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Abstract 
Per-/poly-fluoroalkyl substances (PFAS) are a group of manmade compounds with known human toxicity and 
evidence of contamination in drinking water throughout the US. We augmented our electronic health record data 
with geospatial information to classify PFAS exposure for our patients living in New Jersey. We explored the utility 
of three different methods for classifying PFAS exposure that are popularly used in the literature, resulting in 
different boundary types: public water supplier service area boundary, municipality, and ZIP code. We also 
explored the intersection of the three boundaries. To study the potential for bias, we investigated known PFAS 
exposure-disease associations, specifically hypertension, thyroid disease and parathyroid disease. We found that 
both the significance of the associations and the effect size varied by the method for classifying PFAS exposure. This 
has important implications in knowledge discovery and also environmental justice as across cohorts, we found a 
larger proportion of Black/African-American patients PFAS-exposed. 
 
1. Introduction 
Per- and polyfluoroalkyl substances (PFAS) are a group of nearly 5000 of manmade organic compounds that 
possess high stability and mobility in the environment. Development of these synthetic compounds began in the 
1970’s for use in various industrial and commercial products (e.g. aqueous firefighting foam, nonstick cooking pans, 
grease-resistant food packaging, stain-resistant textiles). Nicknamed “forever chemicals” that are highly resistant to 
breakdown, PFAS molecules are composed of a chain of strong carbon-fluorine bonds. The two most recognizable 
PFAS compounds, perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) are no longer 
intentionally produced in the United States (US), however they are the most widespread and bio-accumulative. 
Despite the widespread proliferation of PFAS in the US, many differences exist across states in terms of what 
exposure levels constitute risk for human health and how to measure exposure. The primary purpose of this study is 
to compare cohort definition differences for PFAS exposure to determine how this affects our cohorts both in terms 
of sample size counts and also disease risk. We also aim to explore disparities in PFAS exposure as an 
Environmental Justice angle of our work. 
1.1 State-Level and Federal-Level PFAS Actions 
As of September 2022, there are no federal regulations of PFAS, however the EPA currently has established the 
non-enforceable lifetime health advisory level (LHAL) of 0.07 µg/L of combined PFOS and PFOA in drinking 
water 1. On October 2021, the EPA announced the PFAS strategic roadmap, outlining EPA’s commitment to actions 
from 2021 to 2024 2 with further revisions to the LHAL expected in future. 
Statewide in New Jersey (NJ), the source of the PFAS exposure varies from military bases to manufacturers 3. From 
the 1950’s until about 2000, when these two types of PFAS were phased out of production, PFOA and PFOS were 
manufactured, sold and distributed in NJ. In 2018, New Jersey adopted a maximum contaminant level (MCL) for 
different PFAS species, including a MCL of 13 parts per trillion (ppt) for PFNA, followed by adoption of MCLs for 
PFOA (14 ppt) and PFOS (13 ppt) in 2020. The New Jersey Department of Environmental Protection (NJDEP) 
developed the standards, criteria, and guidance with the idea that exposures would occur throughout an individual’s 
lifetime 4.  
1.2 Challenges in Determining Contaminant Exposure in Drinking Water 
A challenge in risk analysis for exposure contaminants in drinking water includes appropriate representation of the 
exposed cohort. Blood serum testing provides valuable, accurate information for monitoring PFAS exposure in 
humans. Most PFAS exposure research depends on testing biomarkers (e.g. serum, urine, breastmilk) 5–10.  Due to 
cost and varied access to resources, PFAS blood tests can be a challenge to implement in research.  



When using electronic health record (EHR) data, patient address location can be determined at different 
granularities. ZIP Codes of the exposed areas can be utilized quickly and is often used in analysis of public health 
studies. However, ZIP Codes are assigned by the United States Postal Service for the purpose of delivering mail; the 
boundaries will not necessarily represent areas of the water distribution or even the municipality 11. Using 
geographic information systems (GIS), patient addresses may be geocoded locally resulting in latitude and longitude 
coordinates for spatial analysis. Spatial analysis can be utilized to explore patterns in EHR data to analyze clinical 
outcomes. For example, spatial analysis has been used to investigate adverse pregnancy outcomes12, maternal 
morbidity13, pediatric surgery cancellation14. Researchers can then determine whether or not these patient 
coordinates lay within a boundary. Depending on the data available, which can vary greatly by state, the analysis 
may be limited to ZIP Code or municipality boundaries. Public water supplier (PWS) service area boundaries are not 
necessarily available in every state, limiting researchers to manually determine ZIP Codes or municipality codes to 
analyze exposure to contaminated drinking water. A recent related work investigated multimorbidity and PFAS 
exposure using EHR data and geospatial analysis using ZIP Code boundaries 15. 
1.3 Objective 
In this work, we aim to explore how cohort definition differences (i.e. demographics) in municipality, ZIP Code, and 
Public Water Supplier (PWS) Service Area boundaries in spatial analysis can alter patients' drinking water PFAS 
exposure status. Secondly, we refer to well-known associated diseases (i.e. thyroid disease) and analyze these 
associations in these cohorts, using inpatient and outpatient data. We are expanding on prior work that studied only a 
heavily exposed PFAS population 16 and investigating patients from the neighboring state of New Jersey (NJ) where 
these PFAS classification differences would likely have an effect on subsequent studies.  
 
2. Methods 
2.1 Patient Cohort Data Source 
We used Electronic Health Records (EHR) data obtained from 4 different hospitals within the Penn Medicine 
system, the Hospital of the University of Pennsylvania (HUP), the Pennsylvania Hospital, Penn Presbyterian 
Hospital, and Chester County Hospital. In previous work, patient addresses were geocoded to coordinates (latitude 
and longitude) using ArcGIS locally 17. The ArcGIS geocoding dataset was limited to 100 match scores. The cohort 
is limited to patients who had at least one address in the state of NJ, due to the limit of the NJ DEP dataset. 
2.2 Identifying PFAS Exposure Boundaries 
2.2.1 Spatial Boundaries Data Source 
Boundaries of the public water supplier service areas are available from the New Jersey Department of 
Environmental Protection (NJDEP) Geographic Information System (GIS) digital data. This secondary product has 
not been verified by NJDEP and is not state-authorized or endorsed. According to the source information, the 
boundaries for New Jersey PWS service areas are approximate. Municipal boundaries of New Jersey are provided 
by NJ Office of Information Technology, Office of GIS (NJOGIS) in the NJ State Plane Coordinate System 
(NAD83) and is accessible in the New Jersey Geographic Information Network (NJGIN) Open Data portal. We used 
the zipcodeR() package to source all New Jersey state ZIP Codes.  
2.2.2 NJ DEP Dataset 
PFAS exposure was determined by a dataset of Public Water Systems with PFAS maximum contaminant level 
(MCL) Violations sourced from the NJ DEP Dataminer (sourced on March 16 2022). The dataset is limited to three 
types of PFAS: PFOA, PFOS, and PFNA. Maximum Contaminant Level of each PFAS type monitored in NJ are 
reported in parts per billion (ppb): 0.014 ppb of PFOA, 0.013 ppb of PFOS, and 0.013 ppb of PFNA4. Regulations to 
monitor these contaminants occurred between 2019 and 2020, while the testing requirements for all community 
water systems began January 1, 2020 for PFNA and January 1, 2021 for PFOS and PFOA 18.  
2.3 Linking PFAS Exposure Areas and Patient Geospatial Information 
Results of the NJ DEP maximum contaminant level violations were simplified in a binary matrix to indicate whether 
or not each PWS had at least one sample or violation above the MRL/MCL, respectively. Moreover, each 
corresponding municipality and ZIP code of a public water service area were coded to a binary matrix for further 
exposure analysis. We use binary exposure due to the complexity of contaminant exposure in drinking water.  
Subsequently, we determined patient location, using patient geospatial information, within the determined 
boundaries: Municipality, and Public Water Supplier Service Area boundaries. For the sake of comparison to 
methods without the time and resources for determining geospatial information, we extracted patient address ZIP 
Codes for analysis. Each patient location was linked to these boundaries, resulting in a matrix of binary exposure the 
three PFAS types in the NJ DEP violations dataset. Patients who were found to be PFAS-exposed across all three 
boundary types were next classified as another cohort, further referred as intersection in our analysis. Exposure to 
PFAS types by address were then concatenated by patient unique medical record number (MRN).  



2.3.1 Inpatient and Outpatient PFAS Exposure Cohorts 
Two cohorts were determined using a combination of The International Classification of Diseases, 9th Revision, 
Clinical Modification (ICD-9-CM) and ICD, 10th Revision (ICD-10) billing codes. These cohorts include only 
patients with inpatient and outpatient diagnoses, respectively. We further divide the cohorts, indicating PFAS 
exposure by the following: NJ DEP Violations by PWS Service Area, NJ DEP Violations by municipality, and NJ 
DEP Violations by ZIP code. We collected demographics and characteristics of each cohort. 
2.4 Statistical Analysis 
We observe well-known PFAS exposure disease associations in literature, namely: thyroid disease 19–22 and 
hypertension 23–28. We extracted ICD-9 and ICD-10 codes to capture these diseases. After code extraction, we used 
the ‘icd_map()’ function in the ‘touch’ package in R to crosswalk ICD-9 codes to ICD-10. Next, we included goiter 
diagnosis codes and categorized such as toxic and nontoxic goiter code groups. Due to differences in medical 
settings, resulting in differences in the EHR data, we split the cohort into inpatient and outpatient cohorts. We 
limited to patients who were given at least one diagnosis in the EHR record for each cohort. To improve statistical 
power, we limited our analysis to diagnosis codes given to at least 100 patients, and given to at least 10 PFAS-
exposed patients in each cohort. In our analysis, we calculated Fisher’s exact test and report P-value, odds ratio 
(OR), Bonferroni-corrected P-value for each diagnosis code and code group. 

 
3. Results 
3.1 Penn Medicine Cohort Selection and Characteristics 
Initially, we extracted an initial set of 1,060,100 female patients treated at Penn Medicine, with inpatient and 
outpatient visits between 2010-2017. We focused on female patients only for this analysis as many of the diseases 
correlated with PFAS exposure in the literature are more prevalent in females and our lab is focused on women's 

 
Figure 1. Flowchart of cohort selection process 
 



health outcomes generally with a focus on environmental factors that affect fertility (which will be the focus of later 
work in this area). We geocoded all addresses using ArcGIS in prior work 17 and extracted the corresponding 
latitude and longitude coordinates. This resulted in a set of 998,217 female patients who had at least one address in 
the US that we were successfully able to geocode. We included only patients having at least one address located in 
New Jersey as the NJDEP data is limited to the state of New Jersey, resulting in 171,849 patients. Refer to Figure 1 
for the complete flowchart of our cohort selection process.  
3.1.1. Inpatient and Outpatient Cohorts 
Next, we created inpatient and outpatient cohorts and removed patients without diagnosis information, respectively. 
This yielded an inpatient cohort of 21,478 patients and an outpatient cohort of 130,915 patients. See Figure 1 for 
illustration of the detailed process. 
3.2 Identifying PFAS Exposure Boundaries 
3.2.1 Spatial Boundaries Data Source 
A total of 587 unique public water supplier service area boundaries were included in the NJDEP GIS PWS dataset. 
In our municipal boundary dataset, we found 565 unique municipality codes. Using the statistical software language 
R, we sourced 732 unique ZIP Codes in New Jersey state. 
3.2.2 NJ DEP Dataset 
The violations dataset included 97 unique PFAS MCL violations in New Jersey. We excluded noncommunity non-
transient water supplier violations (n = 48) and found a total of 26 unique public water suppliers (PWSs) with at 
least one PFAS MCL violation. After, we manually linked these PWSs to relative ZIP Codes (n = 32) and 
municipalities, (n= 28).  Then, we linked the PWS service area boundary shapefile dataset to the PFAS MCL 
violations dataset, resulting in 20 unique PWSID with at least one PFAS MCL Violation.  

3.3 Linking PFAS Exposure 
Areas and Patient Geospatial 
Information 
After linking the PFAS MCL 
Violations to PWSID, municipality 
codes, and ZIP code, we linked 
patient geospatial information to 
these respective boundaries (see 
Figure 2).  This resulted in 5,890 
patients exposed when using PWS 
service area boundary data, 9,468 
patients when using municipality 
boundary data, and 5,833 patients 
when using ZIP code.  We report 
demographics and characteristics of 
the complete patient cohort in 
Table 1. In comparison to other 
race and ethnicity categories, Black 
or African American patients were 
found to have a greater proportion   
exposed to PFAS in each boundary 
type (15.10 -19.21%). 
3.3.1 Municipality Boundary 
Method Results in the Largest 
PFAS-Exposed Cohorts regardless 
of Inpatient vs. Outpatient 
Distinction 
We stratified our cohorts by 

whether or not they were in-patient or outpatient because these different patient populations may have different 
reasons for traveling to PennMedicine for treatment. However, we still found differences between the cohorts in 
terms of the methods used to identify PFAS exposure. Some trends were consistent across cohorts, we found that the 
greatest number of PFAS exposed patients could be identified when using the municipality boundary method 
(n=934 for inpatient and n=7,684 for outpatient). For the inpatient cohort, we can increase our cohort size by 42% 
when using the municipality boundary method and for the outpatient data the increase is 60% of the cohort size. The 
actual exposure counts for PFAS exposed patients using the PWS service area boundary data (n = 684), municipality 

 
Figure 2. Flowchart of Binary classification of PFAS exposure using 
geospatial information



boundary data (n = 934), and ZIP code (n = 657) for the 
inpatient cohort. For the outpatient cohort, we found 
4,815 PFAS exposed patients when using PWS service 
area boundary data, municipality boundary data (n = 
7,684), and ZIP code (n = 4,792). 
See Figure 3 for the intersection of the PFAS exposure 
counts by boundary type. Municipality boundary data 
analysis resulted in the highest number of patients 
exposed overall (n = 9,468) and the most patients 
without overlap with PWS service area and ZIP code (n 
= 3,131). ZIP code overlapped with municipality and 
PWS service area, without patients exposed only due to 
ZIP code. PWS service area boundary, ZIP code, and 
municipality boundary share 5,011 patients exposed to 
PFAS; this resulting sample of patients is the referred to 
as the intersection in the subsequent analyses. 
3.3.2 Environmental Justice: Black/African-American 
Patients Living in NJ had a Higher PFAS-Exposed 
Rate 
We also found higher proportion of Black/African-
American patients were exposed to PFAS regardless of 
the method selected (Table 1). In the inpatient cohort, 

while the PFAS exposed population consistently consists of a higher percent (51.16 - 58.57%) of White patients, we 
observe a higher proportion (13-15%) of Black or African American patients living in New Jersey exposed to PFAS 
than the proportion of White patients (2-3%) living in New Jersey. Similar to the inpatient cohort, for the outpatient 
cohort, the exposed population is mostly White patients (47.89 – 56.40%). A larger proportion of White patients 
represent the non-exposed across each boundary type (78.04 – 79.87%). A greater proportion of Black or African 
American patients were found to be exposed in all boundaries (16.61 - 21.01%) in comparison to other ethnicities.  
Table 1. Overall patient cohort demographics by PFAS exposure boundary type 
 PWS Boundary Municipality Boundary ZIP Code 

 PFAS No PFAS PFAS No PFAS PFAS No PFAS 

 N % N % N % N % N % N % 

White           
2,802  

          
47.51  

       
123,547  

          
74.50  

          
5,217  

          
55.11  

       
121,132  

          
74.65  

          
2,852  

          
48.84  

       
123,497  

          
74.44  

Black or 
 African  
American 

          
2,143  

          
36.33  

         
13,784  

            
8.31  

          
2,566  

          
27.11  

         
13,361  

            
8.23  

          
2,089  

          
35.78  

         
13,838  

            
8.34  

Asian              
142  

            
2.41  

           
4,472  

            
2.70  

             
258  

            
2.73  

           
4,356  

            
2.68  

               
80  

            
1.37  

           
4,534  

            
2.73  

Other              
558  

            
9.46  

         
16,505  

            
9.95  

             
985  

          
10.41  

         
16,078  

            
9.91  

             
571  

            
9.78  

         
16,492  

            
9.94  

Unknown           
2,802  

          
47.51  

       
123,547  

          
74.50  

          
5,217  

          
55.11  

       
121,132  

          
74.65  

          
2,852  

          
48.84  

       
123,497  

          
74.44  

Hispanic?             

 Yes 203 3.45 5,630 3.39 380 4.01 5,453 3.36 189 3.24 5,644 3.40 

 No 5,590 94.91 157,641 94.99 8,887 93.86 154,344 95.05 5,541 94.99 157,690 94.98 

 NA 97 1.65 2,688 1.62 201 2.12 2,584 1.59 103 1.77 2,682 1.62 

Total 
Distinct 
Patients 

5,890  165,959  9,468  162,381  5,833  166,016  

 
3.4 Inpatient and Outpatient Cohort and Disease Associations 
After completing the ICD code crosswalk and limiting to codes diagnosed to at least 100 patients and at least 10 
PFAS exposed patients, we found 6 codes given to the inpatient cohort and 31 codes given to the outpatient cohort 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Intersection of PFAS exposed patients by 
boundary type 
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(including the two code groups ‘toxic goiter’ and ‘nontoxic goiter’, respectively). The direction of the relationships 
of the inpatient and outpatient cohorts are shown in Figure 4A and 4B, respectively. In these figures we report all 
significant associations (Bonferroni adjusted P-value<0.05). Overall, most diagnoses are found to be not associated 
with PFAS exposure (n = 4, 67%), no matter the boundary type. Consistently across boundary types, one diagnosis 
was found significant: essential hypertension (i.e. I10). The code hypertensive crisis, unspecified (i.e. 16.9) was 
found significant in three of the four classification types. In Figure 5, we illustrate through Manhattan plots the 
resulting Bonferroni adjusted P-values of each diagnosis code in our inpatient and outpatient cohort analyses, 
respectively, grouped by four disease types: goiter, hypertension, parathyroid, and thyroid. 
Similar to the inpatient cohort analysis, our analysis of the outpatient cohort shows that most of the diagnosis codes 
have no significant association with PFAS exposure (n = 26, 74%). Of the 31 diagnosis codes, six were found to be 
significantly associated, albeit inconsistently across boundary types: nontoxic goiter code group, E04.2, I10, E03.9, 
C73, and E04.1. Of these diagnoses, only essential hypertension (i.e. I10) was found significant in more than one 
boundary type; those boundaries being PWS service area boundary, ZIP Code, and intersection of all boundaries. 
The other four diagnosis codes were found significant solely by municipality.  

4. Discussion 
Our work demonstrates that changes in the method used to annotate PFAS exposure classification, which employs 
various geospatial analytic methods (i.e., different boundary data sets), will result in changes in the cohort and 
subsequent analyses. This can have a profound effect on PFAS exposure-disease association studies that result from 
such cohorts and are important for researchers to understand when utilizing address information for exposure 
classification. We explored the PFAS exposure-disease associations in outpatient and inpatient cohorts in order to 
understand if known associations in current literature can be captured in our analysis. In our case, the trends in 
cohort characteristics, demographics, and PFAS exposure-disease associations differ across the boundary types 
observed. Another profound difference is in terms of the sample sizes of our PFAS exposed populations, which also 
varied by PFAS exposure classification methods. Sample size can be very important in the power to detect an 
association. 
4.1 Binary Classification of PFAS Exposure Across Different Boundary Datasets 
Three types of boundaries were used in our binary classification of PFAS exposure: public water supplier (PWS) 
service area boundary, municipality boundary, and ZIP Code. Next, we observed the intersection of these, where 
patients were found to be PFAS exposed in all three boundaries. In combining the efforts of several geospatial 
datasets, we were able to create a unique cohort of patients who lived within the boundaries of all three boundaries. 
While there is no gold standard to this study, as this would require knowledge of PFAS serum levels, the intersection 
of these methods may prove to provide a conservative cohort of those exposed to PFAS chemicals. While it is 
unlikely for researchers to go to such efforts in classification, our work shows how other boundary datasets may be 
suitable for binary classification of exposure to contaminants through drinking water.  

 
Figure 4 A. Forest Plot of Results of Inpatient Odds Ratios with 95% Confidence Intervals by Boundary 
Type. 4 B. Forest Plot of Results of Outpatient Odds Ratios with 95% Confidence Intervals by Boundary 
Type.  
Columns are indicated as follows: n1(all patients with diagnosis), n2 (number of patients exposed in PWS 
service area with diagnosis), n3 (number of patients exposed in municipality with diagnosis), n4 (number of 
patients exposed in ZIP code with diagnosis), n5 (number of patients exposed in intersection of all boundaries 
with diagnosis). 



 

 
 
Figure 5 A. Manhattan plot of inpatient diagnosis codes by boundary type, B. Manhattan plot of outpatient diagnosis codes by boundary type,  
C. Manhattan plot of outpatient diagnosis of Essential hypertension (I10) by boundary type. 
Classification boundary type colors coordinate with colors used in Figure 3 for clarity. The x-axis indicates -log(P) of Bonferroni adjusted P-values and the 
y-axis indicates the resulting ICD10 codes from the ICD code crosswalk. Codes are further organized and labeled by overarching disease types: goiter, 
hypertension, parathyroid and thyroid, respectively. The vertical red dashed line indicates the line of significance (-log(Bonferroni adjusted P-value > 
0.05)). In order to fully illustrate the variance in the outpatient data, the essential hypertension diagnosis (I10) was separated from Figure 5B and illustrated 
in Figure 5C because the -log(P-value) is much more significantly associated with PFAS exposure than the other diagnoses.  
 



ZIP Code (n = 5,833) and PWS service area boundaries (n = 5,890) demonstrate more conservative cohorts, while 
the classification through municipality boundaries resulted in a larger number of patients exposed (n = 9,468). It is 
likely the municipality cohort has misclassified several unexposed patients as PFAS exposed (i.e. false positive). In 
this case, it may be that municipality boundaries do not represent drinking water distribution areas well in 
comparison to ZIP Code and publicly available PWS service area boundaries. We delve into the limitations of using 
boundaries for exposure to contaminants in drinking water in our limitations and future work. 
4.2 Exploring Known PFAS-Disease Associations in Our Cohorts 
We observed diagnosis codes related to hypertension and thyroid disease, as these are associations with exposure to 
PFAS shown in previous literature. Overall, we found essential hypertension (i.e. I10) to be positively associated 
with PFAS exposure in our inpatient and outpatient cohorts. We further discuss results of the two cohorts in detail 
below. All reported OR and 95% CI below reflect those of the intersection of all boundaries’ respective cohorts. 
4.2.1 Inpatient Cohort 
Of all the diagnoses observed, two were found positively associated with PFAS exposure, namely essential 
hypertension (i.e. I10) with an OR of 1.58 (85% CI: 1.33, 1.87), and unspecified hypertensive crisis (i.e. I16.9) with 
an OR of 1.36 (95% CI: 1.15, 1.62). This trend is observed for all four of the classification methods used, however 
the odds ratios and confidence intervals differ between the cohorts. We observe more consistency across boundary 
types in the inpatient cohort in comparison to the outpatient cohort. The odds ratios in the ZIP Code cohort tend to 
have wider confidence intervals in comparison to the other observed cohorts. Moreover, we found variance in the 
adjusted P-values between boundary cohorts (see Figure 5A).  
4.2.2 Outpatient Cohort 
We found more diagnosis codes in the outpatient cohort and only four of which were significant with Bonferroni 
adjusted P-values. Patients exposed to PFAS were more likely to be diagnosed with essential hypertension (i.e. I10) 
with an odds ratio of 1.72 (95% CI: 1.60, 1.85). The five other diagnosis codes were negatively associated with 
PFAS exposure. Of these, three have relatively weak, inconsistent associations, namely nontoxic goiter codes (OR: 
1.02, 95% CI: 0.89, 1.17), unspecified hypothyroidism (i.e. E03.9, OR: 0.98, 95% CI:0.86, 1.12), and nontoxic 
multinodular goiter (i.e. E04.2, OR: 0.80, 95% CI:0.58, 1.06). A stronger negative association is found with 
malignant neoplasm of thyroid gland (i.e. C73), with an odds ratio of 0.51 (95% CI: 0.31, 0.79). However, it is 
important to note this is still a weaker association with a rather large confidence interval. In Figure 5B and Figure 
5C, we find greater variance in the adjusted P-values between the boundary cohorts, especially the municipality 
cohort. Alone to the municipality outpatient cohort, four diseases were found significant with adjusted P-values that 
do not show significant in the other three cohorts. Overall, the outpatient cohort resulted in more variance between 
boundary classification methods.  
4.3 Generalizability of Results beyond New Jersey 
We performed our analysis using New Jersey data because we found that NJ water data from multiple sources was 
open access and governmental agencies within the state of NJ tested for multiple species of PFAS, including PFNA, 
which is often overlooked by other states health departments. Therefore, the comparison of methods using a state 
with multiple data sources was advantageous to us to perform the comparative analysis included in this paper. Some 
states do not have such rich data resources at their disposal and others rely more heavily on well water sources, 
which may or may not be required to test regular (depending again on state regulations). We believe our work is 
generalizable in that we provide information on how PFAS as an exposure label can vary depending on the method 
in the literature that is used to define this exposure. Others with data from other states or countries may not be able 
to perform these comparisons because their state or country may not provide such rich resources to the public and 
therefore, they can learn from our work to understand the gaps in the various methods and how the choice of method 
may alter the results obtained in their own studies. 
4.4 Limitations and Further Work 
The NJ DEP violations dataset is limited to three types of PFAS chemicals, due to monitoring rules in the state for 
PFOA, PFOS, and PFNA. As previously stated, PFAS are a large group of nearly 5000 human-derived compounds. 
There is limited information on new generation PFAS compounds, such as Hexafluoropropylene Oxide (HFPO) 
Dimer Acid and its Ammonium Salt (i.e. GenX chemicals). A majority of the evidence on lesser known PFAS 
derive from animal studies, with limited information from human exposure 29. It is likely patients in the cohort are 
exposed to lesser known PFAS, as this information is outside the scope of our data. True exposure to PFAS-
contaminated drinking water cannot be simply determined from spatial data; living within a PWS service area alone 
does not delve into the complexities of exposure to PFAS from drinking water (e.g. bottled water use, work location, 
distribution of well water from PWS, water filtration system use) let alone observance of other exposure pathways 
and sources (e.g. food consumption, indoor environment, outdoor air) 30. We therefore determined binary exposure 
provides a simple first step to understanding PFAS exposure. Moreover, the NJ MCL violations dataset used in our 



analysis is resulting from regulations that were implemented a few years after (PFNA: January 2020, PFOS & 
PFOA: January 2021) the years of the extracted EHR data included in our analysis (2010-2017). We did not adjust 
for residential mobility (i.e., patients moving to another residence) in this analysis because we are focused on 
methods to classify exposure for a given address at a given time-point. It is worth mentioning that residential 
mobility is an important issue when performing geospatial analyses using EHR data 31. We also will include distance 
from Penn Medicine sites in our future work. This is rather complex given that there are multiple Penn Medicine 
sites and clinics and there are often multiple visits per patient. However, we acknowledge that this will be important 
in further delving into the disparities that we observed in this study. Future work will also explore the role of age in 
the relationship between PFAS exposure and disease risk.  
5. Conclusion 
We explored the utility of three common methods for linking geospatial information to PFAS exposure in drinking 
water and the effect that these different methods had on our cohort and findings. We investigated this using four 
resulting boundary types: public water supplier (PWS) service area boundary, municipality, ZIP code, and the 
intersection of the three boundaries (this is our own classification not used in the literature). In these boundaries, we 
found 3.39-5.83% of the complete cohort exposed to PFAS. The size of the cohort varied between boundary types, 
with municipality boundary classification resulting in 3,131 patients not captured within ZIP Code and PWS service 
area boundaries. Moreover, a larger proportion of Black/African-American patients were found to be exposed to 
PFAS across all cohorts. In effort to validate known PFAS exposure-disease associations, we investigated 
associations to respective diagnosis codes for hypertension, thyroid disease, and parathyroid disease. Consistent 
across inpatient and outpatient cohorts, we found positive associations between PFAS-exposure and essential 
hypertension (i.e. I10). Significant disease-exposure associations varied between boundary classification methods, 
especially in our outpatient cohorts. Our work demonstrates that changes in geospatial analytic methods, specifically 
depending on different boundary data sets, will lead to changes in the cohort and subsequent analyses.  
Data Sharing: We plan on making code and other shareable resources available on our github page: 
https://github.com/bolandlab 
Funding: This research was supported by the Institutional Clinical and Translational Science Award (CTSA) with 
Dr. Boland as a co-Investigator (UL1-TR-001878) with Dr. Garret Fitzgerald as PI. Generous funding also provided 
by the Perelman School of Medicine at the University of Pennsylvania. 
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