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Abstract

We introduce and describe a Stata routine weakivtest implementing the test for weak
instruments of Montiel Olea and Pflueger (2013). weakivtest allows for errors that are not
conditionally homoskedastic and serially uncorrelated. It extends the Stock and Yogo (2005)
weak instrument tests available in ivreg2 and in the ivregress postestimation command
estat firststage. weakivtest tests the null hypothesis that instruments are weak or that
the estimator Nagar bias is large relative to a benchmark for both Two-Stage Least Squares
(TSLS) and Limited Information Maximum Likelihood (LIML) with a single endogenous
regressor. The routine can accommodate Eicker-Huber-White heteroskedasticity robust,
Newey and West (1987) heteroskedasticity- and autocorrelation-consistent, and clustered
variance estimates.
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1 Introduction

This paper describes and summarizes the weak instrument test of Montiel Olea and Pflueger

(2013) and introduces a new Stata routine weakivtest implementing this test. weakivtest

is a postestimation routine for ivreg2 and ivregress.2

Weak instruments can bias point estimates and lead to substantial test size distortions (Nel-

son and Startz (1990); Stock and Yogo (2005)). Departures from the homoskedastic serially

uncorrelated framework are not only extremely common in practice but can also further

bias estimates and distort test sizes when instruments are weak (Montiel Olea and Pflueger

(2013)). We provide a user-friendly routine for heteroskedasticity, autocorrelation, and clus-

tering robust weak instrument tests. These tests apply to Two Stage Least Squares (TSLS)

and Limited Information Maximum Likelihood (LIML) with one endogenous regressor.

Under strong instruments, TSLS and LIML are asymptotically unbiased. However, under

weak instruments this is not the case. For overviews of the large literature on inference with

potentially weak instruments see Stock et al. (2002) and Andrews and Stock (2006).

Staiger and Stock (1997) and Stock and Yogo (2005) proposed widely used pre tests for

weak instruments under the assumption of conditionally homoskedastic, serially uncorrelated

model errors. These tests reject the null hypothesis of weak instruments when the Cragg

and Donald (1993) statistic exceeds a given threshold. This test statistic reduces to the first

stage F statistic in the case with a single endogenous regressor. The null hypothesis of weak

instruments can either be defined in terms of estimator bias or test size distortions.

The ivreg2 suite, described in Baum et al. (2007) and Baum et al. (2010), implements the

Stock and Yogo (2005) weak instrument test for the case of conditionally homoskedastic,

serially uncorrelated model errors.

2While this paper provides a pre-test for weak instruments, methods for weak instrument robust inference
are also available and are implemented in the command weakiv (Finlay et al. (2014)).
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Practitioners frequently report the robust or non-robust first stage F statistic as an ad-hoc

way of adjusting the Stock and Yogo (2005) tests for heteroskedasticity, autocorrelation, and

clustering. However, Montiel Olea and Pflueger (2013) show that both the robust and the

non-robust F statistics may be high even when instruments are weak. Baum et al. (2007)

also emphasize that the Kleibergen and Paap (2006) rank Wald statistic does not provide

a formal test for weak instruments in the presence of heteroskedastic, serially correlated, or

clustered model errors.

weakivtest tests the null hypothesis that the estimator approximate asymptotic bias (or

Nagar (1959) bias) exceeds a fraction τ of a “worst-case” benchmark. This benchmark agrees

with the Ordinary Least Squares (OLS) bias when errors are conditionally homoskedastic

and serially uncorrelated. The test rejects the null hypothesis when the test statistic, the

effective F statistic, exceeds a critical value. The critical value depends on the significance

level α, and the desired threshold τ .

When data is known to be conditionally homoskedastic and serially uncorrelated, the effective

F statistic is identical to the Cragg and Donald (1993) statistic recommended by Stock

and Yogo (2005). We can compare weakivtest critical values for the null hypothesis that

the TSLS approximate asymptotic bias (henceforth, the Nagar bias) exceeds 10% of the

benchmark to Stock and Yogo (2005) critical values for the null hypothesis that the TSLS

bias exceeds 10% of the OLS bias. In the case with conditionally homoskedastic and serially

uncorrelated errors, weakivtest critical values with significance level 5% increase from 8.53

for three instruments to 12.27 for 30 instruments. By comparison, the corresponding Stock

and Yogo (2005) critical values increase from 9.08 for three instruments to 11.32 for 30

instruments.
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2 Linear IV with Potentially Weak Instruments

We consider the following standard linear IV setup with one endogenous regressor and K

instruments. We write the linear IV model in reduced form:

y = ZΠβ + Xγ1 + v1, (1)

Y = ZΠ + Xγ2 + v2. (2)

Equation (1) denotes the reduced form second stage relationship. Equation (2) denotes the

reduced form first stage relationship between the instruments and the endogenous regressor.

The econometrician wishes to estimate the structural parameter β, while Π ∈ RK denotes

the vector of unknown first stage parameters. γ1 and γ2 denote the vector of coefficients on

the included exogenous regressors.

The econometrician observes the outcome variable ys, the endogenous regressor Ys, the

vector of K instruments Zs and the vector of L included exogenous regressors Xs for s =

1, ..., S. The unobserved reduced form errors have realizations vjs, j ∈ 1, 2. We stack the

realized variables in matrices y ∈ RS, Z ∈ Rs×K and vj ∈ RS, j ∈ {1, 2}.

Two Stage Least Squares (TSLS) and Limited Information Maximum Likelihood (LIML)

estimators depend on realized variables only through their projection residuals with respect

to X. Saving notation, from now on we let y, Y, and vj, j = 1, 2 denote their projection

errors onto X. For instance, we replace the endogenous regressor Y by MXY, where MX =

IS − X(X′X)−1X′. We also normalize the vector of instruments Z such that Z′Z/S = IS,

which again leaves TSLS and LIML estimators unchanged.

Denote the projection matrix onto Z by PZ = Z(Z′Z)−1Z′ and the complementary matrix
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by MZ = IS −PZ. The Two Stage Least Squares (TSLS) estimator of β is:

β̂TSLS ≡ (Y′PZY)−1(Y′PZy). (3)

The Limited Information Maximum Likelihood (LIML) estimator of β is:

β̂LIML = (Y′(IS − kLIMLMZ)Y)−1(Y′(IS − kLIMLMZ)y), (4)

where kLIML is the smallest root of the determinantal equation

∣∣∣ [y,Y]′[y,Y]− k[y,Y]′MZ[y,Y]
∣∣∣ = 0. (5)

The robust weak instrument pre test relies on two additional key assumptions. We model

weak instruments by assuming that the IV first stage relation is local to zero, following the

modeling strategy in Staiger and Stock (1997). Intuitively, the vector of first stage coefficients

is small in magnitude relative to the sample size.

Assumption LΠ. (Local to Zero) Π = ΠS = C/
√
S, where C is a fixed vector C ∈ RK .

We make high-level assumptions about the variances and covariances of the reduced form

residuals and the residuals interacted with the vector of instruments.

Assumption HL. (High Level) The following limits hold as S →∞.

1.

 Z′v1/
√
S

Z′v2/
√
S

 d→ N2K(0,W) for some positive definite W =

 W1 W12

W′
12 W2



2. [v1,v2]′[v1,v2]/S
p→ Ω for some positive definite Ω ≡

 ω2
1 ω12

ω12 ω2
2


3. There exists a sequence of positive definite estimates {Ŵ(S)}, measurable with respect

to {ys, Ys,Zs}Ss=1, such that Ŵ(S)
p→W as S →∞.
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2.1 Testing Procedure

weakivtest tests the null hypothesis that instruments are weak. When the null hypothesis

is rejected, the econometrician can conclude that instruments are strong and proceed using

standard inference.

Montiel Olea and Pflueger (2013) use the standard Nagar (1959) methodology to obtain a

tractable proxy for the asymptotic estimator bias. They define the Nagar bias as the ex-

pectation of the first three terms in the Taylor series expansion of the asymptotic estimator

distribution under weak instrument asymptotics. The Nagar Bias is always defined and

bounded for both TSLS and LIML. Montiel Olea and Pflueger (2013) define the null hy-

pothesis of weak instruments such that the Nagar bias may be large. Under the alternative

hypothesis, the Nagar bias is bounded relative to the benchmark.

Montiel Olea and Pflueger (2013) benchmark the TSLS Nagar bias NTSLS and the LIML

Nagar bias NLIML against a function BM(β,W) ≡
√
tr(W1 − 2βW12 + β2W2)/tr(W2).

Intuitively, the benchmark BM captures the “worst-case” situation when instruments are

completely uninformative and when first- and second-stage errors are perfectly correlated.

It is also a natural extension of benchmarking against the Ordinary Least Squares bias when

reduced form errors are conditionally homoskedastic, serially uncorrelated as in the tests

proposed by Stock and Yogo (2005).

Under the weak instrument null hypothesis, the Nagar bias exceeds a fraction τ of the

benchmark for at least some value of the structural parameter β and some direction of the

first stage coefficients Π. On the other hand, under the alternative, the Nagar bias is at

most a fraction τ of the benchmark for any values for the structural parameter β and for

any direction of the first stage coefficients Π.
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The robust weak instrument test rejects the null hypothesis of weak instruments when the

test statistic, the effective F statistic F̂eff

F̂eff ≡
Y′PZY

tr(Ŵ2)
, (6)

exceeds a critical value. In the just-identified case with one instrument, the effective F

statistic equals the robust F statistic, but in general it differs from both the non-robust F

F̂ ≡ Y′PZY

Kω̂2
2

(7)

and the robust F statistic

F̂r ≡
Y′ZŴ−1

2 Z′Y

K × S
. (8)

The critical value c depends on the significance level α, the desired threshold τ , the estimated

variance-covariance matrix Ŵ , and on the estimator (TSLS or LIML). Both a generalized

and a simplified conservative critical value are available for TSLS.

3 Stata Implementation

1. weakivtest uses Stata’s built-in regress routine to estimate (1) and (2) using equation-

by-equation OLS. weakivtest estimates the matrix Ŵ using the same level of ro-

bustness as the preceding ivreg2 or ivregress command with the user-written pro-

gram avar of Baum and Schaffer (2013). The estimate Ŵ equals the robust esti-

mated variance-covariance matrix times a degrees of freedom adjustment S
S−K−L−1

.

weakivtest supports estimating Ŵ with Eicker-Huber-White heteroskedasticity ro-

bust, Newey and West (1987) heteroskedasticity- and autocorrelation-consistent, or
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clustered variance-covariance matrix estimates. Ω̂ is simply obtained as the cross

product of v̂1 and v̂2.

2. weakivtest obtains the effective F statistic as a scaled version of the non-robust first

stage F statistic F̂ with F̂eff = F̂
Kω̂2

2

tr(Ŵ2)
, where ω̂2 is the consistent estimate of ω2. We

make three remarks:

i) The asymptotic distribution of F̂eff—denoted F ∗eff—is a weighted sum of non-

central χ2 random variables (see Montiel Olea and Pflueger (2013), Lemma 1, part

5, p. 362). One of the challenges in the implementation of our testing procedure

is approximating the quantiles of such distribution.

ii) Large values of the expectation of F ∗eff correspond to small values of the approxi-

mate asymptotic bias (or Nagar Bias) for both TSLS and LIML (see Montiel Olea

and Pflueger (2013), Theorem 1, p. 362). This observation explains the selection

of the test statistic.

3. weakivtest computes two key quantities that are used to approximate the upper α

point of F ∗eff : a non-centrality parameter x that bounds the mean of F ∗eff under the

null hypothesis and the effective degrees of freedom K̂eff . The rationale for these

parameters is as follows. Patnaik (1949) and Imhof (1961) approximate the critical

values of a weighted sum of independent non-central χ2 distributions by a central χ2

with the same first and second moments. Building on this result, Montiel Olea and

Pflueger (2013) approximate F ∗eff by the following non-central χ2:

1

K̂eff

χ2
K̂eff

(K̂effx). (9)
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Here,

K̂eff ≡
[tr(Ŵ2)]2[1 + 2x]

tr(Ŵ′
2Ŵ

′
2) + 2xtr(Ŵ2)max eval(Ŵ2)

, (10)

x = Be

(
Ŵ, Ω̂

)
/τ for e ∈ {TSLS, LIML} , (11)

and Be

(
Ŵ, Ω̂

)
is closely related to the supremum of the Nagar bias relative to the

benchmark.

Computing x requires maximizing the ratio of the Nagar (1959) bias divided by the

benchmark over all values of the structural parameter β and all directions for the first

stage coefficients Π. As shown in Montiel Olea and Pflueger (2013), this step reduces

to a numerical maximization over the real line and weakivtest implements it using

the Stata built in function optimize.

4. Given the non-centrality parameter x and the effective degrees of freedom K̂eff the

critical values can be calculated as the upper α point of χ2
K̂eff

(xK̂eff )/K̂eff , following

the curve fitting methodology of Patnaik (1949).

5. weakivtest calls routine invnchi2 if Stata version is 13.1 or higher and calls routine

invnFtail for lower Stata versions to compute the inverse non-central chi-squared

CDF. At the time of writing, the built-in routine invnchi2 does not support non-

integer degrees of freedom for Stata version lower than 13.1. Setting the denominator

degrees of freedom in invnFtail to a sufficiently large positive number approximates

the non-central chi-squared CDF.

3.1 Syntax

weakivtest [, level(#) eps(#) n2(#)]

level specifies the confidence level. The default is level(0.05).
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eps specifies the input parameter for the Nelder-Mead optimization technique. Its default

value is set to 10−3.

n2 specifies the denominator degrees of freedom in invnFtail. The default value is 107.

The weak instrument test can adjust for a variety of violations of conditionally homoskedas-

tic, independent, identically distributed model errors.

weakivtest supports the following ivreg2 and ivregress options for the variance-covariance

matrix:

1. robust estimates an Eicker-Huber-White heteroskedasticity robust variance-covariance

matrix.

2. cluster(varname) estimates a variance-covariance matrix clustered by the specified

variable.

3. robust bw(#) (for ivreg2) estimates a heteroskedasticity and autocorrelation-consistent

variance-covariance matrix computed with a Bartlett (Newey-West) kernel with band-

width #.

4. bw(#) without the robust option (for ivreg2) requests estimates that are autocorrelation-

consistent but not heteroskedasticity-consistent.

5. vce (hac nw #) (for ivregress) estimates a heteroskedasticity and autocorrelation-

consistent variance-covariance matrix computed with a Bartlett (Newey-West) kernel

with number of lags #. The bandwidth of a kernel is equal to the number of lags plus

one.

3.2 Remarks

weakivtest is a postestimation command for ivreg2 and ivregress.
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weakivtest reports the effective F statistic. It reports generalized TSLS and LIML critical

values for threshold values τ ∈ {5%, 10%, 20%, 30%}.

Montiel Olea and Pflueger (2013) provide both the generalized and a simplified conservative

critical value for TSLS. The simplified critical value exploits an analytical conservative bound

for the Nagar Bias of TSLS (see Montiel Olea and Pflueger (2013), Theorem 1, Part 3). The

simplified procedure follows the same steps as the generalized procedure, but it sets the

non-centrality parameter to x = 1/τ . Hence, simplified critical values are computationally

less demanding. For completeness, weakivtest saves both types of TSLS critical values.

However, the TSLS generalized critical value provides a weakly more powerful test and

should be used when available. weakivtest therefore displays only the TSLS generalized

critical value.

4 Example

The example in this section implements weakivtest as a postestimation command for

ivreg2 using the data set of Campbell (2003) and Yogo (2004). The IV setup is identi-

cal to that in Table 2A of Montiel Olea and Pflueger (2013). This baseline example uses a

Bartlett (Newey-West) kernel with bandwidth seven, a significance level of 5%, and focuses

on a weak instrument threshold of τ = 10%.

By comparison, Montiel Olea and Pflueger (2013) report an effective F statistic of 7.94, a

TSLS critical value of 15.49 and a LIML critical value of 9.68 for τ = 10%. weakivtest

cannot reject the null of weak instruments for TSLS or for LIML for a weak instrument

threshold of τ = 10%, consistent with the findings in Montiel Olea and Pflueger (2013).
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5 Saved Results

weakivtest saves the following results in r():
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Scalars:
r(N) Number of Observations

r(K) Number of Instruments

r(n2) Denominator degrees of freedom non-central F

r(level) Test Significance Level

r(eps) Optimization Parameter

r(F eff) Effective F Statistic

r(c TSLS 5) TSLS Critical Value for τ = 5%
r(c TSLS 10) TSLS Critical Value for τ = 10%
r(c TSLS 20) TSLS Critical Value for τ = 20%
r(c TSLS 30) TSLS Critical Value for τ = 30%

r(c LIML 5) LIML Critical Value for τ = 5%
r(c LIML 10) LIML Critical Value for τ = 10%
r(c LIML 20) LIML Critical Value for τ = 20%
r(c LIML 30) LIML Critical Value for τ = 30%

r(c simp 5) TSLS Simplified Conservative Critical Value for τ = 5%
r(c simp 10) TSLS Simplified Conservative Critical Value for τ = 10%
r(c simp 20) TSLS Simplified Conservative Critical Value for τ = 20%
r(c simp 30) TSLS Simplified Conservative Critical Value for τ = 30%
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Scalars (continued):
r(x TSLS 5) TSLS Non-Centrality Parameter for τ = 5%
r(x TSLS 10) TSLS Non-Centrality Parameter for τ = 10%
r(x TSLS 20) TSLS Non-Centrality Parameter for τ = 20%
r(x TSLS 30) TSLS Non-Centrality Parameter for τ = 30%

r(K eff TSLS 5) TSLS Effective Degrees of Freedom for τ = 5%
r(K eff TSLS 10) TSLS Effective Degrees of Freedom for τ = 10%
r(K eff TSLS 20) TSLS Effective Degrees of Freedom for τ = 20%
r(K eff TSLS 30) TSLS Effective Degrees of Freedom for τ = 30%

r(x LIML 5) LIML Non-Centrality Parameter for τ = 5%
r(x LIML 10) LIML Non-Centrality Parameter for τ = 10%
r(x LIML 20) LIML Non-Centrality Parameter for τ = 20%
r(x LIML 30) LIML Non-Centrality Parameter for τ = 30%

r(K eff LIML 5) LIML Effective Degrees of Freedom for τ = 5%
r(K eff LIML 10) LIML Effective Degrees of Freedom for τ = 10%
r(K eff LIML 20) LIML Effective Degrees of Freedom for τ = 20%
r(K eff LIML 30) LIML Effective Degrees of Freedom for τ = 30%
r(x simp 5) TSLS Simplified Non-Centrality Parameter for τ = 5%
r(x simp 10) TSLS Simplified Non-Centrality Parameter for τ = 10%
r(x simp 20) TSLS Simplified Non-Centrality Parameter for τ = 20%
r(x simp 30) TSLS Simplified Non-Centrality Parameter for τ = 30%

r(K eff simp 5) TSLS Simplified Effective Degrees of Freedom for τ = 5%
r(K eff simp 10) TSLS Simplified Effective Degrees of Freedom for τ = 10%
r(K eff simp 20) TSLS Simplified Effective Degrees of Freedom for τ = 20%
r(K eff simp 30) TSLS Simplified Effective Degrees of Freedom for τ = 30%
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