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Summary

We consider the influence of vibrato on the sound of a violin by direct measurement, theoretical modelling and

synthesised vibrato tones. Detailed analysis of bowed vibrato sounds reveals complex, asymmetric with respect

to time, periodic variations in frequency, amplitude and timbre. To account for such features, a dynamic model

for vibrato is described, based on the multi-resonant dynamic response of the violin and performance space

acoustic. The model is extended to simulate the vibrato tones of a violin in a chosen performing acoustic from a

single measurement of the sound at the listener’s position produced by a short impulse at the bridge, assuming a

frequency modulated sawtooth bowing force at the bridge. Measurements, modelling and synthesis all underline

the increasing importance of the performance acoustic on the vibrato-induced fluctuations of the violin’s tone, as

one moves away from the violin.

PACS no. 43.75.+a

1. Introduction

Vibrato involves the cyclic modulation of the frequency of

a note played on a stringed instrument as the player gen-

tly rocks the finger stopping the vibrating length of string

backwards and forwards. Violin vibrato rates are typically

in the range from 4 to 6 Hz and are similar to those used

by singers [1] and in the playing of many other musical in-

struments [2]. Typical frequency modulation widths used

in violin playing can approach a quarter-tone [3]. In ad-

dition to the modulation in frequency, vibrato on the vio-

lin and other bowed stringed instruments results in large

cyclic fluctuations in amplitude, as previously reported,

notably by Fletcher et al. [2, 4], Matthews and Kohut [5].

The historic use of vibrato to enhance the ‘warmth’ and

‘singing quality’ of the violin tone is well documented (see

[6] and [7] for references from Ganassi (1542) to Leopold

Mozart (1756)). Initially, vibrato was used sparingly as a

special effect and to mimic the sound of the singing voice.

However, recordings suggest an increasing use of vibrato

by the modern solo performer over the last century, so that

today a rather large-amplitude fast vibrato is ubiquitous

in many performances of the romantic repertoire. In ‘au-

thentic’ performances of the baroque and early classical

repertoire, violinists tend to use a rather smaller amplitude

vibrato, but only in the most purist of performance is vi-

brato entirely lacking. In any subjective assessment of vio-

lin tone quality, it is therefore almost impossible to ignore

the influence of vibrato.
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In this paper, we will focus on the way in which vibrato

affects the sound produced by the violin from a scientific

point of view and leave a more extensive discussion of its

influence on musical performance and the perception of

violin tone quality for a publication elsewhere. Neverthe-

less, our measurements, theoretical modelling and com-

puter simulations illustrate why vibrato has such a strong

influence on the perceived sound of the violin and related

stringed instruments. They also demonstrate the large role

of the performance acoustic in modifying the sound of a

note played with vibrato. This is clearly an important fac-

tor in any assessment of the ‘intrinsic’ sound quality of a

violin played in the concert hall or recording studio.

Although most players and listeners intuitively identify

vibrato with the relatively small cyclic variations in pitch,

in practice, vibrato also induces very large fluctuations in

the amplitude of the bowed note and its component par-

tials. These fluctuations are easily understood in terms of

the cyclic scanning in frequency of the bowing force at the

bridge and all its partials across the highly peaked, multi-

resonant, acoustic response of the instrument. As a result,

vibrato leads to complex waveforms with cyclic modula-

tions in frequency, amplitude and spectral content or tim-

bre within each period of the applied vibrato. This was

recognised as a key feature of the violin vibrato sound by

Meyer [3] and earlier by Fletcher and co-researchers [2, 4]

and Mathews and Kohut [8]. These authors highlighted the

likely role of vibrato in enhancing the sound of the solo vi-

olin above that of any accompanying players.

Psycho-acoustic test have shown that, for typical vibrato

frequencies used in musical performance, the ear is much

more sensitive to fluctuations in amplitude than to fluctu-

ations in frequency or, more strictly, phase modulation –
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by a factor of around ten at 6 Hz (Sek [9]), as discussed

by Moore[ I0]. Whereas the ear can easily perceive the

changes in pitch of a note for vibrato rates below ",3 Hz,

for the typical vibrato rates used in violin playing (",4-

6 Hz), the perceived sound is of a pulsating tone at the

mean frequency, which Prame [11] refers to as vibrato of

the second-kind. This is illustrated by comparison of the

similar sounds of a synthesised I% frequency modulated

and a 35% amplitude 1kHz vibrato tone, SOUND 1, in the

downloadable Powerpoint presentation [12], which will be

used to demonstrate almost all the sounds discussed in this

paper.

A common technique to determine the temporal vari-

ation in pitch and amplitude of waveforms has been to

use time-shifted, short period, Fast Fourier Transforms

(FFTs). Such information can be presented as a 3-D spec-

trogram illustrating the temporal variations in the ampli-

tudes and frequencies of the individual partials of the

bowed violin vibrato tone (see, for example, [3]). Such

methods produce a discrete, time-averaged, frequency

spectrum, with a resolution Clf = llTs inversely pro-

portional to the sampled length Ts. Other methods, us-

ing more sophisticated computer algorithms, have been

developed to follow temporal pitch changes more pre-

cisely. For violin tones, these include computer-based

phase-vocoder measurements by McAdams, Beauchamp

and Meneguzzi [13], cross-correlation techniques by Ando

and Yamaguchi [14], modal distribution function analysis

by Mellody and Wakefield [15], and wavelet analysis by

AIm and Walker [16].

In such studies, Mellody and Wakefield showed that the

realism of re-synthesised violin vibrato sounds was almost

entirely associated with the fluctuations in amplitude ofthe

partials rather than the frequency modulation, which had

relatively little effect on the perceived sound quality. They

also noted that bow-noise [17] added realism to violin

sounds, as previously suggested by Fletcher and Sanders

[2]. For simplicity, we will ignore such complications in

this paper.

When vibrato sounds were recorded close to the vi-

olin, Meyer [3] observed a quasi-sinusoidal variation of

the pitch of the bowed note, but with large fluctuations in

the amplitude of component partials typically in the range

of 3-15 dB, but sometimes exceeding 25 dB. However,

at a distance, the fluctuations of both amplitude and fre-

quency increased in complexity, with the derived frequen-

cies fluctuating almost at random over the width of the

vibrato- broadened partials. Such effects were attributed to

contributions from the direct and reflected, time-delayed

and hence frequency-shifted, frequency modulated sounds

from the walls of the performance space. However, no

detailed analysis of the resulting vibrato tones was at-

tempted. Meyer suggested that the spreading in energy

density of the reflected waves over the spectrum would

reduce local saturation effects on the basilar membrane

and thereby significantly enhance the perceived loudness

and projection of the violin in the concert hall, as previ-
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ously proposed by Fletcher and co-researchers [2, 4] and

Matthews and Kohut [5]

The purpose of this paper is to explore the nature of vi-

brato tones in realistic performance and recording spaces,

to develop a dynamic model for vibrato to describe such

tones, and to apply the model to synthesise vibrato tones

based on the impulsive response of the violin recorded at

the listener's position in the performing space.

The paper is structured as follows. In the next section,

we present a detailed analysis of a selected vibrato tone

played on an exceptionally fine Stradivari violin by an in-

ternational artist and of the same note played on a Vuil-

laume violin by the author. These measurements reveal

a number of previously unreported features, which any

theoretical model for vibrato must describe. In section 3,

we account for such features by a dynamic model for vi-

brato involving the transient response of both the violin

and performance acoustic. In section 4, we extend our

model to the simulation of vibrato sounds based on the

measured tap-tone response of the violin in a given perfor-

mance space, assuming the force at the bridge can be sim-

ulated by a sawtooth waveform considered as a sequence

of Helmholtz step-functions superimposed on an acous-

tically unimportant linear ramp. In section 5, we discuss

the relevance of this research to the perception of vibrato

tones and any assessment of violin quality. We also con-

sider how the quality of the wood used in the construction

of the violin, the additional damping introduced by hold-

ing the instrument, and the resonances of the undamped

strings affect the vibrato-induced fluctuations and hence

quality of the sound of the bowed note played with vibrato.

Our finding are briefly summarised in section 6.

2. Violin vibrato tones

To illustrate the influence of vibrato on the sound of a vi-

olin, we first present a detailed analysis of the waveforms,

envelopes and zero-crossing, inverse-period, 'frequencies'

of the first five partials of two sampled D4 notes played

with vibrato on the G-string.

The first example is taken from a BBe interview, in

which the concert violinist Tasmin Little demonstrates

the outstanding quality of a Stradivari violin (believed

to be the "ex-Goldman") previously played by Milstein,

one of the greatest violinists of the last century. Figure 1

shows a 1.5 s section of the waveform envelope recorded

at 44.1 kHz, an FFT of the whole waveform illustrating

the vibrato-induced widths of the individual partials, a

50 ms section of the cyclically changing waveform, and

two short-period FFTs (1024 points, Hanning-windowed)

recorded at intervals 50 ms apart illustrating the cyclic

changes in the spectrum and hence timbre of the perceived

sound.

This example is of special interest, because the player

repeatedly returns to this particular note to exemplify the

outstanding quality of the instrument, describing it as "fan-

tastically exciting, very vibrant, deafening and alive with

a spirit that is absolutely desperate to get out". Since, we
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continue to search for physical attributes of a violin’s tone

that correlate with the subjective judgement of violin tone

by player and listener, there is obvious merit in analysing

a sound considered to be of outstanding quality and played

by an international artist.

Figure 1 illustrates the very large, vibrato-induced,

quasi-periodic variations of the envelope, wave-form and

spectral content of the recorded sound with time. We have

deliberately chosen to concentrate on the sustained tone of

the instrument and ignore the initial transients, which are

widely recognised to be important in the initial identifi-

cation of any instrument. Nevertheless, as in any record-

ing of a sustained note on any violin, the recorded sound

is immediately recognisable as that of a violin, wherever

the “play-back” is started within the envelope. In contrast,

if a single period of the recorded waveform is repeated

continuously, the sound is indistinguishable from that of

a crude electronic synthesiser (SOUND 2 [12]) and refer-

ence [18]. These examples demonstrate that fluctuations in

the waveform are essential for any realistic simulation of

violin tone.

By far the largest fluctuations are the vibrato-induced

fluctuations in amplitude. However, additional fluctuations

in amplitude and frequency including those from variable

bow pressure and stochastic bow noise [17] may also be

significant – particularly for the sound of open strings

played without vibrato. Throughout this paper, we focus

on the effect of vibrato on long notes, while recognising

that the initial transients may by just as important in iden-

tifying and defining the quality of an instrument.

Figure 2 shows amplitude and inverse-period “frequen-

cy” fluctuations of each of the first five partials extracted

from the recorded sound using software-implemented FFT

filters (SOUND 3 [12]). The partials were extracted from

the waveform by band-pass filters centred on the mean

frequency of the n-th partial with pass-band widths of

Hz. Doubling the filter width had no significant

affect on the fluctuations in amplitude of the partials. The

amplitudes of the 1st and 4th partials have been divided

and multiplied by a factor 2 respectively for graphical con-

venience.

From Figure 1, we note that vibrato significantly broad-

ens the width of the partials, so that the higher partials span

an increasingly large fraction of the instrument’s spectral

range, particularly in the perceptually important frequen-

cies above 1 kHz. Figure 2 shows that the cyclic modu-

lation in amplitude of the partials can sometimes be as

large as 100%, with envelope reminiscent of beating be-

tween sine waves of similar frequencies and amplitudes.

The modulation is also strongly asymmetric with respect

to time, which is a clear signature that the observed effects

involve dynamic processes.

Because of the filtering, the waveforms of the individ-

ual partials are far less complicated than those of the over-

all waveform. One can therefore define and measure the

“instantaneous frequency” of the individual partials from

waveform zero-crossing events. Such measurements are

illustrated for the first five partials. Only for the fourth

Figure 1. The amplitude and FFT spectrum of a 1.5 s section of

the note D4 played with vibrato on a Stradivari violin, with a

short section of the cyclically varying waveform and two short

period FFTs spaced 50 ms apart showing the changes in spectral

timbre with time.

Figure 2. Temporal fluctuations of the normalised instantaneous,

inverse-period, “frequency” and the amplitudes of the first five

partials of the D4 vibrato tone played with a wide vibrato on a

Stradivari violin.

partial can the modulation in frequency be described as

even approximately sinusoidal, with a fractional modula-

tion width of order 10 Hz in 290 Hz, about a quarter-tone.

In contrast, the zero-crossing frequencies of the other par-

tials, although showing an underlying cyclic modulation,

exhibit many anomalous features, which are strongly cor-

related with sudden changes in slope of the waveform en-

velope. A specific example is illustrated in the top-right

trace of Figure 2, for the first partial when the amplitude

of the envelope is close to zero.
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The original sound and extracted sound of the first five

partials are illustrated in SOUND 3 [12]. Each of the

broadened partials, when sounded separately, sounds like

a note of constant average pitch pulsating at the vibrato

frequency of 6 Hz.

The above effects cannot be described by simplistic

models of vibrato, which relate the changes in amplitude

of the various partials to the quasi-static cyclic frequency

modulation of the multi-resonant response of the violin.

Although such models predict large changes in ampli-

tude of the individual partials, they cannot account for the

strongly asymmetric fluctuations observed and envelopes

that pass through zero. We will show that such features

are characteristic features of the dynamic response of the

instrument and performance space to the frequency mod-

ulated sawtooth bowing force.

Meyer [3] showed that the sound at a distance from a vi-

olin played with vibrato is strongly influenced by the time-

delayed, and hence frequency-shifted, echoes from the

walls of the performance space. To illustrate this effect, we

first recorded the “close-field” vibrato sound of a French

violin by Vuillaume and then used it as an isotropic source

in a computer-simulated, relatively reverberant, perfor-

mance acoustic. The close-field sound was recorded a few

centimetres above the top-plate using a small electret mi-

crophone attached to the front of the chin rest. Close to the

violin, the recorded sound is dominated by the sound of

the violin rather than the acoustic environment. The FFT

of the recorded note is shown in Figure 3 followed by the

first 3 seconds of the envelope and inverse-period frequen-

cies of the first 5 partials (SOUND 4 in reference [12]).

In contrast to the previous example, the envelopes of the

inverse period frequencies of the partials of the Vuillaume

violin recorded close to the instrument are much more

nearly sinusoidal, with the amplitudes of the partials vary-

ing far less dramatically. Nevertheless, the fluctuations of

the higher partials already show marked deviations from

time-reversal symmetry. The player-defined vibrato modu-

lation frequency of around 4.5 Hz is significantly less than

the previous example as also is the modulation width of

about Hz.

To illustrate the influence of the performing space

acoustic on the sound of notes played with vibrato, we

used the echo-chamber facility of the audio-processing

CoolEdit software [19]. The sound of the closely-recorded

violin was used as an isotropic point-source, at a dis-

tance of 8 m from the recording microphone (or lis-

tener), in a rectangular box-shaped room of dimensions

10 10 8 m , with all surfaces reflecting 0.9 of the inci-

dent sound, corresponding to a Sabine 60 dB reverbera-

tion time of s. The listener and violin were placed

off-axis at a distance of 1m from opposite end walls to

couple to both symmetric and asymmetric room modes.

Although the detailed features of the fluctuations in am-

plitude of the contributing partials are strongly dependent

on the positions of the performer and listener in the per-

forming space, the qualitative features (i.e. asymmetric

waveform envelopes and partials with amplitudes that of-

Figure 3. The FFT spectrum of the first 3 s of the recorded vibrato

note D4 on a Vuillaume violin recorded close to the top plate

followed by the amplitudes and inverse period frequencies of the

first five partials.

ten pass through zero) are relatively insensitive to the exact

position of violin and microphone.
Figure 4 illustrates the dramatic increase in the com-

plexity and size of the amplitude modulation of the partials

arising from the time-delayed, frequency-shifted, reflec-

tions from the walls of the performance space (SOUND 5

[12]). For the higher partials in particular, the fluctuations

in frequency no longer vary even approximately as sim-

ple sinusoids, with waveform envelopes that are strongly

asymmetrical with respect to time and frequently pass

through zero (e.g. partials 3 and 4). Although the player-

defined magnitude and frequency of the vibrato-induced

fluctuations are less than those used in the Stradivari vio-

lin example, the qualitative features of the vibrato sounds

are very similar, as indeed are the sounds of any violin

played with vibrato in any resonant acoustic.

3. A dynamic model for violin vibrato

To describe the observed asymmetric temporal variations

of the waveforms, we develop a dynamic model for vi-
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Figure 4. The FFT spectrum of the waveform of the closely-

recorded Vuillaume violin vibrato D4 tone "played" in a lOx

10 x 8m3 performing space with a Sabine decay time T60 dB ~

2.2 s, illustrating the increased "complexity" in both amplitude

and "frequency" fluctuations and increased departures from time-

reversal symmetry in a reverberant performing acoustic.

(3)

a = 1.5a = 1.0a = 0.5

p(r,e,¢,w) =

Figure 5. FFT spectra of a 300Hz sine wave, phase-modulated at

6Hz, for typical vibrato- induced modulation parameter a.

frequency component. However, for typical fractional fre-

quency modulation widths of a few percent, a is typi-

cally of order unity (e.g. for our first example, 6.1/1 ~
±5/290, so that a = 1 for a vibrato rate of 5 Hz). The

Fourier spectrum of a frequency-modulated sine wave then

has a series of side bands at ±p!1, where p is an integer.

Figure 5 shows the spectra of a 1.5 second 300 Hz sine-

wave modulated at 5 Hz for typical values of a for vibrato

notes on a stringed instrument.

The excitation of vibrato-induced frequency- and phase-

shifted side-bands, which can be comparable in size to

the central components, results in strong interference and

beating effects, particularly from multiple, time-delayed,

reflections from the surfaces of the performance space.

If we assume that the response of the violin is linear

with velocity-controlled damping, the steady-state radi-

ated sound pressure p(r, e, ¢, w) for a sinusoidal driving
force F (w) at the bridge can be written as

2kHz
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where !1 is the vibrato frequency and a is the modulation

parameter. This corresponds to a cyclic modulation of the

frequency components,

with a fractional modulation in frequency of ±a!1/wn.

Small amplitude frequency modulation (a « 1) results

in two side-bands of relative amplitude a/2 shifted by ±!1

from and in phase-quadrature with the central unshifted

brato, which involves the dynamic response of both the

violin and the performing acoustic. The model accounts

for many of the features of the vibrato tones described in

the previous section.

We assume that vibrato results in a frequency modulated

periodic bowing force on the bridge with phase-modulated

frequency components varying as

In this expression, Wj and Qj are the resonant frequen-

cies and quality-factors of the damped normal modes of

the instrument, which take into account the coupled mo-

tions of all the component parts (i.e. the body, front and

back plates, neck, fingerboard, tailpiece, strings, bridge,

etc), Cj is the amplitude of the j -th mode excited by the lo-

calised force F(w) ofthe bowed string at the bridge, while

Rn(r, e, ¢, w) describes the radiated sound field of the ex-

cited modes as a function of distance r, polar angles e and
¢ and angular frequency w. Rn(r, e, ¢,w) will involve res-
onant contributions from all the acoustic modes of the per-

formance space. Strictly speaking, the response should be

described in terms ofthe normal modes of the coupled vio-

lin and surrounding acoustic, but we assume such coupling

to be sufficiently weak to consider them separately.

For a bowed violin string, F(w) can be approximated

by a sawtooth waveform at the bridge, with Fourier com-

ponents inversely proportional to the order n of the excited

partials. The radiated sound will therefore have Fourier

components at the same harmonic frequencies, but with

amplitudes and phases varying markedly with the frequen-

(2)

(1)

w~ = Wn ( 1+ a ~n cos (!1t) ),
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Figure 6. Quasi-static model for vibrato as the modulated out-

put of the resonant response by a frequency-modulated excitation

signal.

cies of the component partials relative to the resonances of

the instrument and those of the surrounding acoustic and

the positions of performer and listener in the performance

space.

If we ignore dynamic effects, a weakly frequency-

modulated ( ) sinusoidal force exciting an individ-

ual resonance will give a sinusoidal output modulated in

amplitude at the vibrato frequency by an amount propor-

tional to the slope of the resonance curve at the driving

frequency, illustrated schematically in Figure 6. As the

driving frequency approaches the resonant condition, the

modulation at this frequency decreases to zero and is re-

placed by a smaller modulation component at double the

modulation frequency, proportional to the curvature of the

response curve.

For typical vibrato widths used by violinists, the broad-

ening of the upper partials can easily exceed the average

spacing between individual resonances, estimated by Cre-

mer to be 45 Hz [20], as illustrated by the long-period

FFT spectra in Figures 1 and 3. We then have to include

the response from a number of relatively strongly excited

structural resonances, superimposed on a slowly-varying

response from all the other less-strongly excited normal

modes of the instrument.

In Figure 7, we have simulated a typical region of the

violin’s response function for a set of random strength res-

onances spaced 45 Hz apart, with constant -values across

the whole frequency range. The model is simply for qual-

itative illustration and is not intended to describe the reso-

nant structure of a real violin. Increasing the -factors of

Figure 7. Simulated response curves for a violin with random

strength resonances spaced 45 Hz apart for -values 10, 30 and

100. Modulation widths of 5% are shown by the pairs of vertical

lines.

Figure 8. Vibrato induced fluctuations for three representative

frequency modulated by % at 6 Hz assuming a quasi-static

response, illustrating the strong dependence on damping, but

with a time-dependence which is symmetric with respect to time.

the resonances will clearly increase the heights and slopes

of the contributing resonance curves and hence the am-

plitude of the vibrato-induced fluctuation of the radiated

sound.

Figure 8 shows computed output fluctuations for three

representative frequencies, for -values of 30 and 100, as-

suming a 5% vibrato-induced modulation width at 6 Hz.

As anticipated, the amplitude and sharpness of the mod-

ulation features are very strongly dependent on the -

values of the excited resonances. The complexity of the

simulated envelopes is qualitatively similar to that ob-

served for the sound of real instruments recorded close

to the instrument. However, the fluctuations exhibit time-

reversal symmetry, in contrast to the asymmetric fluctua-

tions observed for real instruments played in real perform-

ing spaces.

To account for the asymmetry of the observed wave-

forms, we have to consider the dynamic response of both

the violin and performance space. Dynamic effects will

be significant for vibrato rates comparable with inverse
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Figure 9. The dynamic response for an oscillator excited by a lin-

early increasing frequency sinusoidal input of constant amplitude

passing through the resonance condition.

Figure 10. (a) The response of a 300 Hz ( ) resonator to

a frequency modulated sine wave with a vibrato rate of 6 Hz and

modulation parameter , for a sequence of inputs with mean

frequencies shifted by successive fractional increments of 1%, as

illustrated by the frequency/time curves; (b) the output for the

excitation of two closely resonators with a fractional spacing of

2% of their natural frequencies.

damping times (i.e. th) and for delay times

from multiple reflections such that th.

A simple example of dynamic effects is illustrated in

Figure 9, for a sinusoidal input with linearly increasing

frequency passing through a single resonance. In contrast

to the quasi-static response, there is an initial transient

on turning on the excitation. The output then increases in

amplitude as the resonant condition is approached. How-

ever, because of the delayed response, the maximum is not

reached until the driving frequency has passed beyond the

resonance condition. Thereafter, the amplitude of the out-

put oscillates or “rings” with increasing frequency. This is

a result of the resonator, once excited, continuing to ring at

its natural frequency and beating with the resonator’s in-

stantaneous response at the driving frequency. Mathemat-

ically, this is equivalent to interference between the par-

ticular and complementary solutions of the forced simple

harmonic oscillator equation. Once the excitation ceases,

the oscillator decays at its natural resonance frequency.

Similar effects occur for frequency-modulated vibrato

wave inputs. For an oscillator with resonant frequency

excited by a phase-modulated sinusoidal input, the output

can be expressed as the convolution of the oscillator im-

pulse response and the frequency modulated input,

(4)

where is the decay time of the oscillator ( ) and

is the fractional difference between the mean frequency

of the excitation signal and the resonant frequency of the

excited oscillator. The above result is easily generalised to

include any number of excited resonators.

Figure 10a shows the computed fluctuations in am-

plitude of the output for a 300 Hz resonator with a -

value of 60 excited by frequency-modulated ( Hz at

a vibrato rate of 6 Hz) sinusoidal inputs, with fractional

frequency shifts increasing by 1% between successive

traces. When the mean excitation frequency coincides with

that of the oscillator, the fluctuations in amplitude are rel-

atively small. However, as the mean frequency of the in-

put moves away from the resonant condition, the vibrato-

induced fluctuations in amplitude increase dramatically,

with asymmetrical waveforms passing through zero. When

the excitation is switched off, the oscillator output decays

at its natural vibration frequency.

The computed curves closely mimic the observed mod-

ulations of the partials of violin vibrato tones reported

in the previous section. In particular, they reproduce the

highly asymmetric modulation envelopes passing through

zero in many cases. This behaviour can be qualitatively

described as arising from the interference between the in-

stantaneous excited output at the frequency modulated ex-

citation and the freely decaying vibrations of the oscillator

at its natural frequency.

If more than one oscillator is excited, additional struc-

ture occurs from beats between their natural frequencies,

as illustrated in Figure 10b.

4. The synthesis of bowed vibrato tones

We now extend our dynamic model, to synthesise vibrato

tones for any note played on a particular instrument, at

any point in the performance space, from a single mea-

surement of the tap-tone at the bridge recorded at the lis-

tener’s position. The model assumes an ideal, frequency-

modulated, sawtooth excitation force at the bridge.

The radiated sound excited by a time-

varying force at the bridge can by expressed as the

convolution

(5)

where is the transient response of the in-

strument for an impulsive -function force at the bridge
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recorded at the listener’s position. in-

cludes both the direct sound from the instrument and the

reflections from the surrounding surfaces of the perfor-

mance space. It can be derived from a single measurement

of the impulsive response at the chosen position in the per-

formance space, for a short impulse applied to the bridge

in the bowing direction.

To a rather good approximation, the force exerted

on the bridge by the bowed string has a sawtooth wave-

form. In addition, there are additional small ripples, which

vary from note to note and are critically dependent on the

precise distance of the bow from the bridge (e.g. [17]).

Because the perceived tone quality of a good instrument

is remarkably uniform from note to note and is not crit-

ically dependent on the precise bow position for normal

playing, such features are unlikely to be crucially impor-

tant in defining the overall sound quality of an instru-

ment. We therefore neglect the finer-scale structure of the

bowed string waveform for the purpose of the present anal-

ysis. The bowed-string waveform will also have a slightly

rounded discontinuity, as discussed in detail by Cremer

[21], which can easily be incorporated into our model by

applying a digital or analogue high-frequency cut-off filter

to the simulated sound.
Our approach is not dissimilar to earlier electronic sim-

ulations of violin vibrato sounds by Fletcher and Sanders

[2] and Mathews and Kohut [8]. These authors used elec-

trical analogue models with a parallel bank of resonant

LCR-circuits excited by a signal proportional to the mea-

sured force on the bridge, to simulate the sound of the

bowed violin. In our model, we assume a simple sawtooth

driving waveform and synthesise vibrato tones from the

impulse response of the violin measured in a real perfor-

mance space.
A saw-tooth waveform can be considered as a sequence

of Helmholtz step-functions superimposed on an acous-

tically unimportant linearly rising (or falling) component,

as illustrated in Figure 11. Mathematically, a step-function

can be considered as a continuing sequence of im-

pulse functions, such that

(6)

so that for a Helmholtz step-function input equation (3)

gives

(7)

The step-function response can therefore be derived by

integrating the sound from a single impulse. The sound

of the bowed instrument played with vibrato can then be

simulated by the superposition of a period-modulated se-

quence of derived step-function responses. We assume a

constant bow speed. Changes in the period of the sawtooth

waveform from the use of vibrato will therefore lead to

small modulation of its amplitude. We can neglect such

corrections, as they are very much smaller than the ampli-

tude fluctuations induced by the frequency modulation.

Figure 11. The bowed “sawtooth” force on the bridge considered

as a sequence of downward Helmholtz step-functions superim-

posed on an acoustically unimportant linear ramp.

Figure 12. The first 50ms of the impulsive tap-tone response

measured 2 m away from the violin and the derived Helmholtz

step-function response.

The impulse response was determined by swinging a

small pith-ball, 1.5 cm in diameter and 1.3 g in weight sus-

pended on the end of a cotton thread, against the top of

the G-string side of the bridge. The lower trace of Fig-

ure 12 shows the first 50 ms of the impulsive “tap-tone”

of the Vuillaume violin, recorded at a distance of approxi-

mately 2 metres from the violin, in a small furnished room

with dimensions m . The strings were heavily

damped and the violin supported under the chin and held

by the neck in the normal way. The upper trace in Fig-

ure 12 shows the computed step-function response, which

accentuates the lower frequency components by the fac-

tor , as is qualitatively evident by comparison of the

traces.

The sounds of the impulse and step-function responses

sound rather like the “tick” and “tock” of the traditional

nursery-rhyme grandfather clock (SOUND 6 [12]).

The tap-tone and derived step-function responses are

strongly dependent on the position of the listener or mi-

crophone relative to the instrument. This is illustrated in

Figure 13 by tap-tones recorded 2 cm above the front plate

of the instrument at the front edge of the chin-rest, close

to the player’s ear, and 2 m away from the violin (SOUND

7 [12]). In these measurements, the Vuillaume violin was

held by the player in the usual way with the open-strings

damped.
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Figure 13. Tap tones at the bridge recorded just above the front

plate of a Vuillaume violin, at the player’s ear and 2m away in

a small room, with damped violin strings, with expanded traces

for the three tones below.

Figure 14. Simulated vibrato sounds generated by tap tones

recorded close to the top plate of the Vuillaume violin, “played”

with no vibrato (top left corner) and with the vibrato rates and %

frequency modulation shown.

Close to the instrument the sound is dominated by the

instrument and decays quite rapidly, whereas at a distance

the sound is dominated by reflections from the walls of the

room and dies away much less rapidly. The sound heard by

the player is intermediate, with a significant contribution

from both the violin and the surrounding acoustic, which

provides very important feedback to the player on the qual-

ity of the sound being produced. Players strongly dislike

playing in an anechoic chamber, the open-air, or a large

concert hall with no nearby reflecting surfaces, where such

feedback is largely absent.

To simulate the sound of the bowed violin, one simply

superimposes a sequence of the derived step-function re-

sponses at the repetition rate of the bowed string. SOUND

8 [12] illustrates the sound at 2m, for repetition rates of

1 Hz, 10 Hz, and 200 Hz. The latter example simulates the

“vibrato-less” sound of the bowed instrument. It has none

of the fluctuations that characterise the sound as that of a

violin.

To more closely mimic the sound of an instrument

played with vibrato, we superimpose a sequence of derived

step-functions, but now modulate the repetition frequency

by a chosen fractional width and vibrato frequency. In ad-

dition, we modulate the input with a shaping function

where and are starting and ending time-constants, arbi-

trarily set to 25 ms, to simulate the initial attack and release

of the bowed note after a time .

Figure 14 shows synthesised waveform envelopes of

bowed vibrato tones at 441 Hz as a function of vibrato

rate and fractional frequency modulation, using tap-tones

recorded close to the top plate of the Vuillaume violin,

shown below each waveform. The envelope in the top left

corner shows the characterless-sounding computed wave-

form without vibrato. When the period of the sawtooth

input is modulated to simulate the use of vibrato, the

waveform envelopes are strongly modulated and the sound

closely resembles that of the real violin. Figure 15 shows

similar data generated by tap-tones recorded at 2 m dis-

tance in a small room (SOUND 9 [12]). These exam-

ples illustrate the increasing complexity of the vibrato-

fluctuations induced fluctuations with vibrato rate, width

and distance from the violin.

The simulated sounds show that even fractional fre-

quency vibrato widths as small as 0.5% produce very sig-

nificant fluctuations in amplitude and “interest” to the sim-

ulated sounds. Simulations for other notes on the instru-

ment showed very similar qualitative features, so there is

nothing special about the particular choice of frequency

illustrated.

5. Discussion

The above examples of real and simulated violin vibrato

tones show that the dynamic response of both the violin

and the surrounding acoustic are important in account-

ing for the complex fluctuations in amplitude of a vio-

lin played with vibrato. The importance of the dynamic

response is underlined by the non-time-reversal symme-

try of the fluctuations and their dependence on vibrato

rate. Such features cannot be explained by quasi-static fre-

quency modulation vibrato models.
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Figure 15. Simulated vibrato sounds of a Vuillaume violin gen-

erated by tap tones recorded 2m from the violin in a small room,

“played” with no vibrato (top left corner) and with the vibrato

rates and % frequency modulation shown.

We have demonstrated from both recorded and simu-

lated violin tones that without vibrato (or other fluctua-

tions) the sounds are indistinguishable from the bland and

uninteresting sounds of a simple electronic synthesiser. It

follows that vibrato- induced amplitude fluctuations are

likely to play an important role in characterising the sound

of long notes played on a violin and hence any subjective

assessment of an instrument’s quality. We intend to con-

duct listening tests on both real instruments played with

varying amounts of vibrato and our computer synthesised

vibrato tones with more precisely defined accurate vibrato

widths and rates to assess the influence of vibrato on per-

ceived quality.

Our measurements and synthesised tones show that

room acoustic results in an increasing complexity in

the fluctuations of the sound produced by an instrument

played with vibrato. In contrast, the complexity of the fluc-

tuations heard by the player is dominated by the intrinsic

response of the violin itself. This helps to explain why the

player finds it far easier to judge tonal differences in the

quality of violins than a distant listener, especially in a res-

onant acoustic. Our model also explains the difficulty in

characterising the intrinsic “quality” of an individual vio-

lin from commercial recordings, where the characteristic

fluctuations in the violin vibrato sound can be dominated

by the recording acoustic and unknown electronic “rever-

beration enhancements” by the sound engineer. In early

acoustic recordings, the sound was recorded very close to

the instrument, so that such effects were less important.

The influence of the room acoustic in affecting the sound

heard by the listener will also be an important factor in any

subjective listening tests of violin quality, particularly for

listeners at a distance from the violin in a resonant acous-

tic.

Weinreich [20] has drawn attention to the importance of

the strongly frequency-dependent directionality of the vi-

olin’s sound above 1 kHz in providing a “directional tone

colour”, which will vary from note to note and within notes

played with vibrato. Our simulations, using the closely-

recorded sound of the violin as an isotropic sound source

in an artificial reverberant room, show that the use of vi-

brato also results in strongly directional and positional de-

pendent fluctuations in the sound of a violin. This suggests

that the spectral fluctuations between notes and within

notes played with vibrato may depend just as strongly on

the dynamic response of the violin and surrounding acous-

tic as on the directional properties of the violin. Such ef-

fects may therefore be equally important in contributing to

what Weinreich refers to as the “sparkle” of the perceived

sound of consecutive notes played in rapid succession and

to the added “interest” of a note played with vibrato.

Finally, we briefly consider the influence of damping

on violin vibrato sounds. Our dynamic model for vibrato

shows that the complexity in the vibrato-induced ampli-

tude fluctuations increases with increase in -values and

“ringing” times of the structural resonances excited. If

such fluctuations are important in the subjective assess-

ment of a particular instrument, one might expect a close

correlation between the damping and related -values of

the instrument and its perceived quality. This is consistent

with the generally held view that the highest quality “tone-

wood”, with a really good ringing quality, should be used

for the acoustically important front and back plates of a

violin.

Surprisingly, Curtin [22] has recently reported that the

tap-tones of the plates of a number of fine Italian instru-

ments are rather strongly damped. though this could also

be associated with the lightness of the plates. It is also

interesting to note that Marshall [23] and Bissinger [24],

in modal analysis measurements, found that the damp-

ing of individual resonances below 1 kHz was signifi-

cantly increased, when the violin was held under the chin

in the normal way rather than supported by rubber bands.

Any advantages of a violin carved from the highest qual-

ity tone-wood, would therefore appear to be negated, at

least in part, by the player simply holding the instru-

ment, though this could largely be a low frequency (be-

low around 1 kHz) effect. It is also clear that, when the

unbowed open-strings are free to vibrate, they will also

contribute to the sound of the violin.

To confirm that both holding the violin and allowing

the strings to vibrate freely have a significant affect on the

sound of vibrato tones, we recorded tap-tones close to the

top face of the Vuillaume violin in an anechoic space at a

distance of 50 cm perpendicular to the front face of the vi-

olin. In these measurements, the violin was first freely sup-

ported by a rubber band with first damped then undamped

strings. The measurements were then repeated with the vi-
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Figure 16. Tap tones at the bridge recorded close to the front plate

of a Vuillaume violin illustrating the affect of holding the violin

and the contributions to the sound from the undamped strings.

The “un-windowed” long time FFT spectra shown are measured

from the start of the waveform and at successive 12.5 ms delays,

illustrating the damping of the various modes with time.

Figure 17. Simulated envelopes for a 441 Hz note with vi-

brato ( 1.5% modulation width at 5 Hz), generated by tap-tones

recorded at 50 cm for a Vuillaume violin freely suspended and

supported in the normal way with open-strings first damped and

then undamped.

olin supported under the chin and held at the neck in the

normal way. Typical tap-tones for the Vuillaume violin are

shown in Figure 16 and illustrated in SOUND10 [12]. The

very different sound of the tap-tones, which would be used

as generating functions for the synthesis of vibrato tones,

is immediately apparent. The additional damping intro-

duced by holding the violin is illustrated by the sequence

of un-windowed, time-delayed, long-period FFT spectra

shown below the tap tones. The sequence of FFTs derived

from long period data sets starting from the beginning of

the tap-tone and then with subsequent delays of 12.5 and

25 ms, during which times individual Fourier components

will have decayed as , where is the decay-time

of the contributing modes.

These measurements confirm the large increase in dam-

ping of the modes when the instrument is held, especially

below 1 kHz, apart from the Helmholtz air resonance,

which is almost unchanged. However, when the strings are

left free to vibrate, they more than compensate for the loss

in signal from the structural resonances and are therefore

likely to make a significant contribution to the amplitude

fluctuations of any note played with vibrato, as illustrated

by the simulated waveforms and sounds in Figure 17 and

SOUND 11 [12]. A more detailed account of such mea-

surements will be presented elsewhere.

The importance of the sympathetically excited open-

string resonances can easily be demonstrated by compar-

ing short bowed notes on an instrument with the unbowed

strings first damped and then left free to vibrate – particu-

larly for stopped notes that excite the partials of the open

strings. When stopped there is very little after-sound from

a short bowed note, which therefore sounds rather dead.

In contrast, when the open strings are left free to vibrate,

the sound continues to ring long after the note has been

played giving a “bell-like” quality to notes. The effect of

the sympathetic strings, which are impulsively excited by

the bowed sawtooth force on the bridge and are coupled to

acoustically radiating structural modes of the instrument,

is not unlike the additional complexity introduced by the

room acoustics. This could partly explain the preference

of string players to play and composers to write “bright”

music in “sharp-keys”, particularly G, D and A, where in-

teractions with the unstopped open strings and their par-

tials give added warmth and interest to the sound. The use

of additional sympathetic strings to enhance the sound of

instruments was common in the pre-baroque period, as in

bowed instruments like the Viola d’Amore.

6. Summary

In summary, we have demonstrated that:

1. Vibrato is an important element in defining the sound

of a violin, and is therefore likely to be important in

any subjective assessment of its quality. Without fluc-

tuations, the sound of a violin is indistinguishable from

the output of a crude spectral synthesiser,

2. The partials of bowed notes on a violin played with

vibrato exhibit very strong fluctuations in amplitude,

which are asymmetrical with respect to time, depend

on vibrato rate, and frequently pass through zero, rem-

iniscent of beating effects between different frequency

components,

3. The inverse period “frequency” departs significantly

from the anticipated slowly varying cyclic modulation

expected from the use of vibrato, especially in a reso-

nant room acoustic,

4. The above effects can be described by a dynamic

model for the frequency modulated multi-resonant re-

sponse of the violin and performance acoustic,

5. The sound of a bowed violin note played with vibrato

in a chosen performing acoustic can be simulated at

any frequency, from a single measurement of the sound

of a short tap at the bridge recorded at the position of

the player or listener, assuming a frequency-modulated

Helmholtz sawtooth bowing force at the bridge,
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6. The fluctuations in sound of bowed notes played with

vibrato will be very different for performer and lis-

tener, with a complexity in the amplitude fluctuations,

which is increasingly dominated by the room acoustic

at a distance from the violin. If, as we argue, such fluc-

tuations are important in any assessment of the quality

of a violin, this has important implications for subjec-

tive and quantitative listening tests,

7. Because the observed and simulated fluctuations from

the use of vibrato are largely associated with dynamic

effects, the damping of the resonant modes of an in-

strument and the performance acoustic are of particu-

lar importance. We confirm earlier reports that holding

the violin causes a significant increase in the damping

of the vibrational modes of the violin, which is partly

offset by the excitation of the less strongly damped par-

tials of the undamped open-strings,

8. Carefully designed listening tests are required to con-

firm the importance of the measured and predicted,

dynamically-driven, large asymmetrical fluctuation on

the perception of the vibrato tone of an instrument, and

the extent to which the simulated model based on tap-

tones simulates a realistic violin vibrato tone.
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