

Solution:

Problem guide:

(1)
Since this obviously involves
acceleration,
set up inventory:
$\mathrm{V}_{\mathrm{i}}=$
$\mathrm{V}_{\mathrm{f}}=$
$\mathrm{a}=$
$\mathrm{s}=$
$\mathrm{t}=$

$$
\frac{335 \mathrm{mi}}{1 \mathrm{hr}} \times \frac{5.28 \times 10^{3} \mathrm{ft}}{1 \mathrm{mi}} \times \frac{1 \mathrm{hr}}{3.6 \times 10^{3} \mathrm{sec}}=\frac{1768.8 \mathrm{ft}}{3.6 \mathrm{sec}}=491.333 \mathrm{ft} / \mathrm{sec}
$$

(3) Now set up equation using "odd man out" cheat sheet:

$$
a=\frac{V_{f}-V_{i}}{t}=\frac{491.333-0}{3.6}=136.481 \mathrm{ft} / \mathrm{sec}^{2}
$$

(4) Convert to G's by dividing answer by 32:

$$
136.481 \div 32=4.265 \text { G's}^{\prime} \mathbf{s}
$$

Q2: In the video we see that the dragster has achieved 74 MPH in only 21 ft . How many G's does the driver experience in this part of the race?

Problem guide:

(1)	(2)
Since this obviously involves	Fill in raw data:
acceleration,	$\mathrm{V}_{\mathrm{i}}=0 \mathrm{MPH}$
set up inventory:	$\mathrm{V}_{\mathrm{f}}=74 \mathrm{MPH}^{*} \quad(108.533 \mathrm{ft} / \mathrm{sec})$
$\mathrm{V}_{\mathrm{i}}=$	$\mathrm{a}=$? (this is the question) \uparrow
$\mathrm{V}_{\mathrm{f}}=$	$s=21$
$\mathrm{a}=$	$\mathrm{t}=\otimes$ ("odd man out") \downarrow
$\mathrm{s}=$	must be
$\mathrm{t}=$	converted to ft/sec

$$
\frac{74 \mathrm{mi}}{1 \mathrm{hr}} \times \frac{5.28 \times 10^{3} \mathrm{ft}}{1 \mathrm{mi}} \times \frac{1 \mathrm{hr}}{3.6 \times 10^{3} \mathrm{sec}}=\frac{390.72 \mathrm{ft}}{3.6 \mathrm{sec}}=108.533 \mathrm{ft} / \mathrm{sec}
$$

(3) Now set up equation using "odd man out" cheat sheet:

$$
a=\frac{V_{f}^{2}-V_{i}^{2}}{2 s}=\frac{108.533^{2}-0^{2}}{2(21)}=\frac{11779.412}{42}=280.462 \mathrm{ft} / \mathrm{sec}^{2}
$$

(4) Convert to G's by dividing answer by 32 :

$$
280.462 \div 32=\mathbf{8 . 7 6 4} \mathbf{G}^{\prime} \mathbf{s}
$$

