
https://rkmagile.co.uk

https://rkmagile.co.uk/


What is a Delivery Lead?

A Problem Solver

A Coach

A Facilitator

Shielding team from 
unnecessary noise

'Servant Leader'Encouraging the sharing of 
knowledge inside & outside 

of the team

Identifying & helping to 
remove single points of 

failure

Being pragmatic & open 
minded to how the team will 
work & not over prescriptive



Core Responsibilities



How the Delivery Lead contributes to the lifecycle of a product



How the Delivery Lead contributes to Strategy



How the Delivery Lead contributes to Product



How the Delivery Lead contributes to the Team Backlog



How the Delivery Lead contributes to the Delivery



How the Delivery Lead contributes to the Pathway to Live



-

Supporting the Product



-

Taking the subjectivity out of what you do



Fostering the agile community



Key Ceremonies

Backlog Planning

Owned by the PO - The DL should be involved and also making sure these sessions are taking place. 
The PO - working with the DL - will assess the next priorities and focus for the team

Sprint Planning

Set up and facilitate planning for a 2 week period - the team will assess how much work they feel they 
can achieve in that period. The DL will support this by utilising metrics from previous sprints & 

looking at capacity in the team

Retros

The DL will ensure a regular retro will take place to provide the forum for the team to identify and 
discuss the areas that aren't working so well and things they wish to do to improve working. The DL 

will also ensure that any actions identified are recorded, assigned and actioned

Showcase

/ Demo

The team should be open & transparent with the work they have done. Running regular showcases 
helps here. If you use sprints then holding these at the end of the sprint is a great natural pint to hold 

these. The DL ensures these take place and the appropriate people are involved. Often the PO and 
other team members actually run these but the DL ensures they are ready and take place



Retrospectives

Good

Not 
Good

Puzzles

Typical format:

What's gone well, not so well > 
Improvements to focus on

Give the team time to write down areas for 
the 1st 2 areas, then vote on the areas they 
most want to discuss further and identify 
improvements

1 hour should be more than enough for a 
retro, unless you know there are a number 
of complex issues that need addressing - in 
which case allow more time (e.g. 1.5 hours). 
More than this and the quality of the output 
will likely reduce

Retro styles:
There are many different examples and 
types of retro to try out. Try to find which 
works best for the team. Sometimes it's 
worth mixing things up and trying a 
different format

One resource for retros can be found here:
https://trello.com/b/40BwQg57/retrospectiv
e- techniques- for- coaches- scrum- masters- 
and- other- facilitators

Remote vs Face to Face:

With the improvement in the availability and 
choice of online boards running a retro 
remotely shouldn't pose a barrier like it used 
to.

Remote: Consider allowing people to submit 
ideas ahead of the retro so you have time to 
order them and focus on the improvements

Remote Tools:

Its always recommended to keep things as 
simple as possible

Using an online whiteboard such as MIRO, or 
Teams also has a board.

Its even possible to use JIRA to record your 
retros

Ensure the retro adds value:

A retro is only valuable if you identify useful, 
meaningful improvements and actions and 
test are actually addressed. Assigning actions 
as work in your backlog is one option if 
people are struggling to make time and 
commit to actions

https://trello.com/b/40BwQg57/retrospective-techniques-for-coaches-scrum-masters-and-other-facilitators
https://trello.com/b/40BwQg57/retrospective-techniques-for-coaches-scrum-masters-and-other-facilitators
https://trello.com/b/40BwQg57/retrospective-techniques-for-coaches-scrum-masters-and-other-facilitators


Sprint Planning

Define your teams planning and work 
cadence - typically 2 weeks
Include whole team (Dev, QA, PO, UX, DL 
and anyone else working within the 
team to deliver the work)
Should have a set of candidate stories 
for the next sprint - analysed and ready 
to be discussed with the team. These 
may already have been 'sized'.
Understand the capacity in the team 
(holidays, time not working in the team) 
and allow for this in planning

Look at previous metrics from earlier 
sprints - e.g. no. of stories completed, 
points completed, work max of 
story/bug/incident etc..

BA/PO will pitch each sprint 
caudate/story. The team will assess the 
size and will ask questions where 
needed to clarify. The team will 
determine if they will bring that story 
into the next sprint.
The DL should be challenging if it looks 
like the team are either over or hugely 
under committing to the work for the 
next sprint
Set a goal for your next sprint - give 
clarity to everyone what the outcomes 
will give

Determine how long you will need for 
the planning. The more work done 
ahead of the session to have stories 
ready and reviewed will reduce this. 
Likely to need between 1 and 2 hours. M 
ore than this reduces the output from 
the team and indicates that more pre 
work is required next time



Key Artefacts



Work Management and tools

There are many tools available and the principles for how you use the tool should be the 
same, i.e.

Set up a project that works for your team
Keep things simple - the more complex the workflow the less likely people will be 
able to easily use it
Use the reporting function of the tool to track metrics that are meaningful to you and 
the team, e.g.

Burn Up (great for teams operating with kanban and supporting existing live 
products) or Burn Down (Burn downs are great for showing sprint progress)
Cumulative flow (helps to identify potential bottlenecks
Velocity reporting tracking work you have committed to vs work completed)

Build your reporting dashboards, showing the useful data that others in the team will 
benefit from, e.g.:

Bug counts
Average time in status (useful in helping the team determine if stories have 
been sliced to the right level, or looking for potential bottlenecks



Risks, Issues and Depenencies management



Tracking Progress

Tracking and reporting progress is key to 
helping you and the team understand if 
you are on track or not. They can also help 
highlight impediments and areas to tackle

The Burn down is great for quickly 
visualising progress towards the end goal 
and show scope changes and impact - this 
can help control scope!

The Cumulative flow - more used in 
Kanban but can still be used to show 
efficiency. The aim is to keep consistently 
thin slices for work in progress whilst 
highlighting increases in work done - can 
also highlight where you may have issues 
(e.g. spending too long in dev or QA wait 
queues)

Tracking defects is important - are you 
seeing in crises here - why/what are the 
root causes to tackle?

Team Health - how the team feel is really 
important - track this and looks for 
trends/areas to tackle. A healthy/happy 
team will be more effective



Retro Outputs

Always document the output for all to see and clearly assign people to own actions

Keeping the output is important - we can look back for any systemic trends/areas that keep 
coming up

Always refer to the previous actions and progress towards these in each retro. If the team 
aren't closing off actions look for reason why - maybe assign as work on the board!

If working remotely, look for a good online whiteboard such as MIRO



The Go Live Checklist

We still need to plan how we release work. Most of the time this is an individual story that we 
can release directly to live and the customer sees it straight away. Sometimes we need to wait 
until a number of stories are ready before we switch on to customers

Don't confuse 'Go Live' with having a Big Bang deployment. Always aim to release to live for 
your definition of done. Use feature switches to hide from the customer until ready to switch 
on.

Checklists are useful where you have a significant piece of functionality or project that (even 
though it may be in live but not visible) you still need to ensure it is ready to be switched on to 
customers.



Example Checklist

This is just an example of the areas to 
consider. ~Not all will be applicable and 
other considerations may need to be 
added depending upon the work.



Sizing of stories
Its important to maintain a consistent 
approach to sizing - whatever scale you come 
up with, maintain this. Successful sizing of work 
 requires teams to compare the story in 
question with other stories. When you already 
have delivered work to compare against this 
can be relatively easy, but when this isn't the 
case it can prove more challenging.

Sizing work

-

Keep a 
consistent 

scale

Compare to 
previous work

Scale The Sizing

Dont resize

Do use your 
metrics to 
determine 

fluctuations in 
estimates

Agree your 
scale

Always 
include QA

Velocity & Reviewing

Sizing of stories
Choose you scale for sizing - e.g. Fibannaci
Always include development and QA effort in 
the size
Try to base either on complexity or on idea of 
size - but steer clear of thinking in terms of 
time
Compare to previous stories e.g. do we think 
story x is smaller/less complex, the same, 
larger..

Sizing of stories
Don't be tempted to revise the estimate later
Size of team should not affect the estimate

Relative Sizing
A quick and simple way to size work involves 
Relative Sizing. You may have a list of EPICs or 
even features. You will probably have 1 that 
you are able to break out further into stories - 
often the first one you will work on and the one 
you know most about. Using this as your 
baseline - you can very quickly work out the 
size of your backlog.

Relative Sizing
Working through the EPICS, relative size 
them - e.g. EPIC 2 is bigger than EPIC 1, 
EPIC 3 is smaller than EPIC 1 etc.
Try to naturally group these into 3 to 4 
groups
When finished apply T- shirt sizes > S, M, L, 
Xl
Break out 1 EPIC into stories. Size each 
using Fibonacci.
Add up the num per of points
Apply the following scale to your other 
EPICS: Sml > Med = 2xSml > Lrg = 2xMed
Now Total up all your EPICS

1.

2.

3.

4.

5.
6.

7.

Determine your expected velocity
When you don't know your velocity (new project, team etc..)
Size a selection of stories with team. Make a note of size but 
don't make visible on the story yet
Would recommend enough stories to cover a couple of 
EPICS if feasible
Now ask the team to pick a selection of stories that they feel 
they could achieve the team definition of done in a 2 week 
sprint
Note down the points total
Now place the stories back in the pile and ask the team to 
do the same again but being careful to not just select the 
same cards - again note down the total points
Do this between 3 and 5 times
Add up all points tallies and divide by no. of time you ran 
this exercise - this will give you average points/velocity
Caution - this is just an estimate and not scientific at this 
point - you will need to carefully monitor progress and 
adjust velocity accordingly (and therefore planning). Use of 
burn down or burn up will complement!

1.
2.

3.

4.

5.
6.

7.
8.

9.



Online Collaboration tools - examples

Miro - 
whiteboard TeamsSlack

White board Instant Messaging Meetings and comms

Work Management

JIRA Target 
Process


