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Fig. 4.1 A nerve cell and its ions. A, organic
anions; Cl, chloride; K, potassium; Na, sodium;
Ca, calcium; Mg, magnesium.
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Table 4.1 Ionic concentrations for squid axon and mammalian muscle

fiber

Vertebrate muscle

Invertebrate squid axon (neurons)
(seawater=blood) (interstitial fluid)

Ions Internal External Internal External
Cations

K* 400 (10) 124 2

Na* 50 460 10 (125)

Ca%* (.4) 10 5 2

Mg2+ 1 54 14 1

other = = = =
Total 460 534 153 130

Anions

Cl~ 40-150 560 2 77

HCO3 — — 12 27

(A)~ 345 — 74 13

other = - (65) (13)
Total 460 560 153 130

Concentrations in mM. The values for the mammalian muscle fiber are believed to be representa-
tive of neurons. ( ) indicates estimates, to give electroneutrality between cations and anions.
Note lack of osmotic equilibrium across the membrane (between internal and external medium).

After Aidley (1989)
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Fig. 4.2 Ionic concentrations for an invertebrate neuron (squid axon) and a mammalian
fiber. (Based on Aidley, 1989)
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Electrochemical potential 1s defined as:

u = u, + RTInC + zFE

where:
u, = elektrochemical potential of ions in a defined state
(e.g. concentration 1 M, temperature 0 °C, electrical potential equals 0),
R = general gas constant,
T = absolute temperature,
InC = natural logarithm of concentration,
z = number of charges (+2 for Ca™, -1 for CI, etc.),
F = Faraday’s number,
E = electrical potential.
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NernSt equatiOn Walther Nernst, 1888
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Nernst potential for K*
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Nernst potential for Na*
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Resting membrane potential

Ix = gk(Em — Ek)
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gk (Em — Ex) + 8Na (Em — Ena) =0

Em = EK EK 4+ E€Na ENa

gk T 8Na gk T 8Na

a &cCa
E_= gK Ey + gN En, + el Eey + C Ec.,
T 2} gr gr
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Conductance versus
permeability
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Constant field equation (GHK)

V,=358 log
Py[K*]our+ PrnalNa"lour + PalCl ™ Iin
Py[K* | in+ Pna[Na ™ i+ Po[Cl Jout
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Na*/K* ATP-ase
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Na*/K* ATP-ase
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Driving force Net driving force
X Net flux
Chem. Elec. | Permeability (P)

Extracellular side a+ res

XPNa=

Cytoplasmic side Na* -—-

Extracellular side K+

Cyloplamic side K+

Extracellular side C|— e

Cytoplasmic side ‘ l-

The fluxes for Na*, K*, and Cl~ across the cell membrane are a
result of their chemical and electrical driving forces and the
permeability of the membrane. The fluxes shown here are for a
cell with a membrane potential of —60 mV and the ionic gradi-
ents shown in Table 6-1. (Horizontal arrows signify no net
driving force or no net flux.)
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Fig. 4.6 Equivalent electrical circuit for the electrical properties of the nerve membrane.
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Early years of modern neurobiology

O,

with his trusty microelectrode,

Don Quijote seeks the secrets of the neuron
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Fig. 4.4 The micropipette is used for electrical recording (extracellular, intracellular, patch),
electrical stimulation (current or voltage clamp), or delivery of substances (microionophoresis or
pressure ejection). Preparation of an intracellular recording micropipette is shown on the left. The
diagram on the right shows the arrangement for recording from a squid axon and observing
potentials on a cathode ray oscilloscope (CRO).
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Action potential
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Changes of conductance during the
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Action potential in a cardiac cell
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Vertebrate
CNS neuron

axon branches
can

make synapses
with about 1000
other

neurons

4/5/16 Zoran Dogas 25



lectrophysiology-basic principles

Types of synaptic connections
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Elimination from the syn. cleft
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Neuronal integration of “messages”
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Signal size depends on electrode
distance
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A Current generator

100%

A Distance (x )——»

Current injected into a neuronal process by a microelectrode
follows the path of least resistance to the return electrode in
the extracellular fluid (A). Under these conditions the change in
V,, decays exponentially with distance along the length of the

process (B).
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Temporal summation
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3D protein: ACh receptor-ionic channel

synaptic @ neurotoxin/
= ‘ a ligand

Cytoplasmic gated ion channel

Kistler et. Al., 1982
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A comparison of the dimensions of the narrowest points in
voltage-gated K™ and Na® channels, and in the ACh-activated
channel. The grid size is 0.1 nm (1 A). Sizes were evaluated by
testing channel permeability to several cations and measuring
the dimensions of the ions from space-filling models. Note that
the ACh-activated channel is quite large compared to the two
voltage-gated channels. This explains why the voltage-gated
channels are selective for one ion whereas the ACh-activated
channel is permeable to both Na™ and K*. (From Hille, 1984.)
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FIGURE 10-8
Voltage-gated and transmitter-gated channels operate by dif-
ferent mechanisms. (Adapted from Alberts et al., 1989.)

A. Voltage-gated channels, which contribute to the action po-
tential, are selective for different cations. There are separate
channels for Na*® and K~.
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B. Transmitter-gated channels, which contribute to the synap-
tic potential, are permeable to both Na* and K~.

C. The concentration gradients for the ions are the same for
both classes of channels.

4/5/16

Zoran Boga$s

42



"  JNNNNRNIETiGN o electrophysiology-basic principles

Patch-clamp technique
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Erwin Naher and Bert Sakman, 1976 Nobel Price
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Different Ca**-channels
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Negative wave on EEG

Basis of the EEG
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Mlustrates why superficial excitatory
post-synaptic potentials (EPSPs) and
deep mhibitory post-synaptic potentials
(IP5Ps) produce the same current flow,
hence deflections of the same polanty
when recorded by the surface EEG.

From: DS Dinner and H. Luders in Porter, Movrselli

PL (eds), The Epilepsies, London, Butterworths,
1985,



