ACTA ACUSTICA UNITED WITH ACUSTICA
Vol. 91 (2005) 229-240

Measurement, Modelling and Synthesis of Violin

Vibrato Sounds
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Summary

We consider the influence of vibrato on the sound of a violin by direct measurement, theoretical modelling and
synthesised vibrato tones. Detailed analysis of bowed vibrato sounds reveals complex, asymmetric with respect
to time, periodic variations in frequency, amplitude and timbre. To account for such features, a dynamic model
for vibrato is described, based on the multi-resonant dynamic response of the violin and performance space
acoustic. The model is extended to simulate the vibrato tones of a violin in a chosen performing acoustic from a
single measurement of the sound at the listener’s position produced by a short impulse at the bridge, assuming a
frequency modulated sawtooth bowing force at the bridge. Measurements, modelling and synthesis all underline
the increasing importance of the performance acoustic on the vibrato-induced fluctuations of the violin’s tone, as

one moves away from the violin.

PACS no. 43.75.+a

1. Introduction

Vibrato involves the cyclic modulation of the frequency of
a note played on a stringed instrument as the player gen-
tly rocks the finger stopping the vibrating length of string
backwards and forwards. Violin vibrato rates are typically
in the range from 4 to 6 Hz and are similar to those used
by singers [1] and in the playing of many other musical in-
struments [2]. Typical frequency modulation widths used
in violin playing can approach a quarter-tone [3]. In ad-
dition to the modulation in frequency, vibrato on the vio-
lin and other bowed stringed instruments results in large
cyclic fluctuations in amplitude, as previously reported,
notably by Fletcher et al. [2, 4], Matthews and Kohut [5].

The historic use of vibrato to enhance the ‘warmth’ and
‘singing quality’ of the violin tone is well documented (see
[6] and [7] for references from Ganassi (1542) to Leopold
Mozart (1756)). Initially, vibrato was used sparingly as a
special effect and to mimic the sound of the singing voice.
However, recordings suggest an increasing use of vibrato
by the modern solo performer over the last century, so that
today a rather large-amplitude fast vibrato is ubiquitous
in many performances of the romantic repertoire. In ‘au-
thentic’ performances of the baroque and early classical
repertoire, violinists tend to use a rather smaller amplitude
vibrato, but only in the most purist of performance is vi-
brato entirely lacking. In any subjective assessment of vio-
lin tone quality, it is therefore almost impossible to ignore
the influence of vibrato.
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In this paper, we will focus on the way in which vibrato
affects the sound produced by the violin from a scientific
point of view and leave a more extensive discussion of its
influence on musical performance and the perception of
violin tone quality for a publication elsewhere. Neverthe-
less, our measurements, theoretical modelling and com-
puter simulations illustrate why vibrato has such a strong
influence on the perceived sound of the violin and related
stringed instruments. They also demonstrate the large role
of the performance acoustic in modifying the sound of a
note played with vibrato. This is clearly an important fac-
tor in any assessment of the ‘intrinsic’ sound quality of a
violin played in the concert hall or recording studio.

Although most players and listeners intuitively identify
vibrato with the relatively small cyclic variations in pitch,
in practice, vibrato also induces very large fluctuations in
the amplitude of the bowed note and its component par-
tials. These fluctuations are easily understood in terms of
the cyclic scanning in frequency of the bowing force at the
bridge and all its partials across the highly peaked, multi-
resonant, acoustic response of the instrument. As a result,
vibrato leads to complex waveforms with cyclic modula-
tions in frequency, amplitude and spectral content or tim-
bre within each period of the applied vibrato. This was
recognised as a key feature of the violin vibrato sound by
Meyer [3] and earlier by Fletcher and co-researchers [2, 4]
and Mathews and Kohut [8]. These authors highlighted the
likely role of vibrato in enhancing the sound of the solo vi-
olin above that of any accompanying players.

Psycho-acoustic test have shown that, for typical vibrato
frequencies used in musical performance, the ear is much
more sensitive to fluctuations in amplitude than to fluctu-
ations in frequency or, more strictly, phase modulation —
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by a factor of around ten at 6 Hz (Sek [9]), as discussed
by Moore[10]. Whereas the ear can easily perceive the
changes in pitch of a note for vibrato rates below ~3 Hz,
for the typical vibrato rates used in violin playing (~4—
6 Hz), the perceived sound is of a pulsating tone at the
mean frequency, which Prame [11] refers to as vibrato of
the second-kind. This is illustrated by comparison of the
similar sounds of a synthesised 1% frequency modulated
and a 35% amplitude 1 kHz vibrato tone, SOUND 1, in the
downloadable Powerpoint presentation [12], which will be
used to demonstrate almost all the sounds discussed in this
paper.

A common technique to determine the temporal vari-
ation in pitch and amplitude of waveforms has been to
use time-shifted, short period, Fast Fourier Transforms
(FFTs). Such information can be presented as a 3-D spec-
trogram illustrating the temporal variations in the ampli-
tudes and frequencies of the individual partials of the
bowed violin vibrato tone (see, for example, [3]). Such
methods produce a discrete, time-averaged, frequency
spectrum, with a resolution Af = 1/T; inversely pro-
portional to the sampled length 7. Other methods, us-
ing more sophisticated computer algorithms, have been
developed to follow temporal pitch changes more pre-
cisely. For violin tones, these include computer-based
phase-vocoder measurements by McAdams, Beauchamp
and Meneguzzi [13], cross-correlation techniques by Ando
and Yamaguchi [14], modal distribution function analysis
by Mellody and Wakefield [15], and wavelet analysis by
Alm and Walker [16].

In such studies, Mellody and Wakefield showed that the
realism of re-synthesised violin vibrato sounds was almost
entirely associated with the fluctuations in amplitude of the
partials rather than the frequency modulation, which had
relatively little effect on the perceived sound quality. They
also noted that bow-noise [17] added realism to violin
sounds, as previously suggested by Fletcher and Sanders
[2]. For simplicity, we will ignore such complications in
this paper.

When vibrato sounds were recorded close to the vi-
olin, Meyer [3] observed a quasi-sinusoidal variation of
the pitch of the bowed note, but with large fluctuations in
the amplitude of component partials typically in the range
of 3—15dB, but sometimes exceeding 25dB. However,
at a distance, the fluctuations of both amplitude and fre-
quency increased in complexity, with the derived frequen-
cies fluctuating almost at random over the width of the
vibrato- broadened partials. Such effects were attributed to
contributions from the direct and reflected, time-delayed
and hence frequency-shifted, frequency modulated sounds
from the walls of the performance space. However, no
detailed analysis of the resulting vibrato tones was at-
tempted. Meyer suggested that the spreading in energy
density of the reflected waves over the spectrum would
reduce local saturation effects on the basilar membrane
and thereby significantly enhance the perceived loudness
and projection of the violin in the concert hall, as previ-
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ously proposed by Fletcher and co-researchers [2, 4] and
Matthews and Kohut [5]

The purpose of this paper is to explore the nature of vi-
brato tones in realistic performance and recording spaces,
to develop a dynamic model for vibrato to describe such
tones, and to apply the model to synthesise vibrato tones
based on the impulsive response of the violin recorded at
the listener’s position in the performing space.

The paper is structured as follows. In the next section,
we present a detailed analysis of a selected vibrato tone
played on an exceptionally fine Stradivari violin by an in-
ternational artist and of the same note played on a Vuil-
laume violin by the author. These measurements reveal
a number of previously unreported features, which any
theoretical model for vibrato must describe. In section 3,
we account for such features by a dynamic model for vi-
brato involving the transient response of both the violin
and performance acoustic. In section 4, we extend our
model to the simulation of vibrato sounds based on the
measured tap-tone response of the violin in a given perfor-
mance space, assuming the force at the bridge can be sim-
ulated by a sawtooth waveform considered as a sequence
of Helmholtz step-functions superimposed on an acous-
tically unimportant linear ramp. In section 5, we discuss
the relevance of this research to the perception of vibrato
tones and any assessment of violin quality. We also con-
sider how the quality of the wood used in the construction
of the violin, the additional damping introduced by hold-
ing the instrument, and the resonances of the undamped
strings affect the vibrato-induced fluctuations and hence
quality of the sound of the bowed note played with vibrato.
Our finding are briefly summarised in section 6.

2. Violin vibrato tones

To illustrate the influence of vibrato on the sound of a vi-
olin, we first present a detailed analysis of the waveforms,
envelopes and zero-crossing, inverse-period, ‘frequencies’
of the first five partials of two sampled D4 notes played
with vibrato on the G-string.

The first example is taken from a BBC interview, in
which the concert violinist Tasmin Little demonstrates
the outstanding quality of a Stradivari violin (believed
to be the “ex-Goldman™) previously played by Milstein,
one of the greatest violinists of the last century. Figure 1
shows a 1.5s section of the waveform envelope recorded
at 44.1kHz, an FFT of the whole waveform illustrating
the vibrato-induced widths of the individual partials, a
50ms section of the cyclically changing waveform, and
two short-period FFTs (1024 points, Hanning-windowed)
recorded at intervals 50ms apart illustrating the cyclic
changes in the spectrum and hence timbre of the perceived
sound.

This example is of special interest, because the player
repeatedly returns to this particular note to exemplify the
outstanding quality of the instrument, describing it as “fan-
tastically exciting, very vibrant, deafening and alive with
a spirit that is absolutely desperate to get out”. Since, we
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continue to search for physical attributes of a violin’s tone
that correlate with the subjective judgement of violin tone
by player and listener, there is obvious merit in analysing
a sound considered to be of outstanding quality and played
by an international artist.

Figure 1 illustrates the very large, vibrato-induced,
quasi-periodic variations of the envelope, wave-form and
spectral content of the recorded sound with time. We have
deliberately chosen to concentrate on the sustained tone of
the instrument and ignore the initial transients, which are
widely recognised to be important in the initial identifi-
cation of any instrument. Nevertheless, as in any record-
ing of a sustained note on any violin, the recorded sound
is immediately recognisable as that of a violin, wherever
the “play-back” is started within the envelope. In contrast,
if a single period of the recorded waveform is repeated
continuously, the sound is indistinguishable from that of
a crude electronic synthesiser (SOUND 2 [12]) and refer-
ence [18]. These examples demonstrate that fluctuations in
the waveform are essential for any realistic simulation of
violin tone.

By far the largest fluctuations are the vibrato-induced
fluctuations in amplitude. However, additional fluctuations
in amplitude and frequency including those from variable
bow pressure and stochastic bow noise [17] may also be
significant — particularly for the sound of open strings
played without vibrato. Throughout this paper, we focus
on the effect of vibrato on long notes, while recognising
that the initial transients may by just as important in iden-
tifying and defining the quality of an instrument.

Figure 2 shows amplitude and inverse-period “frequen-
cy” fluctuations of each of the first five partials extracted
from the recorded sound using software-implemented FFT
filters (SOUND 3 [12]). The partials were extracted from
the waveform by band-pass filters centred on the mean
frequency of the n-th partial with pass-band widths of
+20 x n Hz. Doubling the filter width had no significant
affect on the fluctuations in amplitude of the partials. The
amplitudes of the Ist and 4th partials have been divided
and multiplied by a factor 2 respectively for graphical con-
venience.

From Figure 1, we note that vibrato significantly broad-
ens the width of the partials, so that the higher partials span
an increasingly large fraction of the instrument’s spectral
range, particularly in the perceptually important frequen-
cies above 1kHz. Figure 2 shows that the cyclic modu-
lation in amplitude of the partials can sometimes be as
large as 100%, with envelope reminiscent of beating be-
tween sine waves of similar frequencies and amplitudes.
The modulation is also strongly asymmetric with respect
to time, which is a clear signature that the observed effects
involve dynamic processes.

Because of the filtering, the waveforms of the individ-
ual partials are far less complicated than those of the over-
all waveform. One can therefore define and measure the
“instantaneous frequency” of the individual partials from
waveform zero-crossing events. Such measurements are
illustrated for the first five partials. Only for the fourth
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Figure 1. The amplitude and FFT spectrum of a 1.5 s section of
the note D4 played with vibrato on a Stradivari violin, with a
short section of the cyclically varying waveform and two short
period FFTs spaced 50 ms apart showing the changes in spectral
timbre with time.
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Figure 2. Temporal fluctuations of the normalised instantaneous,
inverse-period, “frequency” and the amplitudes of the first five
partials of the D4 vibrato tone played with a wide vibrato on a
Stradivari violin.

partial can the modulation in frequency be described as
even approximately sinusoidal, with a fractional modula-
tion width of order 10 Hz in 290 Hz, about a quarter-tone.
In contrast, the zero-crossing frequencies of the other par-
tials, although showing an underlying cyclic modulation,
exhibit many anomalous features, which are strongly cor-
related with sudden changes in slope of the waveform en-
velope. A specific example is illustrated in the top-right
trace of Figure 2, for the first partial when the amplitude
of the envelope is close to zero.
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The original sound and extracted sound of the first five
partials are illustrated in SOUND 3 [12]. Each of the
broadened partials, when sounded separately, sounds like
a note of constant average pitch pulsating at the vibrato
frequency of ~6 Hz.

The above effects cannot be described by simplistic
models of vibrato, which relate the changes in amplitude
of the various partials to the quasi-static cyclic frequency
modulation of the multi-resonant response of the violin.
Although such models predict large changes in ampli-
tude of the individual partials, they cannot account for the
strongly asymmetric fluctuations observed and envelopes
that pass through zero. We will show that such features
are characteristic features of the dynamic response of the
instrument and performance space to the frequency mod-
ulated sawtooth bowing force.

Meyer [3] showed that the sound at a distance from a vi-
olin played with vibrato is strongly influenced by the time-
delayed, and hence frequency-shifted, echoes from the
walls of the performance space. To illustrate this effect, we
first recorded the “close-field” vibrato sound of a French
violin by Vuillaume and then used it as an isotropic source
in a computer-simulated, relatively reverberant, perfor-
mance acoustic. The close-field sound was recorded a few
centimetres above the top-plate using a small electret mi-
crophone attached to the front of the chin rest. Close to the
violin, the recorded sound is dominated by the sound of
the violin rather than the acoustic environment. The FFT
of the recorded note is shown in Figure 3 followed by the
first 3 seconds of the envelope and inverse-period frequen-
cies of the first 5 partials (SOUND 4 in reference [12]).

In contrast to the previous example, the envelopes of the
inverse period frequencies of the partials of the Vuillaume
violin recorded close to the instrument are much more
nearly sinusoidal, with the amplitudes of the partials vary-
ing far less dramatically. Nevertheless, the fluctuations of
the higher partials already show marked deviations from
time-reversal symmetry. The player-defined vibrato modu-
lation frequency of around 4.5 Hz is significantly less than
the previous example as also is the modulation width of
about £3 Hz.

To illustrate the influence of the performing space
acoustic on the sound of notes played with vibrato, we
used the echo-chamber facility of the audio-processing
CoolEdit software [19]. The sound of the closely-recorded
violin was used as an isotropic point-source, at a dis-
tance of 8m from the recording microphone (or lis-
tener), in a rectangular box-shaped room of dimensions
10x 10x 8 m?, with all surfaces reflecting 0.9 of the inci-
dent sound, corresponding to a Sabine 60dB reverbera-
tion time of ~ 2.2s. The listener and violin were placed
off-axis at a distance of 1m from opposite end walls to
couple to both symmetric and asymmetric room modes.
Although the detailed features of the fluctuations in am-
plitude of the contributing partials are strongly dependent
on the positions of the performer and listener in the per-
forming space, the qualitative features (i.e. asymmetric
waveform envelopes and partials with amplitudes that of-

232

Gough: Investigation of violin vibrato

20dB
markers |
Partial
1 fn/n
Hz
2
300
280
3
260 !
4
300
280
5

1
260 ' 05 1 15 2 25

Figure 3. The FFT spectrum of the first 3 s of the recorded vibrato
note D4 on a Vuillaume violin recorded close to the top plate
followed by the amplitudes and inverse period frequencies of the
first five partials.

ten pass through zero) are relatively insensitive to the exact
position of violin and microphone.

Figure 4 illustrates the dramatic increase in the com-
plexity and size of the amplitude modulation of the partials
arising from the time-delayed, frequency-shifted, reflec-
tions from the walls of the performance space (SOUND 5
[12]). For the higher partials in particular, the fluctuations
in frequency no longer vary even approximately as sim-
ple sinusoids, with waveform envelopes that are strongly
asymmetrical with respect to time and frequently pass
through zero (e.g. partials 3 and 4). Although the player-
defined magnitude and frequency of the vibrato-induced
fluctuations are less than those used in the Stradivari vio-
lin example, the qualitative features of the vibrato sounds
are very similar, as indeed are the sounds of any violin
played with vibrato in any resonant acoustic.

3. A dynamic model for violin vibrato

To describe the observed asymmetric temporal variations
of the waveforms, we develop a dynamic model for vi-
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Figure 4. The FFT spectrum of the waveform of the closely-
recorded Vuillaume violin vibrato D4 tone “played” in a 10x
10x 8 m® performing space with a Sabine decay time Tgoap ~
2.2 s, illustrating the increased “complexity” in both amplitude
and “frequency” fluctuations and increased departures from time-
reversal symmetry in a reverberant performing acoustic.

brato, which involves the dynamic response of both the
violin and the performing acoustic. The model accounts
for many of the features of the vibrato tones described in
the previous section.

We assume that vibrato results in a frequency modulated
periodic bowing force on the bridge with phase-modulated
frequency components varying as

F(wy) = Acos(wyt + asin ), (D

where €2 is the vibrato frequency and a is the modulation
parameter. This corresponds to a cyclic modulation of the
frequency components,

Wi =y (1 + aﬂ cos (Qt)) " 2)
Wn

with a fractional modulation in frequency of +af}/w,.

Small amplitude frequency modulation (¢ < 1) results

in two side-bands of relative amplitude a/2 shifted by +Q

from and in phase-quadrature with the central unshifted
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Figure 5. FFT spectra of a 300 Hz sine wave, phase-modulated at
6 Hz, for typical vibrato- induced modulation parameter a.

frequency component. However, for typical fractional fre-
quency modulation widths of a few percent, a is typi-
cally of order unity (e.g. for our first example, Af/f ~
+5/290, so that @ = 1 for a vibrato rate of 5Hz). The
Fourier spectrum of a frequency-modulated sine wave then
has a series of side bands at +p€), where p is an integer.
Figure 5 shows the spectra of a 1.5 second 300 Hz sine-
wave modulated at 5 Hz for typical values of a for vibrato
notes on a stringed instrument.

The excitation of vibrato-induced frequency- and phase-
shifted side-bands, which can be comparable in size to
the central components, results in strong interference and
beating effects, particularly from multiple, time-delayed,
reflections from the surfaces of the performance space.

If we assume that the response of the violin is linear
with velocity-controlled damping, the steady-state radi-
ated sound pressure p(r,0, ¢, w) for a sinusoidal driving
force F'(w) at the bridge can be written as

P, dw) = 3 ———
J

wi —w? +iw;w/Q;
’ RJ (T, 97 d)a w)F(CU) (3)

In this expression, w; and (}; are the resonant frequen-
cies and quality-factors of the damped normal modes of
the instrument, which take into account the coupled mo-
tions of all the component parts (i.e. the body, front and
back plates, neck, fingerboard, tailpiece, strings, bridge,
etc), C; is the amplitude of the j-th mode excited by the lo-
calised force F'(w) of the bowed string at the bridge, while
R, (r,8, ¢,w) describes the radiated sound field of the ex-
cited modes as a function of distance r, polar angles 8 and
¢ and angular frequency w. R,,(r, 8, ¢, w) will involve res-
onant contributions from all the acoustic modes of the per-
formance space. Strictly speaking, the response should be
described in terms of the normal modes of the coupled vio-
lin and surrounding acoustic, but we assume such coupling
to be sufficiently weak to consider them separately.

For a bowed violin string, F'(w) can be approximated
by a sawtooth waveform at the bridge, with Fourier com-
ponents inversely proportional to the order n of the excited
partials. The radiated sound will therefore have Fourier
components at the same harmonic frequencies, but with
amplitudes and phases varying markedly with the frequen-
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Figure 6. Quasi-static model for vibrato as the modulated out-
put of the resonant response by a frequency-modulated excitation
signal.

cies of the component partials relative to the resonances of
the instrument and those of the surrounding acoustic and
the positions of performer and listener in the performance
space.

If we ignore dynamic effects, a weakly frequency-
modulated (a < 1) sinusoidal force exciting an individ-
ual resonance will give a sinusoidal output modulated in
amplitude at the vibrato frequency by an amount propor-
tional to the slope of the resonance curve at the driving
frequency, illustrated schematically in Figure 6. As the
driving frequency approaches the resonant condition, the
modulation at this frequency decreases to zero and is re-
placed by a smaller modulation component at double the
modulation frequency, proportional to the curvature of the
response curve.

For typical vibrato widths used by violinists, the broad-
ening of the upper partials can easily exceed the average
spacing between individual resonances, estimated by Cre-
mer to be ~45Hz [20], as illustrated by the long-period
FFT spectra in Figures 1 and 3. We then have to include
the response from a number of relatively strongly excited
structural resonances, superimposed on a slowly-varying
response from all the other less-strongly excited normal
modes of the instrument.

In Figure 7, we have simulated a typical region of the
violin’s response function for a set of random strength res-
onances spaced 45 Hz apart, with constant ()-values across
the whole frequency range. The model is simply for qual-
itative illustration and is not intended to describe the reso-
nant structure of a real violin. Increasing the @Q-factors of
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Figure 7. Simulated response curves for a violin with random
strength resonances spaced 45 Hz apart for (Q-values 10, 30 and
100. Modulation widths of 5% are shown by the pairs of vertical
lines.
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Figure 8. Vibrato induced fluctuations for three representative
frequency modulated by £2.5% at 6 Hz assuming a quasi-static
response, illustrating the strong dependence on damping, but
with a time-dependence which is symmetric with respect to time.

the resonances will clearly increase the heights and slopes
of the contributing resonance curves and hence the am-
plitude of the vibrato-induced fluctuation of the radiated
sound.

Figure 8 shows computed output fluctuations for three
representative frequencies, for (Q-values of 30 and 100, as-
suming a 5% vibrato-induced modulation width at 6 Hz.
As anticipated, the amplitude and sharpness of the mod-
ulation features are very strongly dependent on the Q-
values of the excited resonances. The complexity of the
simulated envelopes is qualitatively similar to that ob-
served for the sound of real instruments recorded close
to the instrument. However, the fluctuations exhibit time-
reversal symmetry, in contrast to the asymmetric fluctua-
tions observed for real instruments played in real perform-
ing spaces.

To account for the asymmetry of the observed wave-
forms, we have to consider the dynamic response of both
the violin and performance space. Dynamic effects will
be significant for vibrato rates comparable with inverse
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Figure 9. The dynamic response for an oscillator excited by a lin-
early increasing frequency sinusoidal input of constant amplitude
passing through the resonance condition.
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Figure 10. (a) The response of a 300 Hz () = 60) resonator to
a frequency modulated sine wave with a vibrato rate of 6 Hz and
modulation parameter a = 1, for a sequence of inputs with mean
frequencies shifted by successive fractional increments of 1%, as
illustrated by the frequency/time curves; (b) the output for the
excitation of two closely resonators with a fractional spacing of
2% of their natural frequencies.

damping times (i.e. @2/w > 1/10th) and for delay times
7 from multiple reflections such that @7 > 1/10th.

A simple example of dynamic effects is illustrated in
Figure 9, for a sinusoidal input with linearly increasing
frequency passing through a single resonance. In contrast
to the quasi-static response, there is an initial transient
on turning on the excitation. The output then increases in
amplitude as the resonant condition is approached. How-
ever, because of the delayed response, the maximum is not
reached until the driving frequency has passed beyond the
resonance condition. Thereafter, the amplitude of the out-
put oscillates or “rings” with increasing frequency. This is
a result of the resonator, once excited, continuing to ring at
its natural frequency and beating with the resonator’s in-
stantaneous response at the driving frequency. Mathemat-
ically, this is equivalent to interference between the par-
ticular and complementary solutions of the forced simple
harmonic oscillator equation. Once the excitation ceases,
the oscillator decays at its natural resonance frequency.

Similar effects occur for frequency-modulated vibrato
wave inputs. For an oscillator with resonant frequency wy,
excited by a phase-modulated sinusoidal input, the output
can be expressed as the convolution of the oscillator im-
pulse response and the frequency modulated input,

t
p(T) ~ / cos (wy(t — t"))e~t=1)/7
0
-cos (wn(l+e) +acosQt')dt!, (4

where 7 is the decay time of the oscillator (2()/w,) and
¢ is the fractional difference between the mean frequency
of the excitation signal and the resonant frequency of the
excited oscillator. The above result is easily generalised to
include any number of excited resonators.

Figure 10a shows the computed fluctuations in am-
plitude of the output for a 300 Hz resonator with a Q-
value of 60 excited by frequency-modulated (+5Hz at
a vibrato rate of 6 Hz) sinusoidal inputs, with fractional
frequency shifts ¢ increasing by 1% between successive
traces. When the mean excitation frequency coincides with
that of the oscillator, the fluctuations in amplitude are rel-
atively small. However, as the mean frequency of the in-
put moves away from the resonant condition, the vibrato-
induced fluctuations in amplitude increase dramatically,
with asymmetrical waveforms passing through zero. When
the excitation is switched off, the oscillator output decays
at its natural vibration frequency.

The computed curves closely mimic the observed mod-
ulations of the partials of violin vibrato tones reported
in the previous section. In particular, they reproduce the
highly asymmetric modulation envelopes passing through
zero in many cases. This behaviour can be qualitatively
described as arising from the interference between the in-
stantaneous excited output at the frequency modulated ex-
citation and the freely decaying vibrations of the oscillator
at its natural frequency.

If more than one oscillator is excited, additional struc-
ture occurs from beats between their natural frequencies,
as illustrated in Figure 10b.

4. The synthesis of bowed vibrato tones

We now extend our dynamic model, to synthesise vibrato
tones for any note played on a particular instrument, at
any point in the performance space, from a single mea-
surement of the tap-tone at the bridge recorded at the lis-
tener’s position. The model assumes an ideal, frequency-
modulated, sawtooth excitation force at the bridge.

The radiated sound p(t,r,6,¢) excited by a time-
varying force F'(t) at the bridge can by expressed as the
convolution

t
p(t,r,9,¢) = / F(t’)po(fj—tl,’r,(),¢)) dt,a (5)
J0

where po(t — t',r,0, ¢) is the transient response of the in-
strument for an impulsive §-function force at the bridge
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recorded at the listener’s position. po(t — ', 7,6, ¢) in-
cludes both the direct sound from the instrument and the
reflections from the surrounding surfaces of the perfor-
mance space. It can be derived from a single measurement
of the impulsive response at the chosen position in the per-
formance space, for a short impulse applied to the bridge
in the bowing direction.

To a rather good approximation, the force F'(t) exerted
on the bridge by the bowed string has a sawtooth wave-
form. In addition, there are additional small ripples, which
vary from note to note and are critically dependent on the
precise distance of the bow from the bridge (e.g. [17]).
Because the perceived tone quality of a good instrument
is remarkably uniform from note to note and is not crit-
ically dependent on the precise bow position for normal
playing, such features are unlikely to be crucially impor-
tant in defining the overall sound quality of an instru-
ment. We therefore neglect the finer-scale structure of the
bowed string waveform for the purpose of the present anal-
ysis. The bowed-string waveform will also have a slightly
rounded discontinuity, as discussed in detail by Cremer
[21], which can easily be incorporated into our model by
applying a digital or analogue high-frequency cut-off filter
to the simulated sound.

Our approach is not dissimilar to earlier electronic sim-
ulations of violin vibrato sounds by Fletcher and Sanders
[2] and Mathews and Kohut [8]. These authors used elec-
trical analogue models with a parallel bank of resonant
LCR-circuits excited by a signal proportional to the mea-
sured force on the bridge, to simulate the sound of the
bowed violin. In our model, we assume a simple sawtooth
driving waveform and synthesise vibrato tones from the
impulse response of the violin measured in a real perfor-
mance space.

A saw-tooth waveform can be considered as a sequence
of Helmholtz step-functions superimposed on an acous-
tically unimportant linearly rising (or falling) component,
as illustrated in Figure 11. Mathematically, a step-function
H(t) can be considered as a continuing sequence of im-
pulse functions, such that

H(t) = '/Oté(t’) dt’, (6)

so that for a Helmholtz step-function input equation (3)
gives

t

p(t,1,8,6) = / polt',r,0,) dt". %)
0

The step-function response can therefore be derived by
integrating the sound from a single impulse. The sound
of the bowed instrument played with vibrato can then be
simulated by the superposition of a period-modulated se-
quence of derived step-function responses. We assume a
constant bow speed. Changes in the period of the sawtooth
waveform from the use of vibrato will therefore lead to
small modulation of its amplitude. We can neglect such
corrections, as they are very much smaller than the ampli-
tude fluctuations induced by the frequency modulation.
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Figure 11. The bowed “sawtooth” force on the bridge considered
as a sequence of downward Helmholtz step-functions superim-
posed on an acoustically unimportant linear ramp.
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Figure 12. The first 50ms of the impulsive tap-tone response
measured 2 m away from the violin and the derived Helmholtz
step-function response.

The impulse response was determined by swinging a
small pith-ball, 1.5 cm in diameter and 1.3 g in weight sus-
pended on the end of a cotton thread, against the top of
the G-string side of the bridge. The lower trace of Fig-
ure 12 shows the first 50 ms of the impulsive “tap-tone”
of the Vuillaume violin, recorded at a distance of approxi-
mately 2 metres from the violin, in a small furnished room
with dimensions ~ 5 x 6 x 3m?®. The strings were heavily
damped and the violin supported under the chin and held
by the neck in the normal way. The upper trace in Fig-
ure 12 shows the computed step-function response, which
accentuates the lower frequency components by the fac-
tor 1/w, as is qualitatively evident by comparison of the
traces.

The sounds of the impulse and step-function responses
sound rather like the “tick” and “tock” of the traditional
nursery-rhyme grandfather clock (SOUND 6 [12]).

The tap-tone and derived step-function responses are
strongly dependent on the position of the listener or mi-
crophone relative to the instrument. This is illustrated in
Figure 13 by tap-tones recorded 2 cm above the front plate
of the instrument at the front edge of the chin-rest, close
to the player’s ear, and 2 m away from the violin (SOUND
7 [12]). In these measurements, the Vuillaume violin was
held by the player in the usual way with the open-strings
damped.
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front plate

ms 100 0 ms 100

Figure 13. Tap tones at the bridge recorded just above the front
plate of a Vuillaume violin, at the player’s ear and 2m away in
a small room, with damped violin strings, with expanded traces
for the three tones below.

Vibrato A (441 Hz) on d-string
from tap-tone near front plate
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Figure 14. Simulated vibrato sounds generated by tap tones
recorded close to the top plate of the Vuillaume violin, “played”
with no vibrato (top left corner) and with the vibrato rates and %
frequency modulation shown.

Close to the instrument the sound is dominated by the
instrument and decays quite rapidly, whereas at a distance
the sound is dominated by reflections from the walls of the
room and dies away much less rapidly. The sound heard by
the player is intermediate, with a significant contribution
from both the violin and the surrounding acoustic, which
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provides very important feedback to the player on the qual-
ity of the sound being produced. Players strongly dislike
playing in an anechoic chamber, the open-air, or a large
concert hall with no nearby reflecting surfaces, where such
feedback is largely absent.

To simulate the sound of the bowed violin, one simply
superimposes a sequence of the derived step-function re-
sponses at the repetition rate of the bowed string. SOUND
8 [12] illustrates the sound at 2m, for repetition rates of
1Hz, 10Hz, and 200 Hz. The latter example simulates the
“vibrato-less” sound of the bowed instrument. It has none
of the fluctuations that characterise the sound as that of a
violin.

To more closely mimic the sound of an instrument
played with vibrato, we superimpose a sequence of derived
step-functions, but now modulate the repetition frequency
by a chosen fractional width and vibrato frequency. In ad-
dition, we modulate the input with a shaping function

(1= ety (1= eI,

where a and b are starting and ending time-constants, arbi-
trarily set to 25 ms, to simulate the initial attack and release
of the bowed note after a time 7'.

Figure 14 shows synthesised waveform envelopes of
bowed vibrato tones at 441 Hz as a function of vibrato
rate and fractional frequency modulation, using tap-tones
recorded close to the top plate of the Vuillaume violin,
shown below each waveform. The envelope in the top left
corner shows the characterless-sounding computed wave-
form without vibrato. When the period of the sawtooth
input is modulated to simulate the use of vibrato, the
waveform envelopes are strongly modulated and the sound
closely resembles that of the real violin. Figure 15 shows
similar data generated by tap-tones recorded at 2m dis-
tance in a small room (SOUND 9 [12]). These exam-
ples illustrate the increasing complexity of the vibrato-
fluctuations induced fluctuations with vibrato rate, width
and distance from the violin.

The simulated sounds show that even fractional fre-
quency vibrato widths as small as 0.5% produce very sig-
nificant fluctuations in amplitude and “interest” to the sim-
ulated sounds. Simulations for other notes on the instru-
ment showed very similar qualitative features, so there is
nothing special about the particular choice of frequency
illustrated.

5. Discussion

The above examples of real and simulated violin vibrato
tones show that the dynamic response of both the violin
and the surrounding acoustic are important in account-
ing for the complex fluctuations in amplitude of a vio-
lin played with vibrato. The importance of the dynamic
response is underlined by the non-time-reversal symme-
try of the fluctuations and their dependence on vibrato
rate. Such features cannot be explained by quasi-static fre-
quency modulation vibrato models.
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Vibrato A (441 Hz) on d-string
from tap tone at 2m from violin
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Figure 15. Simulated vibrato sounds of a Vuillaume violin gen-
erated by tap tones recorded 2m from the violin in a small room,
“played” with no vibrato (top left corner) and with the vibrato
rates and % frequency modulation shown.

We have demonstrated from both recorded and simu-
lated violin tones that without vibrato (or other fluctua-
tions) the sounds are indistinguishable from the bland and
uninteresting sounds of a simple electronic synthesiser. It
follows that vibrato- induced amplitude fluctuations are
likely to play an important role in characterising the sound
of long notes played on a violin and hence any subjective
assessment of an instrument’s quality. We intend to con-
duct listening tests on both real instruments played with
varying amounts of vibrato and our computer synthesised
vibrato tones with more precisely defined accurate vibrato
widths and rates to assess the influence of vibrato on per-
ceived quality.

Our measurements and synthesised tones show that
room acoustic results in an increasing complexity in
the fluctuations of the sound produced by an instrument
played with vibrato. In contrast, the complexity of the fluc-
tuations heard by the player is dominated by the intrinsic
response of the violin itself. This helps to explain why the
player finds it far easier to judge tonal differences in the
quality of violins than a distant listener, especially in a res-
onant acoustic. Our model also explains the difficulty in
characterising the intrinsic “quality” of an individual vio-
lin from commercial recordings, where the characteristic
fluctuations in the violin vibrato sound can be dominated
by the recording acoustic and unknown electronic “rever-
beration enhancements” by the sound engineer. In early
acoustic recordings, the sound was recorded very close to
the instrument, so that such effects were less important.
The influence of the room acoustic in affecting the sound
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heard by the listener will also be an important factor in any
subjective listening tests of violin quality, particularly for
listeners at a distance from the violin in a resonant acous-
tic.

Weinreich [20] has drawn attention to the importance of
the strongly frequency-dependent directionality of the vi-
olin’s sound above 1kHz in providing a “directional tone
colour”, which will vary from note to note and within notes
played with vibrato. Our simulations, using the closely-
recorded sound of the violin as an isotropic sound source
in an artificial reverberant room, show that the use of vi-
brato also results in strongly directional and positional de-
pendent fluctuations in the sound of a violin. This suggests
that the spectral fluctuations between notes and within
notes played with vibrato may depend just as strongly on
the dynamic response of the violin and surrounding acous-
tic as on the directional properties of the violin. Such ef-
fects may therefore be equally important in contributing to
what Weinreich refers to as the “sparkle” of the perceived
sound of consecutive notes played in rapid succession and
to the added “interest” of a note played with vibrato.

Finally, we briefly consider the influence of damping
on violin vibrato sounds. Our dynamic model for vibrato
shows that the complexity in the vibrato-induced ampli-
tude fluctuations increases with increase in ()-values and
“ringing” times of the structural resonances excited. If
such fluctuations are important in the subjective assess-
ment of a particular instrument, one might expect a close
correlation between the damping and related @)-values of
the instrument and its perceived quality. This is consistent
with the generally held view that the highest quality “tone-
wood”, with a really good ringing quality, should be used
for the acoustically important front and back plates of a
violin.

Surprisingly, Curtin [22] has recently reported that the
tap-tones of the plates of a number of fine Italian instru-
ments are rather strongly damped. though this could also
be associated with the lightness of the plates. It is also
interesting to note that Marshall [23] and Bissinger [24],
in modal analysis measurements, found that the damp-
ing of individual resonances below ~1kHz was signifi-
cantly increased, when the violin was held under the chin
in the normal way rather than supported by rubber bands.
Any advantages of a violin carved from the highest qual-
ity tone-wood, would therefore appear to be negated, at
least in part, by the player simply holding the instru-
ment, though this could largely be a low frequency (be-
low around 1kHz) effect. It is also clear that, when the
unbowed open-strings are free to vibrate, they will also
contribute to the sound of the violin.

To confirm that both holding the violin and allowing
the strings to vibrate freely have a significant affect on the
sound of vibrato tones, we recorded tap-tones close to the
top face of the Vuillaume violin in an anechoic space at a
distance of 50 cm perpendicular to the front face of the vi-
olin. In these measurements, the violin was first freely sup-
ported by a rubber band with first damped then undamped
strings. The measurements were then repeated with the vi-
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Figure 16. Tap tones at the bridge recorded close to the front plate
of a Vuillaume violin illustrating the affect of holding the violin
and the contributions to the sound from the undamped strings.
The “un-windowed” long time FFT spectra shown are measured
from the start of the waveform and at successive 12.5 ms delays,
illustrating the damping of the various modes with time.

violin freely supported

Strings damped

held in normal way

undamped damped undamped

Figure 17. Simulated envelopes for a 441 Hz note with vi-
brato (£1.5% modulation width at 5 Hz), generated by tap-tones
recorded at 50 cm for a Vuillaume violin freely suspended and
supported in the normal way with open-strings first damped and
then undamped.

olin supported under the chin and held at the neck in the
normal way. Typical tap-tones for the Vuillaume violin are
shown in Figure 16 and illustrated in SOUND10 [12]. The
very different sound of the tap-tones, which would be used
as generating functions for the synthesis of vibrato tones,
is immediately apparent. The additional damping intro-
duced by holding the violin is illustrated by the sequence
of un-windowed, time-delayed, long-period FFT spectra
shown below the tap tones. The sequence of FFTs derived
from long period data sets starting from the beginning of
the tap-tone and then with subsequent delays of 12.5 and
25 ms, during which times individual Fourier components
will have decayed as ~ e~*/7, where 7 is the decay-time
of the contributing modes.

These measurements confirm the large increase in dam-
ping of the modes when the instrument is held, especially
below 1kHz, apart from the Helmholtz air resonance,

which is almost unchanged. However, when the strings are
left free to vibrate, they more than compensate for the loss
in signal from the structural resonances and are therefore
likely to make a significant contribution to the amplitude
fluctuations of any note played with vibrato, as illustrated
by the simulated waveforms and sounds in Figure 17 and
SOUND 11 [12]. A more detailed account of such mea-
surements will be presented elsewhere.

The importance of the sympathetically excited open-
string resonances can easily be demonstrated by compar-
ing short bowed notes on an instrument with the unbowed
strings first damped and then left free to vibrate — particu-
larly for stopped notes that excite the partials of the open
strings. When stopped there is very little after-sound from
a short bowed note, which therefore sounds rather dead.
In contrast, when the open strings are left free to vibrate,
the sound continues to ring long after the note has been
played giving a “bell-like” quality to notes. The effect of
the sympathetic strings, which are impulsively excited by
the bowed sawtooth force on the bridge and are coupled to
acoustically radiating structural modes of the instrument,
is not unlike the additional complexity introduced by the
room acoustics. This could partly explain the preference
of string players to play and composers to write “bright”
music in “sharp-keys”, particularly G, D and A, where in-
teractions with the unstopped open strings and their par-
tials give added warmth and interest to the sound. The use
of additional sympathetic strings to enhance the sound of
instruments was common in the pre-baroque period, as in
bowed instruments like the Viola d’ Amore.

6. Summary

In summary, we have demonstrated that:

1. Vibrato is an important element in defining the sound
of a violin, and is therefore likely to be important in
any subjective assessment of its quality. Without fluc-
tuations, the sound of a violin is indistinguishable from
the output of a crude spectral synthesiser,

2. The partials of bowed notes on a violin played with
vibrato exhibit very strong fluctuations in amplitude,
which are asymmetrical with respect to time, depend
on vibrato rate, and frequently pass through zero, rem-
iniscent of beating effects between different frequency
components,

3. The inverse period “frequency” departs significantly
from the anticipated slowly varying cyclic modulation
expected from the use of vibrato, especially in a reso-
nant room acoustic,

4. The above effects can be described by a dynamic
model for the frequency modulated multi-resonant re-
sponse of the violin and performance acoustic,

5. The sound of a bowed violin note played with vibrato
in a chosen performing acoustic can be simulated at
any frequency, from a single measurement of the sound
of a short tap at the bridge recorded at the position of
the player or listener, assuming a frequency-modulated
Helmbholtz sawtooth bowing force at the bridge,
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6. The fluctuations in sound of bowed notes played with
vibrato will be very different for performer and lis-
tener, with a complexity in the amplitude fluctuations,
which is increasingly dominated by the room acoustic
at a distance from the violin. If, as we argue, such fluc-
tuations are important in any assessment of the quality
of a violin, this has important implications for subjec-
tive and quantitative listening tests,

7. Because the observed and simulated fluctuations from
the use of vibrato are largely associated with dynamic
effects, the damping of the resonant modes of an in-
strument and the performance acoustic are of particu-
lar importance. We confirm earlier reports that holding
the violin causes a significant increase in the damping
of the vibrational modes of the violin, which is partly
offset by the excitation of the less strongly damped par-
tials of the undamped open-strings,

8. Carefully designed listening tests are required to con-
firm the importance of the measured and predicted,
dynamically-driven, large asymmetrical fluctuation on
the perception of the vibrato tone of an instrument, and
the extent to which the simulated model based on tap-
tones simulates a realistic violin vibrato tone.
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