

Solution:

Q1:

Problem guide:

3 Now set up equation using "odd man out" cheat sheet:

$$a = \frac{V_f - V_i}{t} = \frac{491.333 - 0}{3.6} = 136.481 \, ft/sec^2$$

(4) Convert to G's by dividing answer by 32:

$$136.481 \div 32 = 4.265 \, \mathrm{G's}$$

Q2: In the video we see that the dragster has achieved 74 MPH in only 21 ft. How many G's does the driver experience in this part of the race?

Problem guide:

1	2
Since this obviously involves	Fill in raw data:
acceleration,	V _i = 0 MPH
set up inventory :	V _f = 74 MPH* (108.533 ft/sec)
V _i =	a = ? (this is the question)
V _f =	s = 21
a =	t = ⊗ ("odd man out") 🛛 🗸
s =	<u>must</u> be
t =	converted to ft/sec

 $\frac{74 \, mi}{1 \, hr} \, \mathsf{X} \, \frac{5.28 \times 10^3 ft}{1 \, mi} \, \mathsf{X} \, \frac{1 \, hr}{3.6 \times 10^3 \, sec} \, = \, \frac{390.72 ft}{3.6 \, sec} = 108.533 \, ft/sec$

(3) Now set up equation using "odd man out" cheat sheet:

$$a = \frac{V_f^2 - V_i^2}{2s} = \frac{108.533^2 - 0^2}{2(21)} = \frac{11779.412}{42} = 280.462 \text{ ft/sec}^2$$

(4) Convert to G's by dividing answer by 32:

 $280.462 \div 32 = 8.764 \text{ G}'\text{s}$

Q2: