasing expressivity: OWL Lite, OWL DL,

and OWL Full, and each is a syntactic extension of its simpler predecessor. In fact, it is true that:

- Every legal OWL Lite ontology is a legal OWL DL ontology

- Every legal OWL DL ontology is a legal OWL Full ontology

- Every valid OWL Lite conclusion is a valid OWL DL conclusion

- Every valid OWL DL conclusion is a valid OWL Full conclusion

Another way of saying the above is that OWL Lite is a simplified subset of OWL DL, and OWL

DL is a subset of OWL Full. Also, all three types of OWL build on a restricted subset

of RDF/XML and RDF-S terms; thus, it was necessary to describe XML, RDF, and RDF-S

earlier in this chapter.16

All three of these languages allow one to describe classes, properties, and instances, but

the weaker languages have restrictions on what can be stated as well as how it may be stated.

OWL Lite has a subset of the capabilities mentioned in a. through h. a few paragraphs back, and

it is intended for users with simple modeling needs who wish to build a basic is_a taxonomy

with a few relations, and it only allows cardinality values of 0 or 1.

http://clarkparsia.com/pellet/protege/
http://franz.com/agraph/racer/
http://hermit-reasoner.com/

15

OWL DL seems to be the most widely used of the three OWL languages, and has all of

the capabilities mentioned in a. through h. According to the W3C in their February 10, 2004

recommendation:

OWL DL supports those users who want the maximum expressiveness while retaining

computational completeness (all conclusions are guaranteed to be computable) and

decidability (all computations will finish in finite time). OWL DL includes all OWL

language constructs, but they can be used only under certain restrictions (for example,

while a class may be a subclass of many classes, a class cannot be an instance of another

class). OWL DL is so named due to its correspondence with description logics, a field of

research that has studied the logics that form the formal foundation of OWL.17

One important feature of OWL DL is that it is computationally decidable—when a reasoner is

run over the OWL, it always terminates and returns a correct result. In other words, given its

basis in DL, this OWL language has an effective method for determining a Boolean true or false

value, as opposed to looping indefinitely. Decidablity was a core design criterion in the

development of OWL DL, and many of the syntactic restrictions that exist therein were

introduced to retain decidability.

Both OWL DL and OWL Lite require that every entity in the ontology either be a class,

object property, datatype property, or instance/individual; an entity cannot be treated as both a

class and an instance. Also, each class must be made explicit in the ontology. OWL Full has the

same features as OWL DL, but loosens these restrictions: in OWL Full an entity can be treated

as both a class and an instance, and there is no need explicitly to declare the type of each class in

the ontology.

Further, OWL Full is undecidable, so when a reasoner is run over it, it never returns

results, looping indefinitely. Thus, while even greater modeling expressivity is had in OWL

Full—one can engage in metamodeling, essentially, where RDF, RDF-S, and OWL constructs of

entities and relationships can be augmented or redefined—the tradeoff is that the standard DL

16

checks we mentioned above (consistency checking, basic classification checking, concept

satisfiability checking, and realization checking) are not possible. The authors of “A Practical

Guide to Building OWL Ontologies Using the Protégé-OWL Plugin and CO-ODE Tools: Edition

1.0” note simply: “The choice between OWL DL and OWL Full may be based upon whether it is

important to be able to carry out automated reasoning on the ontology or whether it is important

to be able to use highly expressive and powerful modeling facilities such as meta-classes (classes

of classes).”18

Figure 8.8: An Abridged Section of the OWL for the Infectious Disease Ontology

Figure 8.8 contains an abridged section of the OWL for the Infectious Disease Ontology,

which is a BFO-based ontology of entities that are considered relevant to the biomedical and

clinical aspects of infectious diseases. This domain ontology utilizes OWL DL, and the OWL,

RDF-S, RDF, and XML can be seen in the code. Figure 8.9 shows the OWL associated with

BFO’s ‘material entity,’ a subclass of ‘independent continuant.’

17

Figure 8.9: The OWL Associated with BFO’s Material Entity

2.7 OWL vs. Standard Relational Databases (RDBs)

There are three other points to make about ontologies built in OWL that can best be seen in

contradistinction to a standard Relational DataBase (RDB). First, in an RDB each

instance/individual must have a unique name; for example, the planet Venus must be referenced

using one name only, such as ‘The Morning Star,’ or a grandmother must be referenced using

only one name, such as ‘Grandma.’ In an OWL ontology, on the other hand, an instance can

have more than one name; Venus can be referenced as either ‘The Morning Star’ or ‘The

Evening Star,’ or both, and one’s grandmother can be referenced as ‘Grandma,’ ‘Granmommy’

‘Nana,’ all three, or any two of the three.

Second, the closed-world assumption (CWA) is usually (though, not necessarily) at work

in an RDB whereby what is not known to be true in the database is always considered false, as if

knowledge of the world were complete. In contradistinction, OWL ontologies utilize the open-

world assumption (OWA) whereby what is not known to be true is always considered to be

unknown—we are not sure if it is true or false—due to the fact that our knowledge of the world

is always incomplete. The way that the CWA is practically made manifest in data modeling can

18

be shown with the following simple example: if Fido, Rover, dog, and “Fido is an instance of a

dog” are specified in an RDB, and a SQL query asking, “Is Rover an instance of a dog?” is

formulated, the answer to the query would be a definite no, given the CWA. The OWA answer,

on the other hand, would be unknown—we are not sure if Rover is an instance of a dog or not.

Also, if you queried, “How many dogs are there?” the RDB would come back with a definite

answer of 1 and only 1, while the OWA answer would be at least 1, but possibly more.

Third, and most importantly, in an RDB the schema (with its attendant axioms and rules)

exists simply to constrain and structure the data, and it is not possible to run a reasoner over the

data. The relations in a database themselves do not (and cannot) have properties inherent in them

such as transitivity or symmetry. Given its basis in DL, however, OWL’s axioms and rules—to

include properties such as transitivity, symmetry, and the others we have already mentioned—

have been designed to facilitate the generation of implications and inferences. For example, in

OWL if you specify, “dog is_pet_of human” and create an individual named Rover as a member

of the class of dogs and an individual named Jim as a member of the class of humans, the

reasoner will infer that “Rover is_pet_of Jim.”19

2.8 OWL 2

Shortly after researchers started using OWL in the early 2000s, they began to realize its

limitations. One basic and prevalent problem with OWL is its inability to handle qualified

cardinality restrictions without workarounds that are unsound or incomplete. For example, while

it is easily to say in OWL that someone has four dogs as pets, it cannot be stated easily that

someone has four dogs as pets, two of which are male, or someone has four dogs as pets, one of

which is a poodle and the other three are boxers. Another problem has to do with restrictions

placed on data type values. For example, while it is possible to say that the barometric pressure

19

in a particular part of the atmosphere has a weight of 10 pounds, it is not possible to say that the

weight is between 10 and 12 pounds.20 These and several other problems prompted researchers

to develop OWL 2, which became a W3C recommendation in October of 2009.

In their document describing new features of OWL 2 from December of 2012, members

of the W3C note:

OWL 2 is a backwards-compatible revision to the Web Ontology Language (OWL).

OWL 2 adds several new constructs to extend the expressivity of OWL including those

for qualified cardinality restrictions, role chains, and expressive data predicates. OWL 2

also includes a new XML Serialization (targeted to the XML tool chain, i.e., XSLT,

schema languages, etc.) and a set of subsetting profiles with various desirable application

and computational properties.21

Thus, OWL 2 has addressed the two problems with OWL already mentioned, as well as many

others having to do with expressivity.

OWL 2 also defines three profiles that are language subsets with useful computational

properties and implementation capabilities: OWL 2 EL enables polynomial reasoning and is

ideal for large-scale ontologies; OWL 2 RL enables polynomial reasoning using rule-based

technologies that operate directly on RDF triples in triplestores; OWL 2 QL enables the querying

of RDBs through query rewriting of SQL and other RDB-querying languages, a very useful

feature for practical, working ontologists.

3. Ontology for General Medical Science (OGMS)

Having briefly described the basic features of Protégé and a few essential ideas associated with

OWL, we are now in a better position look at a few examples of domain ontologies that not only

utilize BFO as an upper-level ontology, but also have applied the principles and

recommendations found in this book during ontology development.

An inspection of the homepage for the Ontology for General Medical Science (OGMS)

reveals the influence of BFO and the recommendations from this book at work in the very

20

definition of the ontology, which utilizes the Aristotelian definitional structure of “An A is a B

that Cs”:

The Ontology for General Medical Science (OGMS) is an ontology of entities involved

in a clinical encounter. OGMS includes very general terms that are used across medical

disciplines, including: ‘disease,’ ‘disorder,’ ‘disease course,’ ‘diagnosis,’ ‘patient,’ and

‘healthcare provider.’ OGMS uses Basic Formal Ontology (BFO) as an upper-level

ontology. The scope of OGMS is restricted to humans, but many terms can be applied to

a variety of organisms. OGMS provides a formal theory of disease that can be further

elaborated by specific disease ontologies.22

The domain of clinical medicine is a difficult one from an ontological perspective. Clinical

terminology can be inconsistent, vague, and highly dependent on disciplinary context. OGMS is

designed to provide a formal, explicit, non-redundant, and unambiguous representation of

clinical terms that can begin to address these difficulties. OGMS is not a disease ontology;

rather, it is a reference ontology that provides a general theory of disease and formal definitions

for terms widely used in clinical encounters to describe different aspects of disease. It is being

used as a framework from which to build ontology modules for a range of different diseases and

disease families.

The OGMS utilizes the Aristotelian definitional structure for all of its entities, as in the

example shown in figure 8.10 of constitutional genetic disorder.

Figure 8.10: OGMS’s Constitutional Genetic Disorder

21

Figure 8.11 shows a graph of ‘constitutional genetic disorder’ as a child of ‘genetic disorder,’

which itself is a child of ‘disorder.’ In addition to the definition found in the annotations, the

unique alphanumeric identifier (UAI), OGMS_0000051, is found in the URI address. Figure 8.12

shows the OWL behind the designation of ‘constitutional genetic disorder’ as its own class.

Notice the RDF-S in line five that reads:

<rdfs:subClassOfrdf:resource="&obo;OGMS_0000047"/>.

OGMS_0000047 is the alphanumeric identifier for ‘genetic disorder,’ and so this line

communicates: “‘constitutional genetic disorder’ is a sub-class (sub-type, kind) of ‘genetic

disorder.’”

Figure 8.11: Graph of Constitutional Genetic Disorder with Alphanumeric Identifier

Figure 8.12: The OWL Behind the Categorization of Constitutional Genetic Disorder

22

Figure 8.13 shows how constitutional genetic disorder can ultimately be traced up BFO’s

taxonomy from ‘material entity’ to ‘independent continuant,’ which is a type of ‘continuant.’

OGMS also utilizes BFO’s Relation Ontology, which was described in the previous chapter.

Figure 8.14 places ‘disorder’ in the broader context of the core terms of the OGMS, BFO, and

the relations that hold between the entities denoted by them. These core terms are those that are

most generally used in clinical medicine—expressions that are also frequently conflated in

natural language contexts.

Figure 8.13: Constitutional Genetic Disorder as a Type of Independent Continuant

Figure 8.14: A Few Core Terms and Relations of the OGMS

23

The OGMS is built around a view of disease as a certain sort of power or potentiality—

roughly, the potentiality for signs and symptoms to be manifested—which exists in organisms by

virtue of physical disorders in the organism. These powers or potentialities are called

‘dispositions,’ and so the OGMS defends the general view according to which diseases are

special types of ‘disposition,’ which themselves can be traced up the is_a hierarchy to BFO

‘dependent continuant,’ as figure 8.15 shows.

Figure 8.15: Disease as a Sub-type of Dependent Continuant

The OGMS has been designed to serve as the framework for describing how specific

classes of physical disorders relate to abnormal dispositions manifesting themselves in

pathological processes that are recognized as signs or symptoms in clinical encounters and

documented in clinical information systems. Clinical application ontologies extend the OGMS

by refining the basic taxonomic and relational structure for a particular domain of interest.

Examples of OGMS extensions include the Infectious Disease Ontology (IDO), Sleep Domain

Ontology (SDO), Ontology of Medically Relevant Social Entities (OMRSE), Vital Sign

Ontology (VSO), Mental Disease Ontology (OPMQoL), Neurological Disease Ontology (ND),

24

Adverse Events Ontology (AEO), Ontology for Newborn Screening (ONSTR), Drug Ontology

(DrOn), Model for Clinical Information (MCI), Ocular Disease Ontology (ODO), Oral Health

and Disease Ontology, Mental Functioning Ontology, and Cardiovascular Disease Ontology.23

4. Infectious Disease Ontology (IDO)

As we mentioned above, one of the OGMS’s extensions is the Infectious Disease Ontology

(IDO), which is an ontology of over 500 universal entities generally relevant to both the

biomedical and clinical aspects of infectious diseases, as can be seen in the definition under the

comment in the screenshot of IDO’s homepage in Protégé in figure 8.16.

Figure 8.16: IDO’s Homepage in Protégé

IDO actually is a set of ontologies including a general IDO-Core along with sub-domain-specific

ontologies developed as extensions of the neutral core. The extensions include IDO-Brucellosis,

25

IDO-Dengue Fever, IDO-HIV, IDO-Infective Endocarditis, IDO-Influenza, IDO-Malaria, IDO-

Staphylococcus Aureus, IDO-Tuberculosis, and IDO-Vaccines.24

Figure 8.17 shows IDO’s ‘principal pathogen,’ an “infectious agent with a primary

infectious disposition.” The circle next to the UAI (IDO_0000530) contains a tribar, which

indicates that the term is equivalent to another term. Designating equivalency of terms is a

primary way that ontologists map terms between and among various domain ontologies. The

OBI prefix refers to the Ontology for Biomedical Investigations (OBI), an ontology for the

description of biological and clinical investigations that utilizes BFO as its upper-level ontology

as well (http://obi-ontology.org/page/Main_Page). Notice the logical statement that is five lines

under IDO_0000530 in the right pane of the screenshot in figure 8.17: OBI_0100026 is the UAI

for ‘organism,’ a material entity that is an individual living system—such as animal, plant,

bacteria, or virus—that is capable of replicating or reproducing, growth, and maintenance in the

right environment; IDO_0000407 is the UAI for ‘primary infectious disposition,’ an infectious

disposition to become part of a disorder in organisms that have intact defenses. Thus, in more-

understandable language this logical statement communicates, “‘principal pathogen’ is

equivalent to (the exact same thing as) an organism that has a primary infectious disposition.”

Figure 8.17: A Mapping of IDO’s Principal Pathogen

http://obi-ontology.org/page/Main_Page

26

 It is good practice to re-use authoritative terms from one domain ontology in another

domain ontology, and to map the terms as has been done in IDO with ‘principal pathogen.’ IDO

re-uses several terms from other authoritative domain ontologies, and figure 8.18 highlights the

OGMS’s ‘disorder’ (with the UAI of OGMS_0000045), while relevant UAIs from the Common

Anatomy Reference Ontology (CARO_0000000, ‘anatomical entity’), the Chemical Entities of

Biological Interest (CHEBI_23367, ‘molecular entity’), and the Gene Ontology (GO_0032991,

‘macromolecular complex’) are shown below it.

Figure 8.18: OGMS Reuses Other Authoritative Domain Ontology Terms

5. Information Artifact Ontology (IAO)

The Information Artifact Ontology (IAO) is an ontology of information entities based on BFO,

emerging out of the OBI’s desire to categorize digital entities and realizable information entities

correctly.25 It concerns the material bearers of information (books, disks, photographic prints,

traffic signs), information content entities themselves (ideas in a book, XML files on a disk,

27

charts and symbols on a photographic print, directions on a traffic sign), the processes that

produce or consume information content entities (writing, documenting, encoding, drawing,

client-server processing), and the relations between and among such entities (is_about, denotes,

is_rendering_of, is_translation_of). A foundational notion in the IAO is that information content

entities are related to other things by being “about” them or denoting them—they are types of

BFO ‘generically dependent continuant.’ The ideas, tables, and figures being communicated

right now in this book are examples of information content entities that denote other things such

as BFO, OWL, RDF, ontologies, and others, while the hard copy of the book in your hand or the

e-reader used to read or view the ideas, table, and figures are examples of the material bearers of

the information content entities.

Figure 8.19: Documenting in IAO

Figure 8.19 features the IAO’s ‘study design execution’ with its UAI, definition, and

classification ultimately as a type of BFO ‘processual entity.’ Note in the screenshot that the IAO

utilizes data properties, as is consistent with OWL’s best modeling practices. Figure 8.20 shows

28

one of IAO’s data properties, has_measurement_value, with its domain being IAO_0000032

(‘scalar measurement datum’) and its range being a float (a floating-point number). This relation

is functional, meaning that an individual scalar measurement datum has one, and only one,

floating measurement value.

Figure 8.20: IAO’s has_measurement_value Data Property

6. The Emotion Ontology (EO)

The Emotion Ontology (EO) is an ontology of over 850 universal entities associated with

affective phenomena such as emotions, moods, appraisals, and subjective feelings.26 Each aspect

of the ontology is rooted in BFO; for example, BFO ‘occurrent’ is utilized in the EO with

‘emotion occurrent’ as a subtype that includes ‘anger’ and ‘grief’ as subtypes of it. Also,

‘memory’ is a type of ‘mental disposition,’ which falls under ‘bodily disposition,’ and ‘bodily

disposition’ is a subtype of BFO’s ‘disposition.’

Besides being grounded in BFO, the EO is an extension of the Mental Functioning

Ontology (MFO), an ontology for mental functioning, including mental processes, traits, and

related mental diseases and disorders that is developed in the context of the OGMS and rooted in

BFO.27 Figure 8.21 underscores this by showing how numerous EO universal entities with UAI

prefixes of MFOEM are subtypes of ‘cognitive representation,’ itself a child of MFO’s

29

‘representation’ (highlighted in the figure with a UAI of MF_0000030), which is a child of

‘continuant’ (with a UAI of BFO_000002).

Figure 8.21: Several of the EO’s Universal Entities

8.22: Several of BFO’s Relations in the EO

The EO makes extensive use of BFO’s Universal-Universal Relation Ontology, which we

described in the previous chapter. BFO_0000118 is the UAI for BFO’s

has_proper_occurrent_part relation, and figure 8.22 shows one of the ways that this relation is

30

used in the OE (in the Object Property Usage box), along with many other BFO relations listed

on the left in the Object properties box. Recall that relations of the kind specified in BFO’s

Relation Ontology are referred to as object properties in OWL.

7. Facilitation of Interoperability

Earlier in this text, we emphasized the perhaps self-evident point that for two or more computer-

based information systems to be interoperable it is essential that they employ a common

terminology or have an explicit set of instructions for the mapping of one terminology into the

language of the other and conversely. BFO works with OWL and other semantic technologies to

facilitate such interoperability.

Figure 8.23: Several BFO Results from Swoogle

31

Consider BFO’s presence on the Web. Figure 8.24 shows several of the many ontologies that

utilize BFO as a result of a query in Swoogle, which is a Web search engine that looks for RDF

on the Web and is funded by the Computer Science and Electrical Engineering Department at the

University of Maryland, Baltimore County (UMBC).

Figure 8.24: BFO’s Object Usage in Ontobee

In the fifth chapter, we mentioned the Open Biological and Biomedical Ontologies

(OBO) Foundry initiative, “a collaborative experiment involving developers of science-based

ontologies who are establishing a set of principles for ontology development with the goal of

creating a suite of orthogonal interoperable reference ontologies in the biomedical domain.”28

Not only is it the case that BFO and the principles found in this book are an integral part of the

32

OBO Foundry, but also the OGMS, IDO, IAO, OBI, MFO, EO, and more than 100 other

ontologies such as the Gene Ontology, Foundational Model of Anatomy, Cell Ontology, and

Protein Ontology are participants in the effort. The Foundry’s website features a link to the

University of Michigan Medical School’s Ontobee, which is the default linked ontology data

server for OBO Foundry library ontologies. As noted on their website, Ontobee is “aimed to

facilitate ontology data sharing, visualization, query, integration, and analysis. Ontobee

dynamically dereferences and presents individual ontology term URIs to (i) HTML web pages

for user-friendly web browsing and navigation, and to (ii) RDF source code for Semantic Web

applications.”29 Figure 8.23 shows a webpage from Ontobee. This particular page lists several of

the domain ontologies that use BFO ‘object,’ complete with links to the ontologies in OWL, the

usage of object in the context of the ontology, and the ontology’s website homepage.

Further Reading in OWL, RDF-S, and RDF

Allemang, Dean and Jim Hendler. Semantic Web for the Working Ontologist. Wakham, MD:

Morgan Kaufmann, 2011.

Cimiano, Philipp, Christina Unger, and John McCrae. Ontology-Based Interpretation of Natural

Language. San Rafael, CA: Morgan & Claypool, 2014.

Hitzler, Pascal, Markus Krötzsch, and Sebastian Rudolph. Foundations of Semantic Web

Technologies. Boca Raton, FL: Chapman & Hall, 2009.

Horrocks, Ian. “Ontologies and the Semantic Web.” Communications of the ACM, 51.12 (2008):

58-67.

1 Taken from http://www.ifomis.org/bfo/users.
2 See http://protege.stanford.edu/.
3 Protégé has a useful tutorial titled “Protégé OWL Tutorial,” written by Matthew Horridge and
others found here: http://130.88.198.11/tutorials/protegeowltutorial/.

http://www.ifomis.org/bfo/users
http://protege.stanford.edu/
http://130.88.198.11/tutorials/protegeowltutorial/

33

4 See the W3C’s document titled “OWL Web Ontology Language Overview: W3C
Recommendation,” located here: http://www.w3.org/TR/owl-features/; also see W3C’s
“DAML+OIL (March 2001) Reference Description,” located here:
http://www.w3.org/TR/daml+oil-reference.
5 “OWL Web Ontology Language Overview: W3C Proposed Recommendation,” available here:
http://www.w3.org/TR/2003/PR-owl-features-20031215/.
6 See the W3C’s document titled “A History of HTML,” located here:
http://www.w3.org/People/Raggett/book4/ch02.html.
7 http://www.w3.org/MarkUp/; also see the W3C’s document titled “XML: Development
History,” located here: http://www.w3.org/XML/hist2002.
8 See the W3C document titled “Resource Description Framework (RDF) Model and Syntax
Specification,” located here: http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/.
9 See the W3C document titled “RDF/XML Syntax Specification,” located here:
http://www.w3.org/TR/REC-rdf-syntax/.
10 http://www.w3.org/TR/rdf-sparql-query/; http://www.w3.org/TR/sparql11-overview/.
11 http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/.
12 See Grau, Bernardo, Ian Horrocks, Boris Motik, Bijan Parsia, Peter Patel-Schneider, and Ulrike
Sattler. “OWL 2: The next step for OWL.” Web Semantics: Science, Services and Agents on the
World Wide Web. (2008) 6.4: 309-322. Available here:
http://www.sciencedirect.com/science/article/pii/S1570826808000413.
13 The problems with RDF and RDF-S just mentioned, as well as others, are discussed in the W3C
document titled “Web Ontology Language (OWL) Use Cases and Requirements,” located here:
http://www.w3.org/TR/2003/WD-webont-req-20030331/; also see Antoniou, Grigoris and
Frank van Harmelen. “Web Ontology Language: OWL,” in Steffan Staab and Rudi Studer (eds.).
Handbook on Ontologies (91-110). Berlin: Springer, 2009.
14 See the W3C’s document titled “OWL Web Ontology Language  Semantics and Abstract
Syntax,” located here: http://www.w3.org/TR/owl-semantics/; also Horrocks, Ian, Peter Patel-
Schneider, Deborah McGuinness, and Christopher Welty, “Ontology Languages for the Semantic
Web,” in Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter Patel-
Schneider (eds.). The Description Logic Handbook (458-486). Cambridge: Cambridge University
Press, 2003.
15 See the W3C’s document titled “OWL Web Ontology Language: Test Cases,” located here:
http://www.w3.org/TR/2004/REC-owl-test-20040210/.
16 See the W3C’s document titled “OWL Web Ontology Language Overview,” located here:
http://www.w3.org/TR/owl-features/.
17 http://www.w3.org/TR/owl-features/.
18 Horridge, Matthew, Holger Knublauch, Alan Rector, Robert Stevens, and Chris Wroe. “A
Practical Guide to Building OWL Ontologies Using the Protégé-OWL Plugin and CO-ODE Tools:
Edition 1.0,” Manchester: University of Manchester, 12.
19 See, for example, Motik, Boris, Ian Horrocks, and Ulrike Sattler. “Bridging the Gap Between
OWL and Relational Databases,” Journal of Web Semantics. (2009) 7.2: 74-89. Available here:
http://www.cs.ox.ac.uk/people/ian.horrocks/Publications/download/2009/MoHS09a.pdf.
20 See Grau, Bernardo, Ian Horrocks, Boris Motik, Bijan Parsia, Peter Patel-Schneider, and Ulrike
Sattler. “OWL 2: The next step for OWL.” Web Semantics: Science, Services and Agents on the

http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/daml+oil-reference
http://www.w3.org/TR/2003/PR-owl-features-20031215/
http://www.w3.org/People/Raggett/book4/ch02.html
http://www.w3.org/MarkUp/
http://www.w3.org/XML/hist2002
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
http://www.w3.org/TR/REC-rdf-syntax/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/sparql11-overview/
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
http://www.sciencedirect.com/science/article/pii/S1570826808000413
http://www.w3.org/TR/2003/WD-webont-req-20030331/
http://www.w3.org/TR/owl-semantics/
http://www.w3.org/TR/2004/REC-owl-test-20040210/
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/owl-features/
http://www.cs.ox.ac.uk/people/ian.horrocks/Publications/download/2009/MoHS09a.pdf

34

World Wide Web. (2008) 6.4: 309-322. Available here:
http://www.sciencedirect.com/science/article/pii/S1570826808000413.
21 http://www.w3.org/TR/owl2-overview/.
22 https://code.google.com/p/ogms/.
23 See https://code.google.com/p/ogms/.
24 http://infectiousdiseaseontology.org/page/Main_Page.
25 https://code.google.com/p/information-artifact-ontology/.
26 https://code.google.com/p/emotion-ontology/.
27 https://code.google.com/p/mental-functioning-ontology/.
28 http://www.obofoundry.org/.
29 http://www.ontobee.org/.

http://www.sciencedirect.com/science/article/pii/S1570826808000413
http://www.w3.org/TR/owl2-overview/
https://code.google.com/p/ogms/
https://code.google.com/p/ogms/
http://infectiousdiseaseontology.org/page/Main_Page
https://code.google.com/p/information-artifact-ontology/
https://code.google.com/p/emotion-ontology/
https://code.google.com/p/mental-functioning-ontology/
http://www.obofoundry.org/
http://www.ontobee.org/

