CHERRY HILL TUITION EDEXCEL CHEMISTRY A2 PAPER 17 MARK SCHEME

Section A

Question Number	Correct Answer	Reject	Mark
$\mathbf{1}$	B		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{2}$	C		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{3}$	B		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{4}$	A		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
5	B		1

Question Number	Correct Answer	Reject	Mark
6	D		$\mathbf{1}$

Question 7: N/A

Question Number	Correct Answer	Reject	Mark
$\mathbf{8}$	A		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
9	A		$\mathbf{1}$

Question 10: N/A
Question 11: N/A
Question 12: N/A

Question Number	Correct Answer	Reject	Mark
13	A		1

Question 14: N/A
Question 15: N/A

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 6}$	C		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
17	D		1

Question 18: N/A

Question	Correct Answer	Reject	Mark
Number	C		$\mathbf{1}$
1			

Question	Correct Answer	Reject	Mark
Number	C		$\mathbf{1}$

CHERRY HILL TUITION EDEXCEL CHEMISTRY A2 PAPER 17 MARK SCHEME

Section B

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1}(\mathbf{a})(\mathbf{i})$	$(\mathrm{pH}=)-\log \left[\mathrm{H}^{+}\right]$	Just "concentration of hydrogen ions" OR $(\mathrm{pH}=)-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$ OR	$\mathbf{1}$
	Accept Definition in words (For example: "It is minus / negative log(arithm) of the hydrogen ion concentration") Base 10 does not have to be there, but reject "In"	$-\log \mathrm{H}^{+}$	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1}(\mathrm{a})(\mathrm{ii})$	$(\mathrm{pH}=-\log 0.0100)=2(.00)$	If any units given	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
21 (b)(i)	$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{\mathrm{K}_{a}\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}$ OR $\begin{equation*} \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}=\mathrm{K}_{\mathrm{a}}\left[\mathrm{CH}_{3} \mathrm{COOH}\right] \tag{1} \end{equation*}$ ALLOW [HA] for $\left[\mathrm{CH}_{3} \mathrm{COOH}\right]$ and $\left[\mathrm{A}^{-}\right]$for $\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]$in rearranged expression Accept $\left[\mathrm{H}^{+}\right]$for $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$ $\begin{align*} & \therefore\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\sqrt{ } 1.75 \times 10^{-7} \\ & \mathrm{OR} \\ & \therefore\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=4.18(3) \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \tag{1} \end{align*}$ $\begin{equation*} \mathrm{pH}=3.38 / 3.4 \tag{1} \end{equation*}$ ignore sf except one sf Third mark TE from $\left[\mathrm{H}^{+}\right]$only if pH less than 7 N.B. CORRECT ANSWER, WITH OR WITHOUT WORKING, SCORES (3) Assumption assumes that degree of ionisation of the acid is very small/negligible OR $\left[\mathrm{CH}_{3} \mathrm{COOH}\right]_{\text {eqm }}=\left[\mathrm{CH}_{3} \mathrm{COOH}\right]_{\text {initial }}$ OR $\left[\mathrm{H}^{+}\right]=\left[\mathrm{CH}_{3} \mathrm{COO}\right]$ OR all of the hydrogen ions come from the acid / ignore hydrogen ions from the water IGNORE any references to temperature	3.37 / 3 /3.39 / a correct pH value with units just "weak acid" / just "partially dissociates" / acid does not dissociate / [$\left.\mathrm{CH}_{3} \mathrm{COOH}\right]$ constant $\begin{align*} & {\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right] /} \\ & {\left[\mathrm{H}^{+}\right]=[\text {salt }]} \tag{1} \end{align*}$	4

Question Number	Acceptable Answers	Reject	Mark
21 (b)(ii)	First mark:		2
	(Dilution/addition of water) shifts the equilibrium		
	$\mathrm{CH}_{3} \mathrm{COOH} \quad \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+} /$		
	$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$		
	to the right		
	OR the above stated in words such as:		
	degree of dissociation increases/		
	proportion of dissociation increases/ more dissociation (as the ethanoic acid is		
	diluted)		
	Second mark:		
	so the $\left[\mathrm{H}^{+}\right]$is greater than expected/ so the decrease in $\left[\mathrm{H}^{+}\right]$is less than expected / so that the decrease in $\left[\mathrm{H}^{+}\right]$is less than that for hydrochloric acid	Reject just a reference to a 0.5 increase in pH for $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$	
	Each mark is a stand alone mark. ALTERNATIVE ROUTE:	compared with a 1.0 increase in pH for $\mathrm{HCl}(\mathrm{aq})$	
	First mark:		
	$\left[\mathrm{H}^{+}\right]=\int K_{\mathrm{a}} \times[\mathrm{HA}] \quad \text { OR }\left(K_{\mathrm{a}} \times[\mathrm{HA}]\right)^{1 / 2}$		
	OR		
	$\mathrm{pH}=1 / 2 \mathrm{p} K_{\mathrm{a}}-1 / 2 \log [\mathrm{HA}]$		
	Second mark:		
	use of mathematical expression given (e.g. $\left[\mathrm{H}^{+}\right]$affected by factor of $1 / 510$ on dilution OR substitution of numerical values into the equation)		
	(1)		
	IGNORE: any comments or calculations relating to $\mathrm{HCl}(\mathrm{aq})$		

Question Number	Acceptable Answers	Reject	Mark
21 (c)(i)	These marks are stand alone. Maintains an almost constant pH / resists change(s) in pH for small addition of H^{+}or OH^{-}ions (N.B. both ions needed) / for small additions of acid or alkali / for small additions of acid or base	"resists small change(s) in pH" OR "pH does not change"	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1}$ (c)(ii)	citric acid		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
21 (c)(iii)	First mark: (buffer contains) reservoir of HA and A^{-} OR (buffer contains) large concentrations of [HA] and [A] OR both equations: $\mathrm{HA} \rightleftharpoons \mathrm{~A}^{-}+\mathrm{H}^{+} \text {and } \mathrm{NaA} \rightarrow \mathrm{Na}^{+}+\mathrm{A}^{-}$ Second mark: (Addition of alkali/base) $\mathrm{HA}+\mathrm{OH}^{-} \rightarrow \mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O}$ OR description/equations to show that H^{+}reacts with OH^{-}(to form $\mathrm{H}_{2} \mathrm{O}$) and more acid dissociates (to replace H^{+}) Third mark: (Addition of acid) $\mathrm{A}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{HA}$ OR A^{-}reacting with H^{+}in any context described in words (e.g. by reference to weak acid equilibrium) Fourth mark: the ratio of $[\mathrm{A}-] \div[\mathrm{HA}]$ hardly changes / the ratio of [HA] $\div\left[\mathrm{A}^{-}\right]$hardly changes OR [A-] nor [HA] changes significantly (1)	$\begin{align*} & \frac{\text { JUST }}{\text { and }} \mathrm{NaA} \rightleftharpoons \mathrm{Na}^{+}+\mathrm{A}^{-} \\ & \mathrm{HA} \rightarrow \mathrm{H}^{+}+\mathrm{A}^{-} \\ & \text {without correct } \tag{1}\\ & \text { description } \end{align*}$	4

Question 22: N/A

Question Number	Acceptable Answers	Reject	Mark
23 (a)(i)	These are stand alone marks		2
	First mark:		
	(ensures that) $\left[\mathrm{H}^{+}\right]$and [propanone] (virtually)		
	constant		
	OR so that the $\left[\mathrm{H}^{+}\right]$and [propanone] do not affect		
	the rate (1)		
	Second mark:		
	the [I_{2} / iodine concentration changes		
	OR		
	so that the overall order (of reaction) is not determined		
	OR		
	otherwise a curve (graph) is obtained		
	NOTE:-		
	"only the $\left[I_{2}\right]$ changes scores (2)		
	OR		
	"only the I_{2} concentration changes" scores (2)		
	"only the iodine changes" scores (1)		

CHERRY HILL TUITION EDEXCEL CHEMISTRY A2 PAPER 17 MARK SCHEME

Question Number	Acceptable Answers	Reject	Mark
23 (a)(ii)	First mark: double the concentration of propanone OR change/increase/decrease the concentration of propanone Second mark (mark consequentially): slope/gradient of line doubles ALLOW "rate doubles" OR slope or gradient changes/increases/decreases by same factor ALLOW "rate changes/increases/decreases by same factor" NOTE: may suggest a different procedure:- First mark: monitor/measure [propanone] over time Second mark (mark consequentially): plot [propanone] v. time graph and state that t $1 / 2$ constant		2

Question Number	Acceptable Answers	Reject	Mark
23 (a)(iii)	I_{2} not involved in rate-determining step/ I_{2} not involved in slow(est) step / H^{+}and propanone involved in rate-determining step/ H^{+}and propanone involved in slow(est)step so there must be another step where I_{2} is involved/ so there must be a fast step where I_{2} is involved BUT:- I_{2} not involved until after the rate-determining step/ I_{2} not involved until after the slow(est) step ALLOW H^{+}involved in rate-determining step and is regenerated as it is a catalyst (in another step)	I_{2} involved before ratedetermining/slowest step (0)	2

Question Number	Acceptable Answers	Reject	Mark
23 (b)(i)	$\mathrm{HCO}_{3}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$ OR $\mathrm{HCO}_{3}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}$ OR $\mathrm{HCO}_{3}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$ OR $\mathrm{HCO}_{3}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}$ ALLOW: $\mathrm{NaHCO}_{3}+\mathrm{H}^{+} \rightarrow \mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$ OR $\mathrm{Na}^{+}+\mathrm{HCO}_{3}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$ IGNORE any correct or any incorrect state symbols	$\mathrm{NaHCO}_{3}+\mathrm{HCl} \rightarrow$ $\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$ OR any equations with HA	1

Question Number	Acceptable Answers	Reject	Mark
23 (b)(ii)	$\begin{aligned} & \mathrm{CH}_{3} \mathrm{COCH}_{3}+3 \mathrm{I}_{2}+4 \mathrm{NaOH} \\ & \rightarrow \mathrm{CH}_{3}+\mathrm{CH}_{3} \mathrm{COONa}+3 \mathrm{NaI}+3 \mathrm{H}_{2} \mathrm{O} \end{aligned}$ IGNORE any correct or any incorrect state symbols CHI_{3} on RHS of equation remaining species correct balanced equation NOTE: balancing mark is CQ on all species correct Accept correct ionic equation (i.e. Na^{+}omitted) NOTE: If CH_{3} l, can only access second mark above		3

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 4 (a)}$	$K_{p}=\frac{p\left(\mathrm{H}_{2}\right)^{3} p(\mathrm{CO})}{p\left(\mathrm{CH}_{4}\right) p\left(\mathrm{H}_{2} \mathrm{O}\right)}$	(1)	[] Brackets not required

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 4 (b) (i)}$	No effect (as K_{p} dependent only on temperature)		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
24 (b)(ii)	 to maintain K_{p} constant, mole fractions of numerator must decrease OR mole fractions of denominator must increase as $\times P_{T}^{2}$ overall) First mark: EITHER mole fractions/partial pressures of numerator decrease OR mole fractions/partial pressures of denominator increase Second mark: any mention of $\times P_{T}{ }^{2} \mathrm{OR} \times \frac{\boldsymbol{P}_{T}{ }^{4}}{\boldsymbol{P}_{T}{ }^{2}}$ ALLOW P for P_{T} NOTE: If Le Chatelier quoted, statements such as: "Equilibrium shifts to side of fewer moles (of gas molecules)/fewer (gas) molecules" max (1)		2

Question Number	Acceptable Answers	Reject	Mark
24 (b)(iii)	Reaction takes place on surface of the catalyst Active sites/(catalyst) surface is saturated with reactant molecules/reactants (at the pressure of the reaction) NOTE: an answer such as "... depends on the availability of active sites on catalyst surface"		2

Question Number	Acceptable Answers	Reject	Mark
24 (d)(i)	production (of hydrogen) forms CO_{2} OR production (of hydrogen) forms a Greenhouse gas OR production (of hydrogen) forms CO OR CO_{2} is a Greenhouse gas OR CO is a Greenhouse gas ALLOW production (of hydrogen) uses/requires energy ALLOW CO is toxic/poisonous	methane produced (0)	1

Question Number	Acceptable Answers	Reject	Mark
24 (d)(ii)	$2 \mathrm{KHCO}_{3} \rightarrow \mathrm{~K}_{2} \mathrm{CO}_{3}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$		$\mathbf{1}$
	ALLOW multiples		

Question Number	Acceptable Answers	Reject	Mark		
$\mathbf{2 4}$ (e)	products removed OR not a closed system OR balance between rate and yield OR balance between time and yield OR recycling of reactants OR more product in unit time (so process more economically viable) IGNORE any comments relating to cost	references to atom economy	$\mathbf{1}$		
dangers of					
maintaining high					
pressures				\quad	
:---					

CHERRY HILL TUITION EDEXCEL CHEMISTRY A2 PAPER 17 MARK SCHEME

Section C

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 5}$ (a)	$\Delta S_{\text {total is positive / } \Delta S^{\mathrm{o}} \mathrm{total} \text { > 0 }}$with or without superscript NOTE: This mark may be awarded from answer to Q25(b)(v) Accept ΔG° is negative	Just "the entropy is positive"	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 5}$ (b)(i)	$(+) 27.3$ and $(+) 87.4\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$ IGNORE incorrect units		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
25 (b)(ii)	$\begin{align*} \Delta S_{\text {sys }}^{\circ} & =(2 \times 87.4)-\{(4 \times 27.3+(3 \times 205.0)\} \tag{1}\\ & =-549.4 /-549\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \tag{1} \end{align*}$ Correct answer with or without correct units IGNORE any wrong units Accept TE from (b)(i) NOTE: +549/+549.4 scores (1) Check working NOTE: $1^{\text {st }}$ mark: for $\mathrm{x} 2, \mathrm{x} 4$ and x 3 $2^{\text {nd }}$ mark: for (products - reactants), with correct arithmetic		2

Question Number	Acceptable Answers	Reject	Mark
25 (b)(iii)	$\begin{aligned} & \Delta \mathrm{S}_{\text {surr }}=-\frac{\Delta \mathrm{H}}{\mathrm{~T}} \\ & =-\left(-1648 \times 10^{3}\right) \div 298(.15)\left(\mathrm{J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \\ & =(+) 5530\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \end{aligned}$ OR $\begin{equation*} =(+) 5.53 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \tag{1} \end{equation*}$ NOTES: - Correct answer, with or without working, scores - If $5530\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$ given, IGNORE any subsequent incorrect attempts to convert it to a value in $\mathrm{kJ} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$ IGNORE s.f. except one s.f.	Just (+)5.53 with no units OR $(+) 5.53 \mathrm{~kJ} \mathrm{~mol}^{-1}$	1

Question Number	Acceptable Answers	Reject	Mark
25 (b)(iv)	$\begin{aligned} & \Delta \mathrm{S}_{\text {total }}=(-549.4)+(+5530) \\ &=+4980.6 /+4981 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\ & \mathrm{OR} \\ &+4.981 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \end{aligned}$ (1) for value (1) for correct sign and units IGNORE s.f. except one s.f. Accept TE from (b)(ii) and (b)(iii)	Just the formula: $\Delta \mathrm{S}_{\text {total }}=\Delta \mathrm{S}_{\text {sys }}^{0}+\Delta \mathrm{S}_{\text {surr }}$	2

Question Number	Acceptable Answers	Reject	Mark
25 (b)(v)	($\Delta \mathrm{S}_{\text {system }}$ is negative): as loss of disorder as gas \rightarrow solid OR more order as gas \rightarrow solid OR as decrease in entropy as gas \rightarrow solid ($\Delta \mathrm{S}_{\text {surr }}$ is positive): (heat) energy released (increases kinetic energy and hence movement of the surrounding molecules) $\Delta \mathrm{S}_{\text {total }}$ is positive because $\Delta \mathrm{S}_{\text {surr }}$ is (numerically) greater than $\Delta \mathrm{S}_{\text {sys }}$ OR $\Delta \mathrm{S}_{\text {surr }}$ "outweighs" $\Delta \mathrm{S}_{\text {sys }}$ OR $\Delta S_{\text {surr }}$ sufficiently large so that $\Delta S_{\text {total }}$ is positive	Just "reaction is exothermic" $\Delta S_{\text {total }}$ is negative (0) for third scoring point	3

