PHYS	PHYS 110 Things you need to KNOW NOW – Part 1		
1	Giga = ? (power of ten)		
2	Centi = ? (power of ten)		
3	Kilo = ? (power of ten)		
4	Milli = ? (power of ten)		
5	Micro = ? (power of ten)		
6	Mega = ? (power of ten)		
7	2 definitions of Force	1.	
		2.	
8	3 definitions of mass	1.	
		2.	
		3.	
9	2 definitions of displacement	1.	
		2.	
10	2 definitions of velocity	1.	
		2.	
11	Definition of volume		
12	Definition of time		
13	Definition of acceleration		
14	4 fundamental forces in the	1.	
	universe	2.	
		3.	
	5.	4.	
15	Discovered the moons of		
4.6	Jupiter		
16	Adherent of Pythagorean		
17	philosophy Created 1st comprehensive		
17	Created 1 st comprehensive heliocentric model		
18			
10	Geocentric explanation for planets' retrograde motion		
19	Occam's Razor		
20	Discovered phases of Venus		
21	Developed explanations of		
∠1			
	planetary motion based on fundamental laws of physics		
	Tunuamentariaws or physics		

22	Created comprehensive	
	geocentric model of universe	
23	Wrote the "Principia"	
24	Author of the Scientific	
	Method	
25	Sought to remove	
	supernatural causation from	
	science	
26	Went through tribunal for	
	seeking to reconcile	
	Scripture with heliocentric	
	model	
27	Newton's thought	
	experiment leading to	
	explanation of orbits	
28	Discovered craters and	
	mountains on moon	
29	Tutored Alexander the Great	
30	First to use telescope for	
	astronomy	
31	Definition of a scientific	
	theory	
32	Definition of a hypothesis	
32	Definition of a hypothesis	
33	Definition of "limiting the	
	scope of inquiry"	
	scope of inquity	
34	Definition of "idealization"	
35	Father of scientific reasoning	
36	Standard metric unit of mass	
37	U.S. standard unit of	
	displacement	
	•	

38	Standard metric unit of force	
39	U.S. standard unit of	
	acceleration	
40	Standard metric unit of	
	velocity	
41	U.S standard unit of volume	
42	U.S standard unit of velocity	
43	U.S. standard unit of mass	
44	Standard metric unit volume	
45	Standard metric unit of	
	velocity	
46	Standard metric unit of	
	acceleration	
47	Standard metric unit of	
	displacement	
48	Standard metric unit of force	
49	1 "G" = ? (both metric and	
	U.S. standard)	
50	Standard metric unit of mass	
51	Standard unit of time	
52	1 hour = ? seconds	
53	1 mile = ? feet	
54	1 mile = ? meters	
55	1 kilometer = ? meters	
56	1 kilogram = ? grams	
57	Particle with positive charge	
58	Particle with negative charge	
59	Particle with neutral charge	
60	Has 1/2000 th the mass of a	
	proton	
61	Has slightly more mass than	
	a proton	
62	Contains over 99% of the	
	mass of an atom	
63	By volume an atom is over?	
	% empty space	

64 C	On average the radius of an	
	On average the radius of an	
	atom is ? times the radius of	
	ts nucleus	
	First to come up with idea of	
-	"atoms"	
	What is the 'billiard ball"	
	model of the atom and who	
С	came up with it?	
67 V	Who discovered that the	
a	atom is mostly empty space?	
	Who came up with the	
"	'plum pudding" model and	
V	what did he discover?	
69 C	Developed the Uncertainty	
P	Principle (two names)	
70 V	What is the Uncertainty	
P	Principle?	
71 [Discovered the neutron	
72 V	What is the "plum pudding"	
n	model of the atom?	
73 V	Who posited that electrons	
t	travel in circular orbits and	
t	that only certain orbits are	
а	allowed?	
74 P	Place in chronological order:	1.
ι	Uncertainty Principle	2.
B	Billiard Ball Model	3.
	Discovery of neutron	4.
	Discovery of electron	5.
1	- 10001011	J.
P	Plum Pudding Model	6.
	•	
E	Plum Pudding Model	6.
E	Plum Pudding Model Electron Circular Orbits	6.
75 S	Plum Pudding Model Electron Circular Orbits Concept of "atoms"	6.

77	1 m ³ = ? cm ³	
78	Definition of scalar measures	
79	Definition of vector	
	measures	
80	The sum of 2 or more	
	vectors	
81	Sine θ =	
82	Cosine θ =	
83	Tangent θ =	
84	Archaeopteryx is an example	
	of a ? (in terms of evolution	
	theory)	
85	The Intelligent Design idea of	
	"irreducible complexity" is	
	an example of ?	
86	In the Dover case, why were	
	the plaintiffs unable to use	
	the example of "Tiktaalik?"	
87	In the Dover case, witness	
	for the defense Dr. Michael	
	Behe defined a "scientific	
	theory" as articulated by ? or	
00	f	
88	What did Newton emphasize	
	that is essential for a	
	scientific theory to be valid?	

Things you need to know how to do NOW:

- 1. Factor-Label conversions (MPH to ft/sec, grams/cm³ to Kg/m³, etc)
- 2. Metric conversions in scientific notation (EX: $3.57 \times 10^4 \text{ Kg} = ? \text{ milligrams}$)
- 3. Conversions from scientific notation to standard notation and vice-versa
- 4. Determine the mass density of a sample of material based on its measured mass and volume, and identify the material based on its mass density
- 5. Determine the mass of a sample of material based on its measured volume and known mass density
- 6. Using trig, calculate the resultant force (V_{res})of multiple vectors of force
- 7. Using trig, calculate the "equilibrant" (V_{eq}) to create a static system of forces
- 8. Using the "inventory" "odd man out" method of analysis, solve mathematical problems in acceleration and/or gravity