

AS PHYSICS (7407/1)

Paper 1

Specimen 2014

Morning Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- a pencil
- a ruler
- a calculator
- a data and formulae booklet.

Instructions

- Answer all questions.
- Show all your working.

Information

• The maximum mark for this paper is 70.

Please write clearly, in block capitals, to allow character computer recognition.					
Centre number	Candidate number				
Surname					
Forename(s)					
Candidate signature					

Answer a	all	questions.
----------	-----	------------

0 1 . 1 Complete **Table 1** comparing some of the properties of the positive pion, π^+ , and the proton.

[5 marks]

Table 1

Name	$\pi^{\scriptscriptstyle +}$	Proton
Relative charge	+1	
Baryon number		
Quark composition		

0 1 . 2 When a positive pion interacts with a proton, a kaon can be produced, along with another strange particle, as shown in this equation

$$\pi^{\scriptscriptstyle +} + p \longrightarrow K^{\scriptscriptstyle +} + X$$

Circle the type of interaction shown in this equation.

[1 mark]

Electromagnetic Gravitational Strong Nuclear Weak Nuclear

0 1 . 3 Deduce the relative charge, baryon number and strangeness of particle X. [3 marks]

0 1 . 4	Particle X can decay to produce a neutron and positive pion as shown in this equation			
		$X \rightarrow$	$n + \pi^+$	
	Circle the type of inte	eraction shown in this	equation.	[4 mark]
	Electromagnetic	Gravitational	Strong Nuclear	[1 mark] Weak Nuclear
	Liconomagnono	Gravitational	or ong radical	Woak Naoidai
0 1 . 5	Explain your answer.			[2 marks]
0 1 . 6			cay. The positive pion	can decay into a
	positron and an elect Write down the equa		he neutron.	
				[2 marks]
0 1 . 7	Explain why no furthe	er decaye occur		
	Explain why no further	er decays occur.		[2 marks]

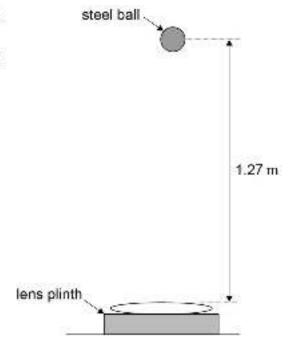
0 2		ctric effect can be dem rom certain metals, wit ge.			
0 2 . 1	Explain why, we is lost by the p	when ultraviolet light is plate.	s shone	on a positively cha	rged plate, no charge [2 marks]
					[2 mano]
	Thursday I de force				4 l £ 4l
0 2 . 2	photoelectric	quency and work func effect.	tion are	important ideas in tr	ie study of the
			k functio	ne of three motals a	nd photon energies of
	three UV light		K IUIICIIO	iis oi tillee illetais a	na priotori eriergies or
	Т	able 2		Tabl	e 3
	Metal	Work function/		Light source	Photon energy/ eV
	Metal Zinc	Work function/ eV 4.3		Light source	Photon energy/ eV 4.0
	Metal	Work function/		Light source	Photon energy/ eV
	Metal Zinc Iron Copper	Work function/ eV 4.3 4.5		Light source 1 2 3 ight source that cou	Photon energy/ eV 4.0 4.4 5.0 Id best be used to

0 2 . 3	Calculate the maximum kinetic energy, in $J_{\rm s}$, of the electrons emitted from a zinc plate when illuminated with ultraviolet light.
	work function of zinc = 4.3 eV frequency of ultraviolet light = $1.2 \times 10^{15} \text{ Hz}$ [3 marks]
	maximum kinetic energyJ
0 2 . 4	Explain why your answer is a maximum. [1 mark]
	Turn to page 8 for the next question

Figure 1 and Figure 2 show a version of Quincke's tube, which is used to 0 3 demonstrate interference of sound waves. Figure 1 Figure 2 fixed fixed movable movable tube tube tube tube di di do A loudspeaker at **X** produces sound waves of one frequency. The sound waves enter the tube and the sound energy is divided equally before travelling along the fixed and movable tubes. The two waves superpose and are detected by a microphone at Y. $| \mathbf{0} | \mathbf{3} | . | \mathbf{1} |$ The movable tube is adjusted so that $d_1 = d_2$ and the waves travel the same distance from X to Y, as shown in Figure 1. As the movable tube is slowly pulled out as shown in **Figure 2**, the sound detected at **Y** gets guieter and then louder. Explain the variation in the loudness of the sound at Y as the movable tube is slowly pulled out. [4 marks]

0 3 . 2	The tube starts in the position shown in Figure 1 .
	Calculate the minimum distance moved by the movable tube for the sound detected at $\bf Y$ to be at its quietest. frequency of sound from loud speaker = 800 Hz speed of sound in air = 340 m s ⁻¹ [3 marks]
	minimum distance moved = m
0 3 . 3	Quincke's tube can be used to determine the speed of sound.
	State and explain the measurements you would make to obtain a value for the speed of sound using Quincke's tube and a sound source of known frequency. [4 marks]

Spectacle lenses can be tested by dropping a small steel ball onto the lens, as shown in **Figure 3**, and then checking the lens for damage.


Figure 3

A test requires the following specifications:

diameter of ball = 16 mm

mass of ball = 16 g

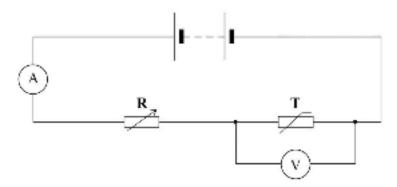
height of drop = 1.27 m

0 4 . 1 Calculate the density of the steel used for the ball.

[3 marks]

density = $_{_{_{_{_{_{_{_{}}}}}}}}$ kg m⁻³

0 4 . **2** In a test the ball bounced back to a height of 0.85 m.


Calculate the speed of the ball just before impact.

[2 marks]

 $sneed = m s^{-1}$

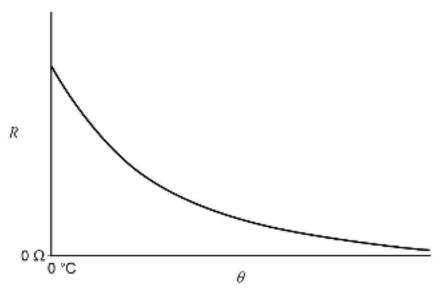

speed =m s^-1 O 4 . 4 Calculate the change in momentum of the ball due to the impact. [2 marks] momentum = kg m s^-1 O 4 . 5 The time of contact was 40 ms. Calculate the average force of the ball on the lens during the impact. [2 marks] average force = N O 4 . 6 Explain, with reference to momentum, why the test should also specify the material of the plinth the lens sits on. [2 marks]	0 4 . 3	Calculate the speed of the ball just after impact. [2 marks]
The time of contact was 40 ms. Calculate the average force of the ball on the lens during the impact. [2 marks] average force =N 4 . 6 Explain, with reference to momentum, why the test should also specify the material of the plinth the lens sits on.	0 4 . 4	Calculate the change in momentum of the ball due to the impact.
0 4 . 6 Explain, with reference to momentum, why the test should also specify the material of the plinth the lens sits on.	0 4 . 5	The time of contact was 40 ms . Calculate the average force of the ball on the lens during the impact.
	04.6	Explain, with reference to momentum, why the test should also specify the material of the plinth the lens sits on.

Figure 4

The resistance–temperature $(R-\theta)$ characteristic for **T** is shown in **Figure 5**.

Figure 5

0 5 . 1 The resistor and thermistor in **Figure 4** make up a potential divider.

Explain what is meant by a potential divider.

[1 mark]

0 5 . 2	State and explain what happens to the voltmeter reading when the resistance of R is increased while the temperature is kept constant. [3 marks]
0 5 . 3	State and explain what happens to the ammeter reading when the temperature of the thermistor increases. [2 marks]
0 5 . 4	The battery has an emf of 12.0 V. At a temperature of 0 °C the resistance of the thermistor is $2.5\times 10^3\Omega$. The voltmeter is replaced by an alarm that sounds when the voltage across it exceeds 3.0 V. Calculate the resistance of R that would cause the alarm to sound when the
	temperature of the thermistor is lowered to 0 $^{\circ}\mathrm{C}.$
	resistance = Ω

0	5	. 5	State one change that you would make to the circuit so that instead of the alar	m
			coming on when the temperature falls, it comes on when the temperature rises a certain value.	above
				[1 mark]

0 6	If lengths of rail track are laid down in cold weather, they may deform as they expand when the weather becomes warmer. Therefore, when rails are laid in cold weather they are stretched and fixed into place while still stretched. This is called prestraining.		
	The following data is typical for a length of s	steel rail:	
	Young modulus of steel = cross sectional area of a length of rail = amount of pre-strain =	$2.0 \times 10^{11} Pa$ $7.5 \times 10^{-3} m^2$ 2.5×10^{-5} for each kelvin rise in temperature the rail is expected to experience.	
	A steel rail is laid when the temperature is 8 strain of 3.0×10^{-4} .	3 °C and the engineer decides to use a pre-	
0 6 . 1	Calculate the tensile force required to produengineer.	uce the pre-strain in the rail required by the	
		[3 marks]	
		tensile force =N	
0 6 . 2	Calculate the elastic strain energy stored in pre-strained as in part 6.1.	a rail of unstressed length 45 $\ensuremath{\mathrm{m}}$ when	
	, and the second	[2 marks]	
	ola	etie etrain operav –	
	eia	stic strain energy = J	
	Question 6 continue	es on the next page	
		. •	

0 6 . 3	Calculate the temperature at which the steel rail becomes unstressed.	[2 marks]
0 6 . 4	temperature = Explain why the engineer does not use the highest observed temperature at location of the railway track to determine the amount of pre-strain to use.	°C the [2 marks]
	END OF QUESTIONS	
Copyright © 2014 AQ.	A and its licensors. All rights reserved	