## Section A (multiple choice)

| Question <br> Number | Correct Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{1}$ | A | $\mathbf{1}$ |
| Question <br> Number Correct Answer Mark <br> $\mathbf{2}$ D $\mathbf{1}$ |  |  |


| Question <br> Number | Correct Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{3}$ | A | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{4}$ | B | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{5}$ | D | $\mathbf{1}$ |

Question 6: N/A

| Question <br> Number | Correct Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{7}$ | C | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{8}$ | D | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{9}$ | B | $\mathbf{1}$ |

Question 10: N/A
Question 11: N/A
Question 12: N/A

Question 13: N/A
Question 14: N/A

| Question <br> Number | Correct Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{1 5}$ | C | $\mathbf{1}$ |

Question 16: N/A
Question 17: N/A
Question 18: N/A
Question 19: N/A

| Question <br> Number | Correct Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{2 0}$ | A | $\mathbf{1}$ |

## Section B

| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{2 1 ( a )}$ | $3 d^{3} 4 s^{2}$ OR $4 s^{2} 3 d^{3}$ |  |  |
| $3 d^{5} 4 s^{1}$ OR $4 s^{1} 3 d^{5}$ |  |  |  |
| both must be correct. |  |  |  |
|  | ALLOW Electron numbers could be <br> on the line or as subscripts <br> IGNORE case of letters | $\mathbf{1}$ |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| 21(b)(i) | Variable/varying/different/several// <br> more than one oxidation state <br> /number | Each metal has a <br> different <br> oxidation <br> number | $\mathbf{2}$ |
|  | Complex (ion formation) <br> Treat Physical properties (if correct) <br> including catalytic activity as neutral | Ligand exchange |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{2 1 ( b ) ( i i ) ~}$ | The following metals scores (2) <br> marks with correct E value: Mg 1.96, <br> Ce 1.92, U 1.39, Al 1.25, Mn 0.78, <br> V 0.77, Zn 0.35 | All other metals <br> NOTE: Positive sign/unit not <br> needed, but penalise negative value | $\mathbf{2}$ |
|  | The following metals score (1) mark <br> with correct E value: Li 2.62, Rb <br> 2.52, K 2.51, Ca 2.46, <br> Na 2.30, Cr 0.33, Fe 0.03 |  |  |
|  | NOTE: Positive sign/unit not <br> needed, but penalise negative value |  |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{2 1 ( b ) ( i i i ) ~}$ | Not a redox process <br> Chromate and dichromate both the <br> same/no change in oxidation number <br> (1) |  | $\mathbf{2}$ |
|  | contain Cr(VI) 6/6+ | (1) |  |
|  | Mark independently <br> OR |  |  |
|  | Not redox and both contain $\mathrm{Cr}(\mathrm{VI})$ <br> $6 / 6+$ | (2) |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| 21(b)(iv) | Forms two (dative/covalent) <br> bonds/has two lone pairs (to the <br> Transition Metal/ion) | '...to the <br> molecule' | $\mathbf{1}$ |
|  | OR <br> donates two pairs of electrons (to <br> the Transition Metal/ion) <br> Check answer to (v) if mark not <br> awarded here |  |  |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 21(b)(v) | Any two from <br> Both have two nitrogen atoms with lone pairs or implied or <br> Far enough apart/longer chain in between in en (but not in hydrazine)/too close in hydrazine/hydrazine is too short/not as long <br> or <br> Dative bonds/lone pairs too close/repel in hydrazine <br> OR for two marks <br> Forms 5-membered ring (with en with no angle strain/stable) <br> or <br> Bond angles too acute/too much ring strain in hydrazine <br> Mark for iv can be awarded here. | $\mathrm{N}=\mathrm{N}$, or triple bond in hydrazine max 1 or if implies only en has lone pairs max 1 | 2 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{2 1 ( c ) ( i )}$ | $-0.41(\mathrm{~V})$ |  | $\mathbf{1}$ |
|  | +1.33 (V) <br> Both answers needed, with number <br> and sign, for 1 mark <br> IGNORE additional words |  |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { *21(c)(ii) } \\ & \text { QWC } \end{aligned}$ | Combines the equations to obtain $\begin{aligned} & 8 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O} \rightarrow 6 \mathrm{Cr}^{2+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \\ & +14 \mathrm{H}^{+} \end{aligned}$ <br> ALLOW $6 \mathrm{Cr}^{3+}+2 \mathrm{Cr}^{3+}$ instead of $8 \mathrm{Cr}^{3+}$ <br> IGNORE state symbols even if wrong <br> species (1), balance (1) $\begin{equation*} E_{\text {reaction }}^{\ominus}=-1.74 \mathrm{~V} \tag{1} \end{equation*}$ <br> So not feasible on condition of negative value <br> OR <br> $6 \mathrm{Cr}^{2+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+} \rightarrow 8 \mathrm{Cr}^{3+}+$ $7 \mathrm{H}_{2} \mathrm{O}$ <br> If fully correct $\begin{equation*} E_{\text {reaction }}^{\ominus}=+1.74 \mathrm{~V} \tag{1} \end{equation*}$ <br> Disproportionation not feasible on condition of positive value but reject 'reaction is spontaneous' <br> Other wrong equations <br> IF $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ or $\mathrm{Cr}^{2+}$ on left <br> Then +1.74 V <br> If $\mathrm{Cr}^{3+}$ alone on the left <br> Then -1.74 V <br> and reaction not feasible | 1 max for the equation if electrons are shown balanced or unbalanced | 4 |

CHERRY HILL TUITION EDEXCEL CHEMISTRY A2 PAPER 21 MARK SCHEME

## Section A

| Question <br> Number | Correct Answer | Mark |
| :--- | :--- | :--- |
| 22 | C | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Mark |
| :--- | :--- | :--- |
| 23 | D | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Mark |
| :--- | :--- | :--- |
| 24 | A | $\mathbf{1}$ |


| Question | Correct Answer | Mark |
| :--- | :--- | :--- |
| Number | C | $\mathbf{1}$ |
| $25 \quad$ |  |  |


| Question <br> Number | Correct Answer | Mark |
| :--- | :--- | :--- |
| 26 | A | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Mark |
| :--- | :--- | :--- |
| 27 | D | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Mark |
| :--- | :--- | :---: |
| 28 | C | $\mathbf{1}$ |

## Section B

| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| $\overline{29}$ (a) |  | +2.46 | 2 |
|  | Half-equation $\mathrm{E}^{\boldsymbol{\theta}} / \mathrm{V}$ |  |  |
|  |  |  |  |
|  |  |  |  |
|  | +0.4(0) |  |  |
|  | +1.23 |  |  |
|  | (1) for each correct value Penalise omission of + once only |  |  |



| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 29 (b)(ii) | - 1 atm / $100 \mathrm{kPa} / 101 \mathrm{kPa} / 1$ bar <br> - $1 \mathrm{~mol} \mathrm{dm}^{-3}\left(\left[\mathrm{H}^{+}\right] /[\mathrm{HCl}]\right)$ <br> ALLOW <br> '1 molar' / '1M' <br> - $298 \mathrm{~K} / 25^{\circ} \mathrm{C}$ <br> ALLOW "0 K" <br> All THREE conditions correct $=\mathbf{2}$ marks <br> Any TWO conditions correct $=\mathbf{1}$ mark <br> IGNORE <br> References to 'standard conditions' References to Pt/catalyst <br> ALLOW <br> $0.5 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{H}_{2} \mathrm{SO}_{4}$ <br> INSTEAD of the $1 \mathrm{~mol} \mathrm{dm}{ }^{-3}\left(\left[\mathrm{H}^{+}\right] /\right.$ [ HCl ]) | Wrong pressure units <br> Incorrect concentration units (eg '1 mol' / $1 \mathrm{~mol}^{-1}$ $\mathrm{dm}^{3}$ for $\left[\mathrm{H}^{+}\right]$) <br> $273 \mathrm{~K} / 0^{\circ} \mathrm{C} /{ }^{\prime}$ room temperature' | 2 |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 29 (c) | First mark: <br> Mentions / some evidence for of BOTH equations 1 AND 3 fr table in any way, even if reversed or left unbalanced <br> eg $\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+4 \mathrm{e}^{-} \rightarrow 4 \mathrm{OH}^{-}$ <br> (aq) <br> AND $\begin{equation*} 4 \mathrm{OH}^{-}(\mathrm{aq})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+ \tag{1} \end{equation*}$ <br> $4 \mathrm{e}^{-}$ <br> ALLOW $\rightleftharpoons \text { for } \rightarrow$ <br> Second mark: <br> (Adds the above half-equations cancelling $4 \mathrm{e}^{-}$to get) $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ <br> OR $\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ <br> ALLOW $\rightleftharpoons \text { for } \rightarrow$ <br> but must have $\mathrm{H}_{2}$ and $\mathrm{O}_{2}$ on left <br> Mark the second scoring point independently <br> Award this mark if the correct equation is seen, no matter how it is derived <br> ALLOW MULTIPLES OF EQUATIONS IN ALL CASES <br> IGNORE any state symbols, even if incorrect <br> ALLOW equilibrium sign $\rightleftharpoons$ used in ANY of the above equations instead of the full arrows | Equations involving $\mathrm{H}^{+}$ <br> If $\mathrm{e}^{-} / \mathrm{OH}^{-} / \mathrm{H}^{+} /$two surplus $\mathrm{H}_{2} \mathrm{O}$ molecules remain in this final equation <br> (0) for 2nd mark | 2 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $29(\mathbf{d )}$ | $\mathrm{E}_{\text {cell }}^{\ominus}=+0.40 \quad-\quad(-0.83)(\mathrm{V})$ <br> $=(+) 1.23(\mathrm{~V})$ | $-1.23(\mathrm{~V})$ | $\mathbf{1}$ |
| +Correct answer with or without <br> working scores (1) <br> No ECF from any incorrect E $\mathrm{E}^{\ominus}$ values <br> used |  |  |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $29(\mathbf{e )}$ | Reaction / equation is the same <br> OR <br> Reaction / equation for both is <br> $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ <br> ALLOW <br> $\rightleftharpoons$ for $\rightarrow$ | 'Electrode potentials don't <br> change' <br> Just same product / water <br> is produced <br> Just same reactants are <br> oxidized and reduced | $\mathbf{1}$ |
|  | IGNORE state symbols even if <br> incorrect <br> ALLOW statements such as 'they both <br> produce water from hydrogen and <br> oxygen' / 'reactants and products are <br> the same' <br> ALLOW multiples of the equation | Same reaction but in <br> reverse scores (0) |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| 29 (f) | To increase the surface area /to <br> increase the number of active sites |  | $\mathbf{1}$ |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 29 (g) | Storage (problems) <br> OR <br> hydrogen / oxygen / the gases have to be stored under pressure <br> OR <br> Leakage (of hydrogen / of oxygen /of gas) <br> OR <br> Transport(ation) problems <br> OR <br> Hard to carry / lack of portability <br> OR <br> Hydrogen flammable / inflammable <br> OR <br> Hydrogen explosive <br> OR <br> (Fuel cell) costly / expensive <br> OR <br> Needs (regular) re-filling <br> OR <br> Needs continual replenishment of $\mathrm{H}_{2}$ and $\mathrm{O}_{2}$ <br> OR <br> Lack of availability (of hydrogen / fuel) <br> OR <br> Hydrogen is made from fossil fuels / hydrogen is made by electrolysis / hydrogen is made from Natural Gas / hydrogen is made from non-renewable resources <br> ALLOW water is a Greenhouse gas / Fuel cell(s) have short(er) life-span / Fuel cells have to be (regularly) replaced <br> IGNORE references to just 'danger' or just 'safety' or just 'hazardous' <br> Any arguments in terms of voltage output <br> References to cannot be recharged | 'Fuel cell can only be used once' scores (0) | 1 |

Total for Question $29=\mathbf{1 2}$ Marks

| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $30 \mathbf{a} \mathbf{a}(\mathbf{i})$ | $\mathrm{TiCl}_{4}+4 \mathrm{Na} \rightarrow 4 \mathrm{NaCl}+\mathrm{Ti}$ |  | $\mathbf{1}$ |
|  | IGNORE <br> State symbols, even if incorrect <br> ALLOW <br> Multiples <br> Reversible arrows |  |  |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 30 (a)(ii) | Ti reduced as oxidation number decreases from +4 to 0 / changes from $\mathbf{+ 4}$ to 0 <br> Na oxidized as oxidation number increases from $\mathbf{0}$ to $\mathbf{+ 1}$ /changes from 0 to +1 <br> ALLOW <br> Correct oxidation numbers only for one mark <br> NOTE <br> Max (1) if no + sign included <br> ALLOW <br> '4+' and/or '1+' given instead of $\boldsymbol{+ 4}$ and +1 <br> NOTE <br> If any of the oxidation numbers are wrong, award max (1) for the idea that during oxidation the oxidation number increases AND during reduction the oxidation number decreases <br> IGNORE <br> References to loss and /or gain of electrons |  | 2 |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 30 (b) | $\begin{array}{ll} (\mathrm{Ti} \quad[\mathrm{Ar}]) & 3 \mathrm{~d}^{2} 4 \mathrm{~s}^{2} / 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{2}  \tag{1}\\ \\ \left(\mathrm{Ti}^{3+}[\mathrm{Ar}]\right) & 3 \mathrm{~d}^{1} / 3 \mathrm{~d}^{1} 4 \mathrm{~s}^{0} \\ \left(\mathrm{Ti}^{4+}[\mathrm{Ar}]\right) & \text { nil' } / 3 d^{0} 4 s^{0} / 3 d^{0} \end{array}$ space left blank by candidate <br> BOTH Ti ${ }^{3+}$ and $\mathrm{Ti}^{4+}$ correct for second mark <br> Mark CQ on Ti electron configuration for the second mark <br> ALLOW <br> Upper case (e.g. 'D' for 'd' in electronic configurations) Subscripts for numbers of electrons <br> Full correct electronic configurations $1 s^{2}, 2 s^{2} \ldots$. |  | 2 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| 30 (c)(i) | (d-block element) <br> EITHER <br> Ti has (two) electrons in the 3d <br> subshell / <br> Ti has a partially filled d-subshell / <br> Ti has a partially filled d-orbital / <br> Ti has electrons in d-orbital(s) / <br> Ti has electrons in d-subshell <br> (During the build up of its atoms) <br> last added / valence electron is in a <br> d-subshell / d-orbital <br> OR | Outer / highest energy <br> electrons are in a d-orbital / <br> Outer / highest energy <br> electrons are in a d-subshell | Electrons in the 'd-block'/ <br> 'electrons in the d-shell' |
| (During the build up of its atoms) <br> last added / valence electron is in a <br> d-subshell / d-orbital |  |  |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| 30 (c)(ii) | (transition element) <br> Forms one (or more stable) ions / <br> forms $\mathbf{T i}^{3+}$ (ions) which have <br> incomplete d-orbital(s) / <br> an incomplete d-subshell / <br> a partially filled d-subshell / <br> an unpaired d electron <br> IGNORE <br> References to variable oxidation <br> states | $\mathbf{1}$ |  |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 30 (d)(i) | First mark: <br> d-subshell splits /d-orbitals split (in energy by ligands)/d energy level(s) split(s) <br> Second mark: <br> absorbs light (in visible region) <br> (1) <br> Third mark: <br> Electron transitions from lower to higher energy / electron(s) jump from lower to higher energy <br> OR <br> Electron(s) promoted (within d) <br> (1) <br> Mark independently <br> NOTE <br> Maximum of (1) mark (i.e. the first mark only) if refers to electrons falling back down again | d-orbital / d-shell splits <br> absorbs purple light | 3 |
| Question Number | Acceptable Answers | Reject | Mark |
| 30 (d)(ii) | No d-electrons / empty d-subshell |  | 1 |



|  | NOTE |  |  |
| :--- | :--- | :--- | :--- |
| If candidates assumes $\mathrm{TiO}_{2}$ and |  |  |  |
| $\mathrm{TiCl}_{4}$ are both simple molecular, can |  |  |  |
| score last mark for saying that the |  |  |  |
| named intermolecular forces in |  |  |  |
| $\mathrm{TiO}_{2}$ are stronger that those in $\mathrm{TiCl}_{4}$ |  |  |  |
| IGNORE |  |  |  |
| (Permanent) dipole-dipole forces (1) |  |  |  |
| Mark the four scoring points (1) <br> independently |  |  |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| 30 (e)(ii) | Amphoteric |  | $\mathbf{1}$ |
|  | ALLOW |  |  |
| Recognisable spellings |  |  |  |$\quad$|  |
| :--- |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $30(\mathbf{e})(\mathbf{i i i})$ | $\mathrm{TiO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{KOH} \rightarrow \mathrm{K}_{2} \mathrm{Ti}(\mathrm{OH})_{6}$ <br> OR <br> $\mathrm{TiO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{OH}^{-} \rightarrow \mathrm{Ti}(\mathrm{OH})_{6}{ }^{2-}$ <br> IGNORE state symbols even if <br> incorrect |  | $\mathbf{1}$ |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 30 (e)(iv) |  |  |  |
| MUST have continuation bonds at <br> each end <br> ALLOW <br> CH3 <br> IGNORE <br> $n$ and any brackets | Two (or more) repeat units <br> shown |  |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $30(\mathbf{f})(\mathbf{i})$ | $\left(\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+}+\right) \mathbf{2 e ^ { ( - ) }} \mathbf{\rightarrow} \mathbf{2 H}_{\mathbf{2}} \mathbf{O}$ <br> $\mathbf{B O T H}$ <br> $2 \mathrm{e}^{(-)}$and $\mathbf{2 H} \mathrm{H}_{2} \mathrm{O}$ needed for the mark |  | $\mathbf{1}$ |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 30 (f)(ii) | $\begin{align*} \left(\text { Moles } \mathrm{H}_{2} \mathrm{O}_{2}\right. & =\frac{0.0200 \times 22.50}{1000} \\ & =) 4.5 \times 10^{-4} \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}_{2} \tag{1} \end{align*}$ <br> (Moles $\mathrm{Ti}^{3+}$ reacting in $\left.25.0 \mathrm{~cm}^{3}\right)=9.0 \times 10^{-4} \mathrm{~mol} \mathrm{Ti}^{3+}$ <br> (Moles $\mathrm{Ti}^{3+}$ $\begin{equation*} \text { in } \left.250 \mathrm{~cm}^{3}\right)=9.0 \times 10^{-3} \mathrm{~mol} \mathrm{Ti}^{3+} \tag{1} \end{equation*}$ <br> (Original concentration of $\mathrm{Ti}^{3+}$ $\begin{align*} & =\frac{9.0 \times 10^{-3}}{0.00500} \\ & =1.8\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \tag{1} \end{align*}$ <br> 1.8 ( $\mathrm{mol} \mathrm{dm}^{-3}$ ) with or without working scores <br> NOTES: <br> If mole ratio <br> $\mathrm{H}_{2} \mathrm{O}_{2}: \mathrm{Ti}^{3+}$ is $1: 1$ <br> final answer for concentration of $\mathrm{Ti}^{3+}$ is $0.9\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ scores (2) overall <br> If mole ratio <br> $\mathrm{H}_{2} \mathrm{O}_{2}: \mathrm{Ti}^{3+}$ is $2: 1$ <br> final answer for concentration of $\mathrm{Ti}^{3+}$ is $0.45\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ scores (2) overall <br> If candidate forgets to multiply no. of moles of $\mathrm{Ti}^{3+}$ by 10 then answer is 0.18 (moldm-3) this scores (2) <br> If volume of $\mathrm{H}_{2} \mathrm{O}_{2}$ used is 25.0 no first mark, but can score (2) if final answer CQ is $2(.0)\left(\mathrm{mol} \mathrm{dm}^{-3}\right)$ |  | 3 |

CHERRY HILL TUITION EDEXCEL CHEMISTRY A2 PAPER 21 MARK SCHEME

| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & 30 \\ & (\mathbf{f})(\mathbf{i i i}) \end{aligned}$ | (It/titanium(III)/Ti ${ }^{3+}$ ) oxidized (by oxygen in the air) <br> ALLOW <br> 'It is a strong reducing agent' | Hydrolysis | 1 |

Total for Question $30=\mathbf{2 3}$ Marks

