## Section A (multiple choice)

| Question <br> Number | Correct Answer | Reject | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{1}$ | D |  | $\mathbf{1}$ |
| $\mathbf{2}$ | B |  | $\mathbf{1}$ |

Q. 3: N/A

| 4 | C |  | 1 |
| :--- | :--- | :--- | :--- |
| 5 | A |  | 1 |
| $6 \mathbf{a}$ | B |  | 1 |
| $6 \mathbf{b}$ | C |  | 1 |

Q7-12: N/A

| 13 | B |  | 1 |
| :--- | :--- | :--- | ---: |
|  |  | Total for Section A marks |  |

Q14: N/A

| Question <br> Number | Acceptable Answers | Reject | Mark |  |
| :--- | :--- | :---: | :--- | :---: |
| $\mathbf{1 5 ( a )}$ | 2,6-dimethylhept-5-enal | (2) |  | 2 |
|  | Either part scores | (1) |  |  |
|  | e.g. <br> 2,6-dimethyl <br> hept-5-enal | (1) |  |  |
|  | IGNORE missing/misplaced/misused <br> hyphens or commas |  |  |  |
|  | ALLOW ene for en |  |  |  |
| ALLOW methy or methly for methyl |  |  |  |  |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 15(b)(i) | $\begin{equation*} \mathrm{CH}_{3} \mathrm{C}\left(\mathrm{CH}_{3}\right)=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{OH} \tag{1} \end{equation*}$ <br> OR $\mathrm{CH}_{3} \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{OH}$ <br> OR $\mathrm{CH}_{3} \mathrm{C}\left(\mathrm{CH}_{3}\right)=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{HCH}_{2} \mathrm{OH}$ <br> ALLOW displayed or skeletal formulae <br> $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} /$ name (oxidation state must be correct if given (VI)) <br> This is a stand alone mark <br> $\mathrm{H}_{2} \mathrm{SO}_{4} /$ name (ignore any references to concentration) <br> ALLOW H ${ }^{+}$and $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ <br> 'Acidified dichromate' | $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}$ <br> $\mathrm{KMnO}_{4}$ (0) for last 2 marks $\mathrm{HCl}(0)$ for $3^{\text {rd }}$ mark | 3 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{1 5 ( b ) ( i i ) ~}$ | (Steam) distil off melonal (as it forms) <br> Allow add a limited amount of oxidizing (1) <br> agent/excess alcohol/excess X <br> To prevent further oxidation/To prevent <br> carboxylic acid forming <br> Stand alone marks | 2 |  |


| Question | Acceptable Answers |  |  |  | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 15(c) |  |  |  |  |  | 2 |
|  | Wavenumber range / $\mathrm{cm}^{-1}$ | Bond | Functional group present in melonal |  |  |  |
|  | $\begin{gathered} 1740-1720 \\ \text { OR } \\ 2900-2820 \\ / \\ 2775-2700 \end{gathered}$ | $\mathrm{C}=\mathrm{O}$ $\mathrm{C}-\mathrm{H}$ | (saturated) <br> Aldehyde/CHO | (1) | Just carbonyl |  |
|  | $\begin{gathered} 1669-1645 \\ \text { OR } \\ 3095-3010 \end{gathered}$ | $\begin{aligned} & \mathrm{C}=\mathrm{C} \\ & \mathrm{C}-\mathrm{H} \end{aligned}$ | Alkene <br> ALLOW <br> 'carbon to carbon double bond' | (1) | Just $\mathrm{C}=\mathrm{C}$ <br> in $3^{\text {rd }}$ <br> column |  |
|  | ALLOW any single value or range within the ranges above <br> ALLOW one mark if both wavenumber ranges and bond columns are correct but neither bond identified |  |  |  |  |  |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 15(d) | $\begin{align*} & \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}^{+} / \mathrm{CH}_{3} \mathrm{CHCHO}^{+}  \tag{1}\\ & \mathrm{C}_{6} \mathrm{H}_{11}^{+} \end{align*}$ <br> [ALLOW Structural, skeletal or displayed formulae] <br> Penalise omission of + charge once only ALLOW any order of atoms if correct totals. | $\begin{aligned} & \mathrm{C}_{4} \mathrm{H}_{9}+ \\ & \mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}^{+} \end{aligned}$ | 2 |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 15(e)(i) |  | Circle around any other additional atoms | 1 |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 15(e)(ii) |  | Circle around any other additional atoms | 1 |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 15(f)(i) | Arrow from anywhere on the cyanide ion to the carbon of the carbonyl. Arrow to the 0 must come from the carbonyl bond <br> Formula of intermediate <br> Arrow from oxygen to H and from $\mathrm{H}-\mathrm{CN}$ bond to CN <br> ALLOW arrow from $\mathrm{O}^{-}$to $\mathrm{H}^{+}$or to $\mathrm{H}_{2} \mathrm{O}$ | Starting from HCN/ $C N{ }^{\partial-}$ <br> Single headed arrows | 3 |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 15(f)(ii) | These marks are stand alone EITHER <br> No <br> First mark: <br> Reaction site/carbonyl/aldehyde/molecule is planar <br> Second mark: <br> Attack (equally likely) from both sides OR <br> Attack (equally likely) from above and below <br> Third mark: <br> (gives) racemic mixture/(gives) equal amounts of each isomer/(gives) equal amounts of each enantiomer <br> OR <br> Yes <br> Melonal has a chiral carbon atom <br> Correct identification of chiral centre <br> This chiral centre unaffected by reaction <br> (1) | attack on a (planar) carbocation OR attack on a (planar) intermediate OR <br> $\mathrm{S}_{\mathrm{N}} 1$ <br> OR <br> $\mathrm{S}_{\mathrm{N}} 2$ <br> OR <br> "planar product" <br> Any/either direction or any/either angle | 3 |

Q16: N/A

| Question <br> Number | Correct Answer | Reject | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{1 7}$ <br> $\mathbf{( a ) ( i )}$ | Methyl propanoate <br> ALLOW methy or methly for methyl |  | $\mathbf{1}$ |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 17(a)(ii) | Toxic (steamy/misty) fumes/ toxic $\mathrm{HCl}($ gas $) /$ corrosive $\mathrm{HCl}($ gas $) /$ toxic propanoyl chloride/lachrymatory propanoyl chloride <br> So use in a fume cupboard <br> OR <br> Corrosive Propanoyl chloride is <br> So wear gloves when handling | $\mathrm{HCl}(\mathrm{aq}) /$ <br> hydrochloric acid Just harmful/irritant <br> Just harmful/irritant | 2 |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 17(b) | Table $0.31,0.16,1.41$ <br> all 3 scores 2, 2 out of 3 scores 1 , 1 or 0 out of 3 scores 0 $\begin{align*} \mathrm{K}_{\mathrm{c}}= & \frac{(0.21 / \mathrm{V}) \times(1.41 / \mathrm{V})}{(0.16 / \mathrm{V}) \times(0.31 / \mathrm{V})}  \tag{2}\\ \mathrm{K}_{\mathrm{c}}= & 5.969758 \\ \mathrm{~K}_{\mathrm{c}}= & 5.97 \tag{1} \end{align*}$ <br> IGNORE sf except 1 IGNORE any units <br> ALLOW TE from incorrect values in table. |  | 3 |


| Question <br> Number | Correct Answer | Mark |
| :--- | :---: | :---: |
| $\mathbf{1 8}$ | D | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Mark |
| :--- | :--- | :---: |
| $\mathbf{1 9 ( a )}$ | B | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Mark |
| :--- | :--- | :---: |
| $\mathbf{1 9 ( b )}$ | A | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Mark |
| :--- | :--- | :---: |
| $\mathbf{1 9 ( c )}$ | C | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Mark |
| :--- | :--- | :---: |
| $\mathbf{1 9 ( d )}$ | A | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Mark |
| :--- | :---: | :---: |
| $\mathbf{2 0}$ | A | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Mark |
| :--- | :---: | :---: |
| $\mathbf{2 1}$ | A | $\mathbf{1}$ |

## SECTION C

| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 22 (a)(i) |  $\begin{align*} & =4.5417:  \tag{1}\\ & =1.996: \\ & =  \tag{1}\\ & = \\ & = \end{align*} \quad 4: \begin{gathered} 4 \\ \end{gathered}$ <br> Correct empirical formula of $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$, with or without working, scores (2) |  | 2 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| (a)(ii) | First mark: | (1) | 2 |
|  | Any mention of $\mathbf{4 4}$ or of doubling $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ |  |  |
| Second mark: | Any mention of $\mathbf{8 8}$ in the context of the <br> mass spectrum eg mentions 'molecular <br> ion' $/ \mathrm{M}^{+} /$heaviest peak / peak furthest to <br> the right / annotation at 88 on the mass <br> spectrum itself / highest $\frac{m}{z}$ value | $\mathbf{8 8}$ obtained just by <br> adding up the relative <br> atomic masses in <br> $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$ scores (0) for <br> $2 n d$ scoring point |  |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| (b) | (Peak at $3500 \mathrm{~cm}^{-1}$ ) $\mathbf{O - H}$ <br> Allow OH <br> (Peak at $1700 \mathrm{~cm}^{-1}$ ) $\mathbf{C =} \mathbf{O}$ <br> Penalise extra extension bond on an otherwise correct answer once only (eg $-\mathrm{O}-\mathrm{H}$ and $-\mathrm{C}=\mathrm{O}$ scores (1)) <br> IGNORE <br> any names for the bonds suggested even if incorrect | $-\mathrm{O}-\mathrm{H} /-\mathrm{OH}$ $\begin{equation*} \mathrm{C}-\mathrm{O} /-\mathrm{C}=\mathrm{O} / \mathrm{CO} \tag{1} \end{equation*}$ | 2 |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| (c)(i) | First mark: <br> ( $\mathbf{X}$ is neutral) so not a (carboxylic) acid <br> IGNORE <br> " $\mathbf{X}$ doesn't have a charge as it is neutral" / " $\mathbf{X}$ is not an alkali" / " $\mathbf{X}$ is not a base" <br> Second mark: <br> ( $\mathbf{X}$ does not react with Tollens') so is not an aldehyde / is a ketone <br> Third mark: <br> (X reacts with $\mathrm{H}^{+} / \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ so) is an alcohol /contains an OH (group) / contains $\mathrm{R}-\mathrm{OH}$ / contains hydroxyl (group) <br> IGNORE <br> 'not an acid' if this is deduced solely from the $\mathrm{H}^{+} / \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ information <br> Fourth mark: <br> a primary or a secondary (alcohol) <br> both needed <br> OR <br> ( $\mathbf{X}$ is) not tertiary (alcohol) <br> Mark each point separately <br> NOTE: <br> ' X is a primary or a secondary alcohol' scores both the third and fourth marks <br> ALLOW <br> Correct formulae for the functional | $\mathbf{X}$ is an aldehyde scores (0) for this scoring point / $\mathbf{X}$ is not a ketone scores (0) for this scoring point | 4 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| (c)(ii) | (primary or secondary) alcohol and <br> ketone | Just `hydroxyl for 'alcohol' <br> and/or 'C=O /carbonyl' for <br> ketone/ | $\mathbf{1}$ |
|  | NOTE |  |  |
| BOTH names are required here |  |  |  |


CHERRY HILL TUITION EDEXCEL CHEMISTRY A2 PAPER 25 MARK SCHEME

| Final mark |  |  |
| :--- | :--- | :--- | :--- | :--- |
| (Compound $\mathbf{X}$ is) $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COCH}_{3}$ |  |  |
| NO other compound allowed. |  |  |
| ACCEPT |  |  |
| any unambiguous formula, e.g. displayed |  |  |
| formula |  |  |
| Peak M |  |  |
| Peak K |  |  |
| ACCEPT |  |  |
| 3-hydroxybutan-2-one | Peak L |  |

(Total 22 marks)

| Question <br> Number | Correct Answer | Reject | Mark |
| :---: | :--- | :--- | :--- |
| $\mathbf{2 3}$ | D |  | $\mathbf{1}$ |

CHERRY HILL TUITION EDEXCEL CHEMISTRY A2 PAPER 25 MARK SCHEME

| Question <br> Number | Correct Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{2 4}$ | B |  | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Reject | Mark |
| :---: | :--- | :--- | :--- |
| $\mathbf{2 5}$ | B |  | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Reject | Mark |
| :---: | :--- | :--- | :--- |
| $\mathbf{2 6}$ | C |  | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{2 7}$ | D |  | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Reject | Mark |
| :---: | :--- | :--- | :--- |
| $\mathbf{2 8}$ | D |  | $\mathbf{1}$ |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 29(a)(i) | A chiral molecule is non-superimposable on its mirror image / 3D molecule with no plane of symmetry <br> 2-hydroxypropanoic acid has a carbon atom which is asymmetric / has four different groups attached <br> Middle carbon labelled in any clear way e.g. <br> ALLOW asymmetric C described but not labelled <br> IGNORE references to rotation of plane polarized light | just 'nonsuperimposable' <br> just 'no plane of symmetry' <br> Molecules for groups | 3 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| 29(a)(ii) | 2-hydroxypropanoic acid formed in muscles is a <br> single (allow pure) enantiomer /(optical) isomer <br> ALLOW <br> Unequal mixture of enantiomers /(optical) isomers <br> $\mathbf{( 1 )}$ | Just "not a <br> racemic <br> mixture" | $\mathbf{2}$ |
|  | 2-hydroxypropanoic acid formed in milk is a racemic <br> mixture / equimolar mixture of the two enantiomers ( <br> / racemate <br> If milk and muscles are reversed but the rest is <br> correct, one mark is awarded | Just 'a <br> mixture of <br> enantiomers' |  |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 29(b)(i) | First step $\mathrm{NaOH}(\mathrm{aq}) / \mathrm{KOH}(\mathrm{aq})$ or names <br> Second mark dependent on first being correct <br> Second step $\mathrm{HCl}(\mathrm{aq}) /$ hydrochloric acid / $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) /$ <br> sulfuric acid <br> ALLOW <br> $\mathrm{HNO}_{3} /$ nitric acid /dil $\mathrm{HCl} /($ dil $) \mathrm{H}_{2} \mathrm{SO} 4 /($ dil $) \mathrm{HNO}_{3}$ or any strong acid (name or formula) including $\mathrm{HBr}((\mathrm{aq}))$ and $\mathrm{HI}((\mathrm{aq}))$ <br> IGNORE <br> Omission of (aq) and references to temperature Ethanolic /alcoholic solutions <br> ALLOW <br> One mark for correct two reagents in the wrong order <br> One mark for 'alkali / $\mathrm{OH}^{-}$followed by acid / $\mathrm{H}^{+} / \mathrm{H}_{3} \mathrm{O}^{+\prime}$ | $\mathrm{OH}^{-}$/ alkali $\mathrm{H}^{+} / \mathrm{H}_{3} \mathrm{O}^{+}$ <br> /acid | 2 |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 29(b)(ii) | First mark (Stand alone) <br> A racemic mixture is not formed <br> OR <br> More of one enantiomer /(optical) isomer is formed <br> OR <br> Only one enantiomer /(optical) isomer is formed <br> Second mark (Stand alone) <br> (Some of the) reaction is $\mathrm{S}_{\mathrm{N}} 2$ <br> Third mark (Stand alone) <br> Nucleophile / $\mathrm{OH}^{-}$only attacks from one side of the molecule / from the opposite side to leaving group <br> ALLOW <br> Use of 'intermediate' for 'transition state' in description of $\mathrm{S}_{\mathrm{N}} 2$ <br> Reverse argument based on $\mathrm{S}_{\mathrm{N}} 1$ forming a racemic mixture | Carbocation (for molecule) | 3 |


| Question <br> Number | Acceptable Answers | Reject | Mark |  |
| :--- | :--- | :--- | :---: | :---: |
| $\mathbf{2 9 ( c ) ( i )}$ | Nucleophilic | (1) |  | $\mathbf{2}$ |
|  | Addition | (1) | $\mathrm{S}_{N} 1 / \mathrm{S}_{N} 2$ |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :---: | :---: |
| $\mathbf{2 9 ( c ) ( i i ) ~}$ | Cyanide (ion) $/ \mathrm{CN}^{-} / \mathrm{C} \equiv \mathrm{N}^{-} /: \mathrm{C} \equiv \mathrm{N}^{-} /{ }^{-} \mathrm{CN}$ | $\mathrm{HCN} / \mathrm{C} \equiv \mathrm{N}$ | $\mathbf{1}$ |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & 29 \\ & \text { (c) (iii) } \end{aligned}$ | Both curly arrows <br> Intermediate <br> ALLOW <br> Omission of lone pair <br> Curly arrow from anywhere on nucleophile including from charge or nitrogen <br> Formation of charged canonical form followed by attack of cyanide ion <br> IGNORE $\delta+/ \delta$ - even if unbalanced | Omission of charges (penalise once only) <br> Full charges on ethanal <br> $-\mathrm{C}-\mathrm{NC}$ in intermediate | 2 |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & 29 \\ & \text { (c) (iv) } \end{aligned}$ | Racemic mixture / equal amounts of the two enantiomers / racemate formed <br> Stand alone mark <br> CHO / aldehyde group is (trigonal) planar <br> ALLOW ethanal / molecule is (trigonal) planar <br> Cyanide (ion) / $\mathrm{CN}^{-}$/nucleophile attacks (equally) from above or below / either side (of the molecule) <br> Penalise use of intermediate / ion for aldehyde group once only <br> Third mark cannot be awarded if the reaction is described as a nucleophilic substitution | Intermediate / carbonyl group /C_O is planar <br> two positions Intermediate | 3 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{2 9 ( d ) ( i )}$ | Any value /range within the range 3750-2500 cm <br> due to $\mathrm{O}-\mathrm{H} / \mathrm{OH} /-\mathrm{OH}$ | Wavenumbers <br> alone <br> OH in alcohol | $\mathbf{1}$ |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 29(d)(ii) | These three marks are stand alone <br> Q is due to $\mathrm{C}=\mathrm{O}$ <br> The $(\mathrm{C}=\mathrm{O})$ aldehyde range is $1740-1720 \mathrm{~cm}^{-1}$ and <br> $(\mathrm{C}=\mathrm{O})$ carboxylic acid range is $1725-1700 \mathrm{~cm}^{-1}$ <br> So the peaks / absorptions cannot be used to distinguish these two compounds because they overlap. <br> OR <br> The (broad) absorption Q covers both the aldehyde and the carboxylic acid ranges | Carboxylic acid / COOH group <br> Just 'cannot be used to distinguish the compounds' | 3 |


|  |  | Reject | Mark |
| :---: | :---: | :---: | :---: |

