Section A (multiple choice)

Question Number	Correct Answer	Reject	Mark
1	D		1
2	В		1
Q. 3: N/A			
4	С		1
5	A		1
6 a	В		1
6 b	С		1

Q7 - 12: N/A

13	В		1
		Total for Section A	marks

Q14 : N/A

Question Number	Acceptable Answers		Reject	Mark
15(a)	2,6-dimethylhept-5-enal	(2)		2
	Either part scores	(1)		
	e.g. 2,6-dimethyl hept-5-enal	(1) (1)		
	IGNORE missing/misplaced/misused hyphens or commas			
	ALLOW ene for en ALLOW methy or methly for methyl			

Question Number	Acceptable Answers		Reject	Mark
15(b)(i)	CH ₃ C(CH ₃)=CHCH ₂ CH ₂ CH(CH ₃)CH ₂ OH OR CH ₃ C(CH ₃)CHCH ₂ CH ₂ CH(CH ₃)CH ₂ OH OR CH ₃ C(CH ₃)=CHCH ₂ CH ₂ C (CH ₃) HCH ₂ OH ALLOW displayed or skeletal formulae	(1)	C ₉ H ₁₈ O	ß
	$K_2Cr_2O_7/Na_2Cr_2O_7/name$ (oxidation state must be correct if given (VI)) This is a stand alone mark	(1)	KMnO ₄ (0) for last 2 marks HCl (0) for 3 rd mark	
	H_2SO_4 /name (ignore any references to concentration)	(1)	3 Illaik	
	ALLOW H ⁺ and Cr ₂ O ₇ ²⁻	(2)		
	'Acidified dichromate'	(1)		

Question Number	Acceptable Answers		Reject	Mark
15(b)(ii)	To prevent further oxidation/To prevent	(1) 1)		2

Question Number	Acceptable Ans	wers			Reject	Mark
15(c)				1		2
	Wavenumber range / cm ⁻¹	Bond	Functional group present in melonal			
	1740 - 1720 OR 2900 - 2820 /	C=0	(saturated) Aldehyde/CHO	(1)	Just carbonyl	
	2775 - 2700 1669 - 1645 OR 3095 - 3010	C-H C=C C-H	Alkene ALLOW 'carbon to carbon double bond'	(1)	Just C=C in 3 rd column	
	ranges above ALLOW one ma	rk if bot d colum	e or range within h wavenumber ns are correct bu			

Question Number	Acceptable Answers	Reject	Mark
15(d)	$C_3H_5O^+/CH_3CHCHO^+$ (1) $C_6H_{11}^+$ (1) [ALLOW Structural, skeletal or displayed formulae] Penalise omission of + charge once only ALLOW any order of atoms if correct totals.	C ₄ H ₉ ⁺ C ₅ H ₇ O ⁺	2

Question Number	Acceptable Answers	Reject	Mark
15(e)(i)		Circle around any other additional atoms	1

Question Number	Acceptable Answers	Reject	Mark
15(e)(ii)		Circle around any other additional atoms	1

Question Number	Acceptable Answers	Reject	Mark
15(f)(i)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		3
	Arrow from anywhere on the cyanide ion to the carbon of the carbonyl. Arrow to the O must come from the carbonyl bond (1) Formula of intermediate (1)	Starting from HCN/	
	Arrow from oxygen to H and from H-CN bond to CN (1) ALLOW arrow from O $^-$ to H $^+$ or to H $_2$ O	Single headed arrows	

Question Number	Acceptable Answers	Reject	Mark
15(f)(ii)	These marks are stand alone EITHER No First mark: Reaction site/carbonyl/aldehyde/molecule is planar (1)	attack on a (planar) carbocation OR attack on a	3
		(planar) intermediate OR S _N 1 OR S _N 2 OR "planar product"	
	Second mark: Attack (equally likely) from both sides OR Attack (equally likely) from above and below (1)	Any/either direction or any/either angle	
	Third mark: (gives) racemic mixture/(gives) equal amounts of each isomer/(gives) equal amounts of each enantiomer OR Yes Melonal has a chiral carbon atom (1)		
	Correct identification of chiral centre (1) This chiral centre unaffected by reaction (1)		

Q16 : N/A		

Question Number	Correct Answer	Reject	Mark
17 (a)(i)	Methyl propanoate		1
	ALLOW methy or methly for methyl		

Question Number	Acceptable Answers		Reject	Mark
17(a)(ii)	Toxic (steamy/misty) fumes/ toxic HCl(gas)/corrosive HCl(gas)/toxic propanoyl chloride/lachrymatory propanoyl chloride So use in a fume cupboard OR	(1) (1)	HCI(aq)/ hydrochloric acid Just harmful/irritant	2
	Corrosive Propanoyl chloride is So wear gloves when handling	(1) (1)	Just harmful/irritant	

Question Number	Acceptable Answers	Reject	Mark
17(b)	Table		3
	0.31, 0.16, 1.41		
	all 3 scores 2, 2 out of 3 scores 1, 1 or 0 out of 3 scores 0 (2)		
	$K_c = (0.21/V) \times (1.41/V)$		
	(0.16/V) x (0.31/V)		
	$K_{\rm c} = 5.969758$		
	$K_c = 5.97$ (1) IGNORE sf except 1 IGNORE any units		
	ALLOW TE from incorrect values in table.		

Question Number	Correct Answer	Mark
18	D	1
Question Number	Correct Answer	Mark
19(a)	В	1
Question Number	Correct Answer	Mark
19(b)	A	1
Question Number	Correct Answer	Mark
19(c)	С	1
Question Number	Correct Answer	Mark
19(d)	A	1
Question Number	Correct Answer	Mark
20	A	1
Question Number	Correct Answer	Mark
21	A	1

SECTION C

Question Number	Acceptable Answers	Reject	Mark
22 (a)(i)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2
	= 4.5417 : 9.1 : 2.275 $= 1.996 : 4 : 1$ $= 2 : 4 : 1$ $C2H4O (1)$		
	Correct empirical formula of C ₂ H ₄ O, with or without working, scores (2)		

Question Number	Acceptable Answers	Reject	Mark
(a)(ii) Fi	rst mark:		2
	Any mention of 44 or of doubling C ₂ H ₄ O (1)		
	Second mark:		
	Any mention of 88 in the context of the mass spectrum eg mentions 'molecular ion' / M ⁺ / heaviest peak / peak furthest to the right / annotation at 88 on the mass spectrum itself / highest <u>m</u> value	88 obtained just by adding up the relative atomic masses in C ₄ H ₈ O ₂ scores (0) for 2nd scoring point	
	(1)		

Question Number	Acceptable Answers	Reject	Mark
(b)	(Peak at 3500 cm ⁻¹) O—H (1) Allow OH	—О—Н / —ОН	2
	(Peak at 1700 cm ⁻¹) C=O (1)	C-0 / -C=0 / CO	
	Penalise extra extension bond on an otherwise correct answer once only (eg -O-H and -C=O scores (1))		
	IGNORE any names for the bonds suggested even if incorrect		

Question	Acceptable Answers	Reject	Mark
Number (c)(i)	rst mark:		4
(c)(i) F	(X is neutral) so not a (carboxylic) acid (1)		4
	<pre>IGNORE "X doesn't have a charge as it is neutral" / "X is not an alkali" / "X is not a base"</pre>		
	Second mark:		
	(X does not react with Tollens') so is not an aldehyde / is a ketone (1)		
	Third mark:		
	(X reacts with H^+ / $Cr_2O_7^{2-}$ so) is an alcohol /contains an OH (group) / contains R—OH / contains hydroxyl (group) (1)	X is an aldehyde scores (0) for this scoring point / X is not a ketone scores (0) for this scoring point	
	IGNORE 'not an acid' if this is deduced solely from the H ⁺ / Cr ₂ O ₇ ²⁻ information		
	Fourth mark:		
	a primary or a secondary (alcohol) both needed OR (Y is) not tertiany (alcohol)		
	(X is) not tertiary (alcohol) (1)		
	Mark each point separately		
	NOTE:		
	'X is a primary or a secondary alcohol' scores both the third and fourth marks		
	ALLOW Correct formulae for the functional groups, instead of their names		

CHERRY HILL TUITION EDEXCEL CHEMISTRY A2 PAPER 25 MARK SCHEME

Question Number	Acceptable Answers	Reject	Mark
(c)(ii) (p	rimary or secondary) alcohol and ketone	Just 'hydroxyl for 'alcohol' and/or 'C=O /carbonyl' for ketone/	1
	NOTE BOTH names are required here		

Question	Acceptable Answers	Reject	Mark
Question Number (d)	MARKING ADVICE Check answer for the suggested structure of X. If the correct structure is shown H H H C C C H H H OH H Mark answer according to the following. However if no structure for X is shown or an incorrect structure for X is proposed, mark answer according to "COMMENTS" scheme below MARKS CAN BE AWARDED FROM SUITABLY ANNOTATED FORMULAE FOR X. First mark: Four different H / hydrogen / proton environments (1) Any five from following seven points: Either Application of the (n+1) rule to peak J (which is a quartet / splits into four) or application of the (n+1) rule peak M (which is a doublet / splits into two) (1) Any mention to explain no splitting for peak L as there is no H is attached to the adjacent carbon (1) Peak L (CH ₃) next to C=0 (1) Peak M (CH ₃) next to CH (1)	Just 'four different chemical environments'	Mark 7
	OH (1)		
	Peak J (CH) next to CH ₃ (1)		
	Any one correct δ value quoted within \pm 0.2 of the following chemical shifts: 1.4(M) or 2.2 (L) or 3.7(K) or 4.2 (J) (ppm) (1)	If any incorrect chemical shift OR A RANGE of chemical shifts is quoted, this scoring point is not available	12

<u>Final mark</u>	
(Compound X is) CH ₃ CH(OH)COCH ₃ NO other compound allowed.	
ACCEPT any unambiguous formula, e.g. displayed formula Peak J H H O H O H H OH	
Peak M Peak K Peak L	
ACCEPT 3-hydroxybutan-2-one (1)	

(Total 22 marks)

Question Number	Correct Answer	Reject	Mark
23	D		1

CHERRY HILL TUITION EDEXCEL CHEMISTRY A2 PAPER 25 MARK SCHEME

Question Number	Correct Answer	Reject	Mark
24	В		1
Question Number	Correct Answer	Reject	Mark
25	В		1
Question Number	Correct Answer	Reject	Mark
26	С		1
			•
Question Number	Correct Answer	Reject	Mark
27	D		1
Question Number	Correct Answer	Reject	Mark
28	D		1

Question Number	Acceptable Answers	Reject	Mark
29(a)(i)	A chiral molecule is non-superimposable on its mirror image / 3D molecule with no plane of symmetry (1)	just 'non- superimposable' just 'no plane of symmetry'	3
	2-hydroxypropanoic acid has a carbon atom which is asymmetric / has four different groups attached (1)	Molecules for groups	
	Middle carbon labelled in any clear way e.g. H OH O		
	ALLOW asymmetric C described but not labelled IGNORE references to rotation of plane polarized light		

Question Number	Acceptable Answers	Reject	Mark
29(a)(ii)	2-hydroxypropanoic acid formed in muscles is a single (allow pure) enantiomer /(optical) isomer ALLOW Unequal mixture of enantiomers /(optical) isomers (1)	Just "not a racemic mixture"	2
	2-hydroxypropanoic acid formed in milk is a racemic mixture / equimolar mixture of the two enantiomers / racemate (1) If milk and muscles are reversed but the rest is correct, one mark is awarded	Just 'a mixture of enantiomers'	

Question Number	Acceptable Answers	Reject	Mark
29(b)(i)	First step NaOH(aq) / KOH(aq) or names (1)	OH ⁻ / alkali	2
	Second mark dependent on first being correct		
	Second step $HCI(aq)$ / hydrochloric acid / $H_2SO_4(aq)$ / sulfuric acid	H ⁺ / H ₃ O ⁺ /acid	
	ALLOW HNO_3 / nitric acid /dil HCl /(dil) H_2SO4 /(dil) HNO_3 or any strong acid (name or formula) including $HBr((aq))$ and $HI((aq))$		
	IGNORE Omission of (aq) and references to temperature Ethanolic /alcoholic solutions		
	ALLOW One mark for correct two reagents in the wrong order One mark for 'alkali / OH ⁻ followed by acid / H ⁺ /H ₃ O ⁺ '		

Question Number	Acceptable Answers	Reject	Mark
29(b)(ii)	First mark (Stand alone) A racemic mixture is not formed		3
	OR		
	More of one enantiomer /(optical) isomer is formed		
	OR		
	Only one enantiomer /(optical) isomer is formed (1)		
	Second mark (Stand alone)		
	(Some of the) reaction is S_N2 (1)		
	Third mark (Stand alone) Nucleophile / OH^- only attacks from one side of the molecule / from the opposite side to leaving group (1) ALLOW Use of 'intermediate' for 'transition state' in description of S_N2 Reverse argument based on S_N1 forming a racemic mixture	Carbocation (for molecule)	

Question Number	Acceptable Answers	Reject	Mark
29(c)(i)	Nucleophilic (1)		2
	Addition (1)	S _N 1/S _N 2	

Question Number	Acceptable Answers	Reject	Mark
29(c)(ii)	Cyanide (ion) / $CN^-/C=N^-/:C=N^-/^-CN$	HCN/ C≡N	1

Question Number	Acceptable Answers	Reject	Mark
29 (c) (iii)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Omission of charges (penalise once only)	2
	Both curly arrows (1)	Full charges on ethanal	
	Intermediate (1) ALLOW Omission of lone pair Curly arrow from anywhere on nucleophile including from charge or nitrogen Formation of charged canonical form followed by attack of cyanide ion IGNORE $\delta+/\delta$ - even if unbalanced	—C—NC in intermediate	

Question Number	Acceptable Answers	Reject	Mark
29 (c) (iv)	Racemic mixture / equal amounts of the two enantiomers / racemate formed (1)		3
	Stand alone mark		
	CHO / aldehyde group is (trigonal) planar (1)	Intermediate / carbonyl	
	ALLOW ethanal / molecule is (trigonal) planar	group /C_O is planar	
	Cyanide (ion) / CN ⁻ /nucleophile attacks (equally) from above or below / either side (of the molecule) (1)	two positions Intermediate	
	Penalise use of intermediate / ion for aldehyde group once only		
	Third mark cannot be awarded if the reaction is described as a nucleophilic substitution		

Question Number	Acceptable Answers	Reject	Mark
29(d)(i)	Any value /range within the range $3750-2500~\mathrm{cm^{-1}}$ due to O-H / OH / $-$ OH	Wavenumbers alone OH in alcohol	1
	IGNORE COOH / CO₂H / carboxylic acid		

Question Number	Acceptable Answers	Reject	Mark
29(d)(ii)	These three marks are stand alone		3
	Q is due to C=O (1)	Carboxylic acid / COOH	
	The (C=O) aldehyde range is 1740—1720 cm ⁻¹ and	group	
	(C=0) carboxylic acid range is 1725-1700 cm ⁻¹ (1)		
	So the peaks / absorptions cannot be used to distinguish these two compounds because they overlap. OR The (broad) absorption Q covers both the aldehyde	Just 'cannot be used to distinguish the compounds'	
	and the carboxylic acid ranges (1)	compounds	
	ALLOW 'too close'/'quite similar' for 'overlap'		

Question Number	Acceptable Answers			Reject	Mark
29(e)	If reagent incorrect, obsawarded for a near miss Test positive for ethana	5	tion mark can only be		4
	Reagent (1)				
	Tollens'		er mirror / black / grey	Iodine in alkali /	
	Fehling's / Benedict's Red-brown ppt		iodoform test		
	2,4-DNP(H) / Brady's	1	nge / red / yellow ppt	Acidified	
	reagent	I	OW brick-red ppt	potassium	
	Test positive for 2-hydro			dichromate	
	Reagent	(1)	Observation (1)		
	PCl ₅ / Phosphorus		Steamy fumes*	Smoke	
	(V)chloride / phosphor	us	ALLOW gas evolved	Just 'fumes'	
	pentachloride		turns (blue) litmus / UI red	Any indicator	
	Named metal carbonat	:e	Effervescence	as sole test	
	(solution)		ALLOW gas / CO ₂	:	
			evolved turns lime	incorrect	
			water cloudy	formulae of reagents	
	Sodium		Effervescence	reagents	
	hydrogencarbonate		ALLOW gas / CO ₂		
	(solution)		evolved turns lime		
	Magnesium (& water)		water cloudy Effervescence		
	Ethanol & H ₂ SO ₄ /name	nd.	Sweet / fruity / pear		
	strong acid	·u	drops / glue smell		
	Ethanoic acid &		Sweet / fruity / pear		
	H ₂ SO ₄ /named strong acid drops / glue smell				
	ALLOW Na and effervescence / lighted splint for2-hydro (2)	_			
	ALLOW fizzing / bubbling for eff	ferves	scence		
	IGNORE names of product				
	IF two tests given for one substance both must be correct for full marks				
	*misty fumes / white fu	ımes ,	/ gas for fumes		

Total for Question 29 = 26 Marks