Surnam	ne
--------	----

Centre Number

2

Other Names

wjec

cốac

GCE AS/A LEVEL – NEW

2410U10-1

\$17-2410U10-1

CHEMISTRY – AS unit 1 The Language of Chemistry, Structure of Matter and Simple Reactions

FRIDAY, 26 MAY 2017 - MORNING

1 hour 30 minutes

	For Examiner's use only			
	Question	Mark Awarded		
Section A	1. to 5.	10		
Section B	6.	20		
	7.	15		
	8.	17		
ed a:	9.	18		
	Total	80		

ADDITIONAL MATERIALS

In addition to this examination paper, you will need a:

- · calculator;
- Data Booklet supplied by WJEC.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

Write your name, centre number and candidate number in the spaces at the top of this page.

Section A Answer **all** questions in the spaces provided.

Section B Answer all questions in the spaces provided.

Candidates are advised to allocate their time appropriately between **Section A (10 marks)** and **Section B (70 marks)**.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

The maximum mark for this paper is 80.

Your answers must be relevant and must make full use of the information given to be awarded full marks for a question.

The assessment of the quality of extended response (QER) will take place in **Q.9**(*a*).

If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.

	SECTION A
	Answer all questions in the spaces provided.
Usi bro	ng outer electrons only, draw a dot and cross diagram to show the bonding in calcium [2]
lde Exp	ntify the two elements from the following list that together produce the most ionic bond. Iain your choice. bromine magnesium oxygen sodium [2]
(a)	State how a coordinate bond differs from a covalent bond. [1]
(b)	Give one example of a species containing a coordinate bond. [1]

		Examine
	here are 33 known isotopes of krypton. One of the isotopes – ⁸¹ Kr – decays by electron upture.	only
(8	a) Write an equation to show this decay. [1]	
(Ľ	b) Krypton-81 has been used for dating old groundwater. It takes 6.87×10^5 years for 2.0 g of ⁸¹ Kr to decay to 0.25 g. Calculate its half-life. [1]	
	Half-life = years	
of	pron has a relative atomic mass of 10.8. It has only two naturally-occurring isotopes, one which has an abundance of 80.0% and a mass of 11. Calculate the mass of the second ptope. [2]	
	Mass =	
		10
	3 © WJEC CBAC Ltd. (2410U10-1) Turn over.	

2410U101 03

	SECTION B	Exa
	Answer all questions in the spaces provided.	
(a)	The atomic spectrum of hydrogen consists of several separate series of lines.	
	 (i) In the Balmer series, when an electron returns from the third shell to the secon shell, a red line is seen at a wavelength of 656 nm. Calculate the energy of th radiation emitted at this wavelength. 	
	Energy =	J
	(ii) Explain how the Lyman series can be used to calculate the ionisation energy hydrogen.	of 2]
		····•
(b)	State and explain how you would expect the ionisation energy of hydrogen to compa- with the first ionisation energy of:	re
	(i) helium [:	2]
	(ii) lithium [2	2]
		 (a) The atomic spectrum of hydrogen consists of several separate series of lines. (i) In the Balmer series, when an electron returns from the third shell to the second shell, a red line is seen at a wavelength of 656 nm. Calculate the energy of the radiation emitted at this wavelength. Energy =

			Examiner
(C)	(i)	On adding a strip of magnesium to hydrochloric acid, 125 cm^3 of hydrogen gas formed at a temperature of $24 ^{\circ}\text{C}$ and a pressure of 1.01×10^5 Pa. Calculate the volume occupied by this gas under the same pressure and at a temperature of $52 ^{\circ}\text{C}$. [2]	
		Volume = cm ³	
	(ii)	In another experiment, 160 cm^3 of hydrogen formed at $20 \degree \text{C}$ and 1.01×10^5 Pa. Assuming that hydrogen behaves as an ideal gas, calculate the amount, in moles, of hydrogen formed. [3]	
			2410U101 05
		n = mol	
			-

(d)	hydr sam	rogen can form a range of covalent hydrides such as water, H_2O , and beryllium ide, Be H_2 . A student said that since the ratio of hydrogen to the other element is the e in both compounds, the shapes of the two compounds will be the same. Is she ect? Justify your answer. [3]	
(e)	(i)	On forming ice at 0 °C, 50.0 cm ³ of water expands to occupy 54.5 cm ³ . Calculate the density of ice at 0 °C. [2]	
	(ii)	Density = $g cm^{-3}$ Explain why ice and water have different densities at 0 °C. [1]	
			20

		7	Eveniner
7.	(a)	A student is asked to prepare a standard solution of sodium carbonate of concentration 0.0500 mol dm ⁻³ .	Examiner only
		The first step involved in the preparation of a standard solution is to weigh the appropriate mass of solid in a weighing bottle.	
		Calculate the mass of sodium carbonate required and describe the remaining steps that the student should take to prepare 250 cm ³ of this standard solution. [6]	
	•••••		Ţ
	•••••		2410U101
	•••••		
	••••••		
	••••••		
	·····		
	07	© WJEC CBAC Ltd. (2410U10-1) Turn over.	

(b) The standard solution prepared in part (a) was used to determine the concentration of dilute hydrochloric acid.

25.0 cm³ samples of the sodium carbonate solution were titrated against the hydrochloric acid. These were the results.

Titration	1	2	3	4
Final reading / cm ³	26.50	26.80	26.20	26.55
Initial reading / cm ³	0.40	0.15	0.00	0.25
Titre / cm ³	26.10	26.65	26.20	26.30

(i) Calculate the mean titre that should be used to determine the concentration of the hydrochloric acid. [1]

Mean titre =		cm ³
--------------	--	-----------------

(ii) The burette used in the titrations has an uncertainty for each reading of $\pm 0.05 \, \text{cm}^3$. Estimate the maximum percentage error in the **titre** in titration 4. Show your working. [1]

Percentage error =%

(iii) Apart from errors in reading the burette, suggest **one** reason why incorrect titres may have been obtained when carrying out the titrations. Explain the effect of this error on the value of the titre obtained. [2]

Examiner

Calculate the number of moles of sodium hydroxide in the 250 cm³ flask and hence (i) the number of moles that reacted with the fertiliser. [3]

9

n(NaOH) = mol

The equation for the reaction between ammonium sulfate and sodium hydroxide is: (ii)

 $(NH_4)_2SO_4 + 2NaOH \longrightarrow 2NH_3 + Na_2SO_4 + 2H_2O$

Use your answer to part (i) to calculate the percentage by mass of ammonium sulfate in the fertiliser. [2]

Percentage =%

15

(C)

on the packet.

until no more ammonia was evolved.

		er can be extracted from the mineral chalcopyrite. The mineral is smelted by heating air. The equation for this reaction is as follows.
4CuF	eS ₂	+ $O_2 \longrightarrow Cu + FeO + Fe_2O_3 + SO_2$
	(i)	Balance the equation above. [1]
	(ii)	Give the full electronic configuration of a copper atom. [1]
	(iii)	A sample of rock contains 1.30% by mass of chalcopyrite. Assuming this is the only source of copper in the rock, calculate the percentage by mass of copper in the sample. [2]
	(iv)	Percentage =
	()	produce copper.
		$Cu_2S + O_2 \longrightarrow 2Cu + SO_2$
		This is classified as a redox reaction. Use oxidation numbers to explain which elements have been oxidised and which reduced. [3]
10		© WJEC CBAC Ltd. (2410U10-1)

Examiner Sulfur dioxide can react with oxygen and water to form sulfuric acid. Although sulfuric acid (b) is a strong acid, it does not have to be a concentrated acid. Explain the difference between the terms strong acid and concentrated acid. [2] A student was given an aqueous solution of an acid HX and was asked to find out if it was a strong or weak acid. $25.0 \, \text{cm}^3$ of the acid HX required $15.90 \, \text{cm}^3$ of 0.0125 mol dm⁻³ sodium hydroxide solution for complete neutralisation. (C) (i) Calculate the concentration of the acid. Assume that HX reacts with the sodium hydroxide in a 1:1 molar ratio. [2] Concentration = mol dm⁻³ A teacher measured the pH of the aqueous solution and found it to be 2.10. She told (ii) the student that the acid in the solution must be a strong one. Is she correct? Justify your answer. [2]

11

only

			Examiner
(d)	The ion, hexa	commonest complex ion that copper forms in solution is the hexaaquacopper(II) $[Cu(H_2O)_6]^{2+}$. If concentrated hydrochloric acid is added to a solution containing aquacopper(II) ions a new complex forms as the following equilibrium is established.	only
		$[Cu(H_2O)_6]^{2+}(aq) + 4Cl^{-}(aq) \rightleftharpoons [CuCl_4]^{2-}(aq) + 6H_2O(l)$	
		blue yellow-green	
	The	forward reaction is endothermic.	
	(i)	State and explain what you would observe on adding water to the equilibrium mixture. [2]	
	(ii)	State and explain what you would observe on heating the equilibrium mixture. [2]	
	••••••		17
			L
12		© WJEC CBAC Ltd. (2410U10-1)	

(a)	A student is given five beakers labelled A , B , C , D and E . Each contains a different solution. The solutions are barium bromide, barium nitrate, calcium chloride, magnesium chloride and magnesium nitrate but it is not known which beaker contains which solution.	
	She is also given solutions of three reagents: silver nitrate, sodium hydroxide and sulfuric acid.	
	Devise a plan that uses the reagents to unambiguously determine which solution is in which beaker.	
	You should include the observations that enable you to positively identify all five solutions. [6 QER]	
······		
<u>.</u>		
••••••		
.		
<u>.</u>		
••••••		
•••••		

		test which would confirm the presence of calcium ions in aqueous calcium the result of the test.	[2]
(C)	determ added	ition is known to contain a mixture of sodium carbonate and sodium nitrate nine the carbonate ion concentration in the mixture, aqueous barium chlo I in excess. The precipitate produced was filtered off and dried by strong h	ride was eating.
	(i) V	Write the ionic equation, including state symbols, for this precipitation read	ction. [1]
	(ii) S	State why the aqueous barium chloride was added in excess.	[1]
′d)		own 2 corbonated are incoluble and can be precipitated dried and we	iahed in
,	experir all the	oup 2 carbonates are insoluble and can be precipitated, dried and we ments similar to that in part (c). However, the strong heating needed to water can cause a problem in accurately determining the mass of the catitated. Suggest what this problem might be.	drive off
	experir all the	ments similar to that in part (c). However, the strong heating needed to water can cause a problem in accurately determining the mass of the ca	drive off arbonate
	experir all the	ments similar to that in part (c). However, the strong heating needed to water can cause a problem in accurately determining the mass of the ca	drive off arbonate
	experir all the	ments similar to that in part (c). However, the strong heating needed to water can cause a problem in accurately determining the mass of the ca	drive off arbonate
	experir all the	ments similar to that in part (c). However, the strong heating needed to water can cause a problem in accurately determining the mass of the ca	drive off arbonate
	experir all the	ments similar to that in part (c). However, the strong heating needed to water can cause a problem in accurately determining the mass of the ca	drive off arbonate
	experir all the	ments similar to that in part (c). However, the strong heating needed to water can cause a problem in accurately determining the mass of the ca	drive off arbonate

e)	Explain the following observations by reference to the bonding present in each of the			
	substances. (i) Ionic substances such as calcium chloride can conduct electricity under certair circumstances. [2]			
	(ii) Iodine is a solid which vaporises on gentle warming. [2]			
	(iii) A metal such as magnesium is malleable. [2]			
	END OF PAPER			

tion er	Additional page, if required. Write the question number(s) in the left-hand margin.	Exam on
		••••••
		·····

(2410