

AS Level Biology A H020/01 Breadth in biology

Practice Question Paper

Date – Morning/Afternoon

Time allowed: 1 hour 30 minutes

You must have:

- Insert (inserted)
- Ruler (cm/mm)

You may use:

a scientific calculator

First name	
Last name	
Centre number	

INSTRUCTIONS

- Use black ink. You may use an HB pencil for graphs and diagrams.
- · Complete the boxes above with your name, centre number and candidate number.
- Answer all the questions.
- Write your answer to each question in the space provided.
- Additional paper may be used if required but you must clearly show your candidate number, centre number and question number(s).
- Do not write in the bar codes.

INFORMATION

- The total mark for this paper is 70.
- The marks for each question are shown in brackets [].
- This document consists of 24 pages.

SECTION A

You should spend a maximum of 25 minutes on this section.

You should put the letter of the correct answer in the box provided.

Answer **all** the questions.

A	OH-					
В	PO_4^{3-}					
C	Cl-					
D	HCO ₃ -					
You	ur answer					
Trai	nslocation occurs th	rough the sie	eve elements l	эу	1Suc	rose is load
into	the phloem at region	ons of the pla	nt known as .	2	This mecl	hanism is
	the phloem at region3	-				
	3	The addition	of sucrose	4	the water pot	ential of the
siev	re element sap. This	The addition	of sucrose	4 n surroundir	the water pot	ential of the
siev	3	The addition	of sucrose	4 n surroundir	the water pot	ential of the
siev	re element sap. This	The addition causes water	r to enter from	n surroundir	the water pot	ential of the
siev	ze element sap. This urn increases the	The addition causes water	r to enter from	n surroundir	the water pot	ential of the
siev	ze element sap. This urn increases the	The addition causes water6	r to enter from	4 sap. aps 1-6?	the water poting tissues by	ential of the
siev in tu	re element sap. This arn increases the ich words correctly	The addition causes water	r to enter from of the senumbered ga	4 n surroundir sap. aps 1-6?	the water poting tissues by	ential of the
siev in tu Wh	re element sap. This arn increases the ich words correctly 1 active transport	The addition causes water	r to enter from of the senumbered ga	n surroundir sap. aps 1-6? 4 raises	the water poting tissues by	ential of the

Fig. 2.1 shows the shapes of an enzyme molecule, its substrate and the molecules of three substances, **P**, **Q** and **R**.

Each substance could bind either to the enzyme or to the substrate to cause an effect.

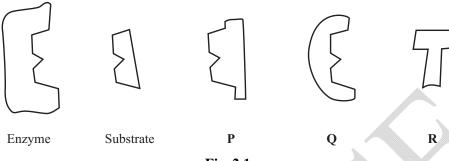


Fig. 2.1

Four tubes were set up:

- The control contained enzyme and substrate only
- Tube P contained enzyme, substrate and substance P
- Tube Q contained enzyme, substrate and substance Q
- Tube R contained enzyme, substrate and substance R.

Which option describes the most likely effect on the rate of reaction in each tube **compared** with the control?

	Tube P	Tube Q	Tube R
A	increased	no effect	no effect
В	decreased	no effect	decreased
С	decreased	no effect	no effect
D	decreased	decreased	no effect

Your answer			[1]

- 4 After being mixed with iodine, which of the following would show a blue/black colour?
 - A potato tuber cells
 - **B** erythrocytes
 - **C** sieve tube elements
 - **D** neutrophils

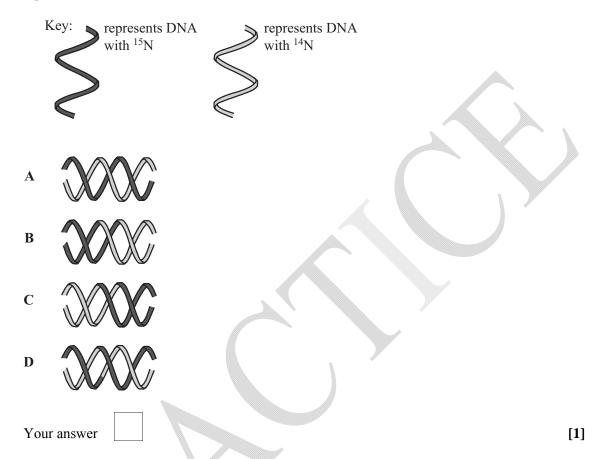
Your answer [1]

© OCR 2015

H020/01

5 Fig. 5.1 shows part of a conjugated protein that is a respiratory pigment in muscle cells.

Fig. 5.1


Which part of the molecule does Fig 5.1 represent?

- A prosthetic group
- **B** disulfide bond
- C quaternary structure
- **D** polypeptide

A sample of DNA containing only one isotope of nitrogen, ¹⁵N, was incubated with nucleotides containing only the ¹⁴N isotope along with the enzymes needed for replication.

Which of the following diagrams would represent the resulting DNA after one round of replication?

7 Dissolved material gives rise to oncotic pressure, which is related to water potential, Ψ .

Which of the following shows the typical oncotic and hydrostatic pressures in blood at the arterial and venous ends of capillaries?

	Pressure (mmHg)						
	Arterial en	d of capillary	Venous end of capillary				
	Oncotic	Hydrostatic	Oncotic	Hydrostatic			
A	-20	13	-20	33			
В	-20	-13	-20	13			
С	20	33	-20	13			
D	-20	33	-20	13			

Your answer [1]

© OCR 2015

8 The graph in Fig. 8.1 shows a normal spirometer trace.

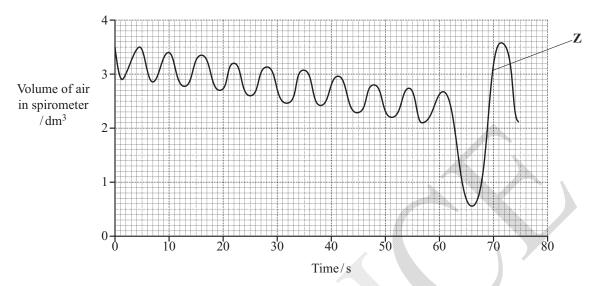


Fig. 8.1

Which option correctly describes what is happening at point **Z**?

- **A** pressure inside lungs is low
- **B** volume of thorax is large
- C diaphragm is contracted
- **D** internal intercostal muscles are contracted

Your answer [1]

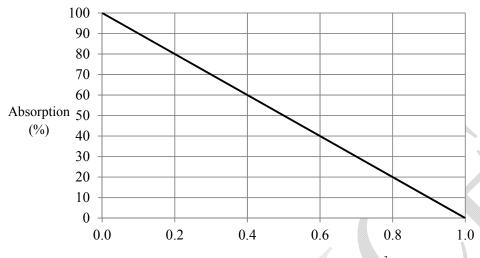
9 Fig. 9.1 shows some of the checkpoints of the cell cycle.

Fig. 9.1

Which statement correctly describes the events that happen if DNA damage is discovered at the G_2 checkpoint?

- **A** The cell cycle continues to mitosis and the DNA will be replicated during metaphase.
- **B** The cell cycle is halted and the cell tries to repair the DNA.
- C The cell cycle returns to the G_1 phase to try to correct the damage.
- **D** The cell cycle stops and the cell dies.

Your answer [1]


- Which of the following is **not** a role of an intracellular membrane?
 - A cell to cell signalling
 - **B** partially permeable barrier
 - C site of chemical reactions
 - **D** transport of substances across the membrane

Your answer [1]

© OCR 2015

11	The 1	mitotic cell cycle is divided into a number of stages.	
	In wl	nich of the following stages will the chromosomes line up at the equator of the cell?	
	A	anaphase	
	В	interphase	
	C	metaphase	
	D	telophase	
	Your	answer	[1]
12	Whic	ch of the following factors does not affect the shape of the active site of an enzyme?	
	A	a drop in temperature	
	В	non-competitive inhibitor	
	C	a change in pH	
	D	binding of substrate	
	Your	answer	[1]
13	Whic	ch of the following statements is a step in meiosis that can lead to variation within a specie	s?
	A	Mutations occurring during DNA replication.	
	В	Random fusion of gametes.	
	C	Independent assortment of homologous chromosomes.	
	D	Chromosomes forming homologous pairs called bivalents.	
	Your	answer	[1]

A student tested a range of solutions of known concentrations of reducing sugar using Benedict's solution and colorimetry. Fig. 14.1 shows the calibration curve drawn by the student.

Concentration of reducing sugar (mol dm⁻³)

Fig. 14.1

The student then tested four solutions of **unknown** concentrations of reducing sugar. Table 14.1 shows the results:

Solution	P	Q	R	S
Absorption (%)	60	40	70	100

Table 14.1

Select the option that gives the correct sequence of reducing sugar concentrations from **highest** to **lowest**.

A S, **R**, **P**, **Q**

B Q, **R**, **P**, **S**

C S, P, R, Q

D Q, **P**, **R**, **S**

Your answer [1]

- Enzymes are capable of affecting the metabolism and structure of whole organisms. Which of the following enzymes will have the greatest effect on the **development** of an organism as a whole?
 - **A** Methyltransferase: adds methyl groups to DNA allowing genes to be switched on or off.
 - **B** Reverse transcriptase: generates complementary DNA from an RNA template.
 - C Deoxyribonuclease: digests free DNA molecules outside of the nucleus.
 - **D** Telomerase: lengthens ends of chromosomes by adding DNA sequences, preventing them from being degraded.

Your answer			[1]

Fig. 16.1 shows the results of an osmosis experiment on sections of potato and beetroot. The original mass of each potato section was 4.6 g.

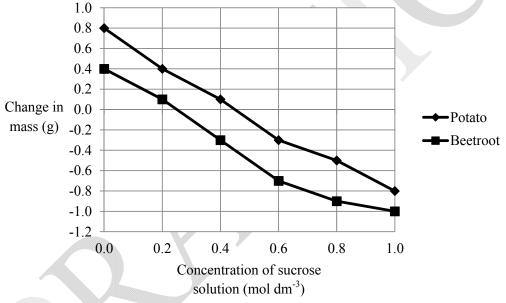


Fig. 16.1

Which option shows the correct percentage change in mass when a potato section was placed in the solution with the highest water potential?

A -17.4%

B 10.8%

C -27.0%

D 17.4%

Your answer [1]

17 A student observed mitosis in a prepared slide of a root tip.

The student recorded a description for each of four cells (**A-D**) and then tried to identify which stage of mitosis had been observed.

Which of the mitotic stages has been identified correctly?

	Description	Mitotic stage identified
A	Spindle fibres clearly visible	Telophase
В	Chromosomes aligned at equator	Anaphase
С	Sister chromatids pulled to poles of cell	Metaphase
D	Dark bodies visible within nucleus	Prophase

Your ans	swer	[1]
The seco	ond division of meiosis is different from mitosis because	
A	individual chromosomes line up randomly on the equator.	
В	each chromosome replicates during metaphase.	
C	chiasmata form between the chromatids of a bivalent.	
D	the separating chromatids of a pair are not the same.	
Vour and	Swer	[1]

© OCR 2015 H020/01

18

19	Tuberculosis is an infectious disease that affects humans. It is caused by a pathogen.					
	Pathogen	s can also cause diseases in plants.				
Which of the following plant diseases is caused by the same type of pathogen that causes tubercu humans?						
	A	black sigatoka in bananas				
	В	'mosaic' leaf discolouration in tobacco plants				
	C	ring rot in tomatoes				
	D	late blight in potatoes				
	Your ans	wer	[1]			
20	Which of	f the following best describes the term <i>biodiversity</i> ?				
	A	the variety of species				
	В	the number of individuals of each species				
	C	the variety of genes, species and habitats				
	D	the variety of genes within a species				
	Your ans	wer	[1]			

SECTION B

Answer **all** the questions.

21 Fig. 21.1 shows the cross sectional structure of a large artery and a large vein.

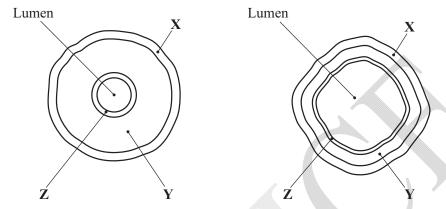


Fig. 21.1

(a)	Name the structure labelled Z .		
			[1]
	•••••	 •••••	[±]

(b) Use Fig. 21.1 to calculate the cross sectional area of the artery's lumen as a proportion of that of the vein. (Assume that the artery is circular and the vein is a square in cross-section).

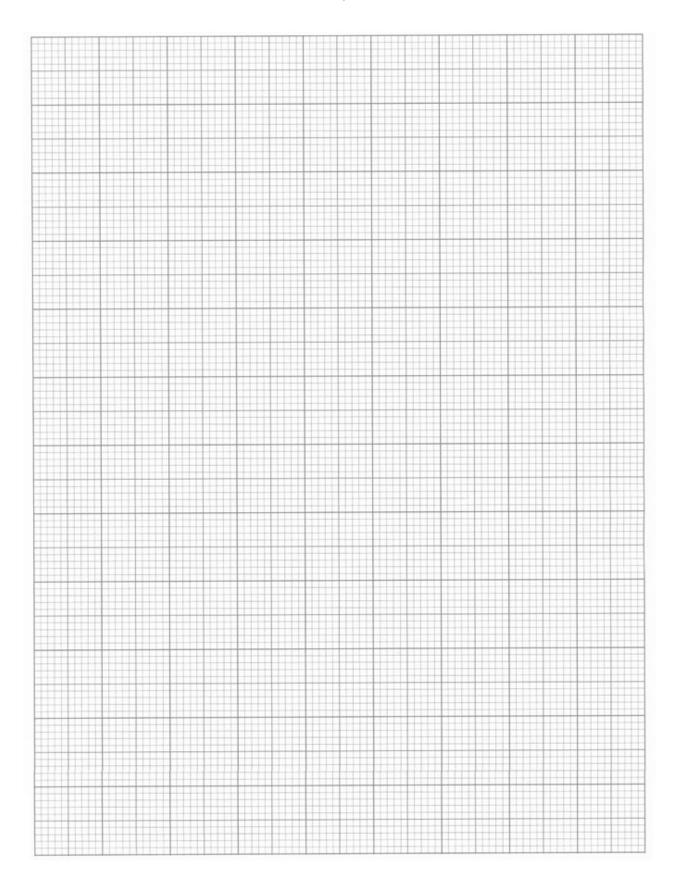
Show the steps in your calculation.

© OCR 2015

(c)	Outline how the difference in lumen size between arteries and veins is related to their function	on.
		[3]
(d)	The walls of blood vessels contain a polymer called collagen.	
	Name the type of monomer from which collagen is made and explain how two such monomers are joined together.	
	Name	•••••
	Joined together by	•••••
		[3]

22 Biological processes can be investigated using models.

The effect of cell size on diffusion can be investigated using cubes of agar jelly to represent cells of different sizes.


A student used cubes of agar jelly containing universal indicator, which changes colour at different pH.

- Five different sizes of cubes were cut from a larger block using a scalpel.
- Cubes were placed in a beaker containing hydrochloric acid (enough to cover the cubes) and a stopwatch was started.
- After 2 minutes the cubes were removed, rinsed with distilled water and blotted dry.
- Acid absorbed at the outside continued diffusing towards the centre of the blocks.
- The time taken for the blocks to turn entirely red was recorded.

The results are shown in **Table 22.1 on the insert**.

(a)	Wha	What was the role of the universal indicator in this experiment?		
			[1]	
.	(A)		r-1	
(b)	(i)	In the space provided on page 16 , plot a graph of mean time taken to turn red against surface area to volume ratio.	[4]	

© OCR 2015 H020/01

	(ii)	Describe the pattern shown by your graph.	
			[1]
	(iii)	An identical procedure was carried out on a cube of unknown size. This cube turned red after 21.5 min.	
		Use your graph to estimate the surface area to volume ratio of this unknown cube.	
		Answer	[1]
	(iv)	Suggest how the original procedure could be modified in order to improve the accuracy of your answer to part (iii).	
			[1]
(c)		the data in Table 22.1, on the insert , to calculate the rate of diffusion of acid in Cube rom the outer surface to the centre of the cube.	
			521
		Answer	[3]
(d)	(i)	Explain which of the mean values, A - E , is likely to be the least accurate. You should process data from the table to support your answer.	
			[2]

	(ii)	inaccurate and explain which cube's results are most likely to have been affected by this limitation.	
		Limitation	
		Is more likely to affect cube because	
			[3]
(e)		e procedure described above involved the use of model cells. Hydrogen ions from the acid re able to travel freely to the centre of the agar jelly cubes.	
	livi	e rate of movement of molecules from the plasma membrane towards the centre of ng cells is often greater than that seen in the procedure the student carried out even if cells are kept at the same temperature.	
	Sug	gest a reason for this observation.	
	••••		
	••••		
	••••		[1]

23 Xylem vessel elements are produced from non-xylem cells in meristematic tissue.

Fig. 23.1 shows an electronmicrograph of xylem tissue.

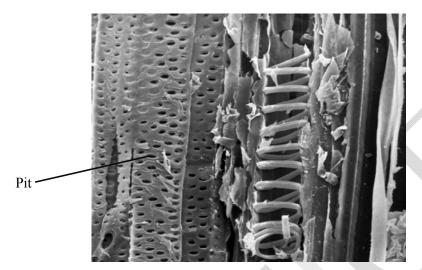


Fig. 23.1

(a)	State the function of the pits in xylem tissue.	
		[1]
(b)	Name the type of cell present in meristematic tissue and describe how xylem vessel elements a produced from this type of cell.	ire
	Type of cell	
	Description	
		[4]

(c)	Xylem forms part of a plant's transport system.
	Explain why large multicellular plants need a transport system.
	[3

(d) Fig. 23.2 shows a cross section of a plant stem. The vascular bundles containing xylem found in most other flowering plants are absent. There are many air spaces in the stem.

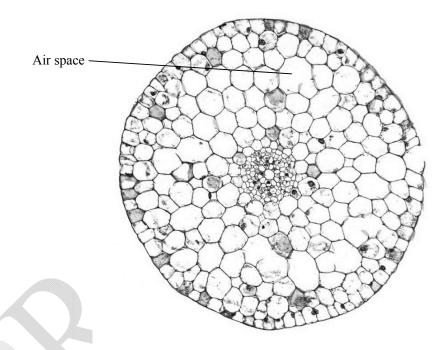


Fig. 23.2

Suggest and explain two likely adaptations of the leaves of the plant in Fig. 23.2.
1
2

24 A thin-layer chromatography procedure was carried out on an extract of leaf cells that contained chlorophyll and other pigments.

Liquid extract from the leaf cells was dried thoroughly.

The extract was then mixed with an organic solvent and placed onto a thin-layer chromatography plate suspended in organic solvent.

Fig. 24.1, on the insert, shows the results of the procedure.

Table 24.1 shows the typical Rf values for various pigments present in plants.

Pigment	Colour	<i>Rf</i> value
Carotene	yellow- orange	0.91
Pheophytin a	grey	0.75
Chlorophyll a	blue green	0.63
Chlorophyll b	green	0.58

Table 24.1

(a)	(i)	Name the organelle that is likely to have yielded most of the pigments present in the leaf extract.
		[1]
	(ii)	Suggest why it was important that the leaf extract was dried thoroughly before mixing with the organic solvent.
		[1]
(b)	(i)	Calculate the <i>Rf</i> value for pigment Y on Fig. 24.1.

Answer.....[1]

© OCR 2015 H020/01

The student concluded that in Fig. 24.1 pigment Y was probably chlorophyll a.
How well do the results support the student's conclusion? Support your answer with reference to Fig 24.1 and Table 24.1.

Fig. 25.1 shows the concentration of antibodies in a patient's bloodstream following a vaccination against a common pathogen and subsequent infection with the same pathogen.

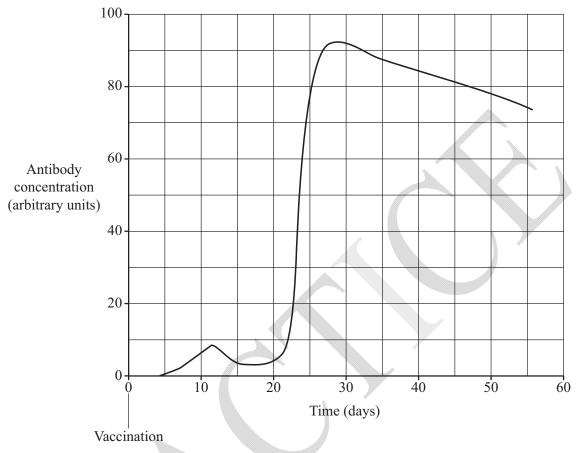


Fig. 25.1

(a) Calculate the rate of antibody production at day 10 in arbitrary units per day.

Answer..... au day⁻¹ [2]

© OCR 2015 H020/01

(b)	Explain why the response to the subsequent infection is much bigger than the response to vaccination, as shown in Fig. 25.1.
	[3]
(c)	Antibodies have a number of mechanisms of action. For example, agglutinins cause pathogens to be rendered inactive by clumping them together.
	Outline the action of opsonins.
	[2]

END OF QUESTION PAPER

Copyright Information:

Page 19, Electron micrograph of xylem tissue - ©POWER AND SYRED/SCIENCE PHOTO LIBRARY, www.sciencephotolibrary.com.

Page 20, Transverse section of pondweed stem - Universal Images Group/Britannica.com

OCR is committed to seeking permission to reproduce all third-party content that it uses in the assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.