Section A (multiple choice)

Question Number	Correct Answer	Mark
1	Α	1

Question Number	Correct Answer	Mark
2	D	1

Question Number	Correct Answer	Mark
3	A	1

Question Number	Correct Answer	Mark
4	В	1

Question Number	Correct Answer	Mark
5	D	1

Question 6: N/A

Question Number	Correct Answer	Mark
7	С	1

Question Number	Correct Answer	Mark
8	D	1

Question Number	Correct Answer	Mark
9	В	1

Question 10: N/A

Question 11: N/A

Question 12: N/A

Question 13: N/A

Question 14: N/A

Question Number	Correct Answer	Mark
15	С	1

Question 16: N/A

Question 17: N/A

Question 18: N/A

Question 19: N/A

Question Number	Correct Answer	Mark
20	Α	1

Section B

Question Number	Acceptable Answers	Reject	Mark
21(a)	$3d^{3}4s^{2}$ OR $4s^{2}3d^{3}$ $3d^{5}4s^{1}$ OR $4s^{1}3d^{5}$		1
	both must be correct.		
	ALLOW Electron numbers could be on the line or as subscripts IGNORE case of letters		

Question Number	Acceptable Answers		Reject	Mark
21(b)(i)	Variable/varying/different/several more than one oxidation state / number	(1)	Each metal has a different oxidation number	2
	Complex (ion formation) Treat Physical properties (if correc	(1)	Ligand exchange	
	including catalytic activity as neut			

Question Number	Acceptable Answers	Reject	Mark
21(b)(ii)	The following metals scores (2) marks with correct E value: Mg 1.96, Ce 1.92, U 1.39, Al 1.25, Mn 0.78, V 0.77, Zn 0.35	All other metals 0/2	2
	NOTE: Positive sign/unit not needed, but penalise negative value		
	The following metals score (1) mark with correct E value: Li 2.62, Rb 2.52, K 2.51, Ca 2.46, Na 2.30, Cr 0.33, Fe 0.03		
	NOTE: Positive sign/unit not needed, but penalise negative value		

Question Number	Acceptable Answers	Reject	Mark
21(b)(iii)	Not a redox process Chromate and dichromate both the same/no change in oxidation number (1)		2
	contain Cr(VI) 6/6+ (1)		
	Mark independently		
	OR		
	Not redox and both contain Cr(VI) 6/6+ (2)		

Question Number	Acceptable Answers	Reject	Mark
21(b)(iv)	Forms two (dative/covalent) bonds/has two lone pairs (to the Transition Metal/ion) OR	`to the molecule'	1
	donates two pairs of electrons (to the Transition Metal/ion)		
	Check answer to (v) if mark not awarded here		

Question Number	Acceptable Answers		Reject	Mark
21(b)(v)	or Far enough apart/longer chain in between in en (but not in hydrazine)/too close in hydrazine/hydrazine is too short/n	(1)	N=N, or triple bond in hydrazine max 1 or if implies only en has lone pairs max 1	2
	or			
	Dative bonds/lone pairs too close/repel in hydrazine ((1)		
	OR for two marks			
	or Bond angles too acute/too much ri	(2) ing 2)		
	Mark for iv can be awarded her	r e.		

Question Number	Acceptable Answers	Reject	Mark
21(c)(i)	- 0.41 (V)		1
	+1.33 (V)		
	Both answers needed, with number and sign, for 1 mark		
	IGNORE additional words		

Question Number	Acceptable Answers		Reject	Mark
*21(c)(ii) QWC	Combines the equations to obta	in		4
QWC	$8Cr^{3+} + 7H_2O \rightarrow 6Cr^{2+} + Cr_2O_7^{2-} + 14H^+$			
	ALLOW $6Cr^{3+}$ + $2Cr^{3+}$ instead or $8Cr^{3+}$	f	1 max for the equation if	
	IGNORE state symbols even if wrong		electrons are shown balanced or unbalanced	
	species (1), balance (1)			
	$E^{\Theta}_{\text{reaction}} = -1.74 \text{V}$	(1)		
	So not feasible on condition of negative value	(1)		
	OR			
	$6Cr^{2+} + Cr_2O_7^{2-} + 14H^+ \rightarrow 8Cr^{3+} - 7H_2O$	F		
	If fully correct	(1)		
	$E^{\Theta}_{\text{reaction}} = + 1.74 \text{V}$	(1)		
	Disproportionation not feasib condition of positive value but	le on		
	reject 'reaction is spontaneous'	(1)		
	Other wrong equations			
	IF $Cr_2O_7^{2-}$ or Cr^{2+} on left			
	Then + 1.74 V	(1)		
	If Cr^{3+} alone on the left			
	Then -1.74 V	(1)		
	and reaction not feasible	(1)		

Section A

Question Number	Correct Answer	Mark
_22	С	1

Question Number	Correct Answer	Mark
_23	D	1

Question Number	Correct Answer	Mark
24	A	1

Question Number	Correct Answer	Mark
25	С	1

Question Number	Correct Answer	Mark
_26	A	1

Question Number	Correct Answer	Mark
27	D	1

Question Number	Correct Answer	Mark
28	<u>C</u>	1

Section **B**

Question Number	Acceptable A	nswers		Reject	Mark
29 (a)	(1) for each	-equation correct value ssion of + once	E^e / V +0.4(0) +1.23	+2.46	2

Question Number	Acceptable Answers	Reject	Mark
29 (b)(ii)	 1 atm / 100 kPa / 101 kPa /1 bar 1 mol dm⁻³ ([H⁺] / [HCl]) 	Wrong pressure units Incorrect concentration units (eg '1 mol' / 1 mol ⁻¹	2
	ALLOW `1 molar' / `1M'	dm ³ for [H ⁺])	
	• 298 K / 25 °C ALLOW " [°] K"	273 K / 0°C / `room temperature'	
	All THREE conditions correct = 2 marks		
	Any TWO conditions correct = 1 mark		
	IGNORE References to 'standard conditions' References to Pt/catalyst		
	ALLOW 0.5 mol dm ⁻³ H ₂ SO ₄ INSTEAD of the 1 mol dm ⁻³ ([H ⁺] / [HCl])		

Question Number	Acceptable Answers	Reject	Mark
Number 29 (c)	First mark: Mentions / some evidence for of BOTH equations 1 AND 3 fr table in any way, even if reversed or left unbalanced eg $O_2(g) + 2H_2O(I) + 4e^- \rightarrow 4OH^-$ (aq) AND $4OH^-(aq) + 2H_2(g) \rightarrow 4H_2O(I) + 4e^-$ (1) ALLOW \Rightarrow for \rightarrow Second mark: (Adds the above half-equations cancelling $4e^-$ to get)	Equations involving H ⁺	2
	cancelling $4e^-$ to get) $2H_2(g) + O_2(g) \rightarrow 2H_2O(I)$ OR $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(I)$ (1) ALLOW \Rightarrow for \rightarrow but must have H_2 and O_2 on left Mark the second scoring point independently	If e ⁻ / OH ⁻ / H ⁺ / two surplus H ₂ O molecules remain in this final equation (0) for 2nd mark	
	 independently Award this mark if the correct equation is seen, no matter how it is derived ALLOW MULTIPLES OF EQUATIONS IN ALL CASES IGNORE any state symbols, even if incorrect ALLOW equilibrium sign ⇒ used in ANY of the above equations instead of the full arrows 		

Question Number	Acceptable Answers	Reject	Mark
29 (d)	$E^{\Theta}_{cell} = +0.40 - (-0.83) (V)$ = (+)1.23 (V) + sign NOT required in final answer Correct answer with or without working scores (1) No ECF from any incorrect E^{Θ} values used	-1.23 (V)	1

Question Number	Acceptable Answers	Reject	Mark
29 (e)	Reaction / equation is the same OR Reaction / equation for both is $2H_2(g) + O_2(g) \rightarrow 2H_2O(I)$ ALLOW \Rightarrow for \rightarrow IGNORE state symbols even if incorrect ALLOW statements such as 'they both produce water from hydrogen and oxygen' / 'reactants and products are the same' ALLOW multiples of the equation	'Electrode potentials don't change' Just same product / water is produced Just same reactants are oxidized and reduced Same reaction but in reverse scores (0)	1

Question Number	Acceptable Answers	Reject	Mark
29 (f)	To increase the surface area /to increase the number of active sites		1

Question Acceptable Answers Number	Reject	Mark
Storage (problems) OR hydrogen / oxygen / the gases have to be stored under pressure OR Leakage (of hydrogen / of oxygen /o gas) OR Transport(ation) problems OR Hard to carry / lack of portability OR Hydrogen flammable / inflammable OR Hydrogen explosive OR (Fuel cell) costly / expensive OR Needs (regular) re-filling OR Needs continual replenishment of H ₂ and O ₂ OR Lack of availability (of hydrogen / fue OR Hydrogen is made from fossil fuels / hydrogen is made from Natural Gas / hydrogen is made from non-renewab resources ALLOW water is a Greenhouse gas / Fuel cell(s) have short(er) life-span / Fuel cells have to be (regularly) replaced IGNORE references to just 'danger' o just 'safety' or just 'hazardous' Any arguments in terms of voltage output References to cannot be recharged	el) /ole	1

Question Number	Acceptable Answers	Reject	Mark
30 (a)(i)	TiCl ₄ + 4Na \rightarrow 4NaCl + Ti IGNORE State symbols, even if incorrect ALLOW Multiples Reversible arrows		1

Question Number	Acceptable Answers	Reject	Mark
30 (a)(ii)	Ti reduced as oxidation number decreases from +4 to 0 / changes from +4 to 0		2
	(1) Na oxidized as oxidation number increases from 0 to +1 /changes from 0 to +1		
	(1) ALLOW Correct oxidation numbers only for one mark		
	NOTE Max (1) if no + sign included		
	ALLOW '4+' and/or '1+' given instead of +4 and +1		
	NOTE If any of the oxidation numbers are wrong, award max (1) for the idea that during oxidation the oxidation number increases AND during reduction the oxidation number decreases		
	IGNORE References to loss and /or gain of electrons		

Question Number	Acceptable Answers	Reject	Mark
30 (b)	(Ti [Ar]) 3d ² 4s ² / 4s ² 3d ² (1)		2
	(Ti ³⁺ [Ar]) $3d^1/ 3d^1 4s^0$ (Ti ⁴⁺ [Ar]) 'nil' / $3d^0 4s^0/3d^0$ space left blank by candidate		
	BOTH Ti ³⁺ and Ti ⁴⁺ correct for second mark (1)		
	Mark CQ on Ti electron configuration for the second mark		
	ALLOW Upper case (e.g. 'D' for 'd' in electronic configurations) Subscripts for numbers of electrons		
	Full correct electronic configurations 1s ² , 2s ²		

Question Number	Acceptable Answers	Reject	Mark
30 (c)(i)	 (d-block element) EITHER Ti has (two) electrons in the 3d subshell / Ti has a partially filled d-subshell / Ti has a partially filled d-orbital / Ti has electrons in d-orbital(s) / Ti has electrons in d-subshell (During the build up of its atoms) last added / valence electron is in a d-subshell / d-orbital OR (During the build up of its atoms) last added / valence electron is in a d-subshell / d-orbital 	Outer / highest energy electrons are in a d-orbital / Outer / highest energy electrons are in a d-subshell Electrons in the 'd-block'/ 'electrons in the d-shell'	1

Question Number	Acceptable Answers	Reject	Mark
30 (c)(ii)	(transition element) Forms one (or more stable) ions / forms Ti³⁺ (ions) which have incomplete d-orbital(s) / an incomplete d-subshell / a partially filled d-subshell / an unpaired d electron		1
	IGNORE References to variable oxidation states		

Question Number	Acceptable Answers	Reject	Mark
30 (d)(i)	First mark: d-subshell splits /d-orbitals split (in energy by ligands) /d energy level(s split(s) (1	-	3
	Second mark: absorbs light (in visible region) (1)	absorbs purple light	
	Third mark:		
	Electron transitions from lower to higher energy / electron(s) jump from lower to higher energy		
	OR		
	Electron(s) promoted (within d)		
	(1 Mark independently)	
	NOTE Maximum of (1) mark (i.e. the first mark only) if refers to electrons falling back down again		

Question Number	Acceptable Answers	Reject	Mark
30 (d)(ii)	No d-electrons / empty d-subshell		1

Question Number	Acceptable Answers	Reject	Mark
30 (e)(i)	TiO₂ `Structure' mark		4
	EITHER		
	Giant (structure) OR Lattice (structure)	TiO ₂ (small) molecule s / simple molecular	
	IGNORE Whether stated as ionic or covalent for this mark (1)		
	TiO₂ `Bonding' mark		
	EITHER		
	Strong (electrostatic) attraction between ions		
	ALLOW Strong ionic bonds / ionic bonds require a lot of energy to break		
	OR		
	Strong covalent bonds/covalent bonds require a lot of energy to break (1)	For TiO_2 mention of any type of intermolecular forces between molecules of TiO_2	
	TiCl₄ `Structure′ mark		
	(Simple) molecules / (small) molecules / molecular (1)	TiCl₄ giant structure	
	TiCl₄ `Bonding' mark	Covalent bonds broken (on melting) in TiCl₄	
	Weak London / dispersion / van der Waals' forces (between	Ionic bonding in TiCl ₄	
	molecules) / London /dispersion / van der Waals' forces (between molecules) require little energy to break	Hydrogen bonding (0) for this mark	
			18

 ΝΟΤΕ	
If candidates assumes TiO_2 and $TiCl_4$ are both simple molecular, can score last mark for saying that the named intermolecular forces in TiO_2 are stronger that those in $TiCl_4$	
IGNORE (Permanent) dipole-dipole forces (1) Mark the four scoring points	
independently	

Question Number	Acceptable Answers	Reject	Mark
30 (e)(ii)	Amphoteric ALLOW Recognisable spellings		1

Question Number	Acceptable Answers	Reject	Mark
30 (e)(iii)	TiO ₂ + 2H ₂ O + 2KOH → K ₂ Ti(OH) ₆ OR TiO ₂ + 2H ₂ O + 2OH ⁻ → Ti(OH) ₆ ²⁻ IGNORE state symbols even if incorrect		1

Question Number	Acceptable Answers	Reject	Mark
30 (e)(iv)	$H = \begin{bmatrix} H & H \\ C & H & H \\ C & C \\ H & H \\ H & H \\ \end{bmatrix}$ $H = \begin{bmatrix} H & H \\ C \\ H \\$	Two (or more) repeat units shown	1
	n and any brackets		

Question Number	Acceptable Answers	Reject	Mark
30 (f)(i)	$(H_2O_2 + 2H^+ +) 2e^{(-)} \rightarrow 2H_2O$		1
	BOTH $2e^{(-)}$ and $2H_2O$ needed for the mark		

Question Number	Acceptable Answers	Reject	Mark
30 (f)(ii)	(Moles $H_2O_2 = \frac{0.0200 \times 22.50}{1000}$ =) 4.5 x 10 ⁻⁴ mol H_2O_2 (1)		3
	(Moles Ti ³⁺ reacting in 25.0 cm ³) = 9.0 x 10^{-4} mol Ti ³⁺		
	(Moles Ti^{3+} in 250 cm ³) = 9.0 x 10 ⁻³ mol Ti^{3+} (1)		
	(Original concentration of Ti ³⁺		
	$= \frac{9.0 \times 10^{-3}}{0.00500}$ =) 1.8 (mol dm ⁻³) (1)		
	1.8 (mol dm ⁻³) with or without working scores (3)		
	NOTES: If mole ratio H_2O_2 : Ti ³⁺ is 1:1 final answer for concentration of Ti ³⁺ is 0.9 (mol dm ⁻³) scores (2) overall		
	If mole ratio H_2O_2 : Ti ³⁺ is 2:1 final answer for concentration of Ti ³⁺ is 0.45 (mol dm ⁻³) scores (2) overall		
	If candidate forgets to multiply no. of moles of Ti ³⁺ by 10 then answer is 0.18 (moldm-3) this scores (2)		
	If volume of H_2O_2 used is 25.0 no first mark, but can score (2) if final answer CQ is 2(.0) (mol dm ⁻³)		

Question Number	Acceptable Answers	Reject	Mark
30 (f)(iii)	(It/titanium(III)/Ti ³⁺) oxidized (by oxygen in the air) ALLOW 'It is a strong reducing agent'	Hydrolysis	1

Total for Question 30 **= 23 Marks**