

GCE

Chemistry A

1. Annotations

Annotation	Meaning
BOD	Benefit of doubt given
CON	Contradiction
×	Incorrect response
ECF	Error carried forward
I	Ignore
NAQ	Not answered question
NBOD	Benefit of doubt not given
POT	Power of 10 error
^	Omission mark
RE	Rounding error
SF	Error in number of significant figures
✓	Correct response
SEEN	Noted but no credit given
REP	Repeat

2. Subject-specific Marking Instructions

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
_	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

All questions must be annotated with a tick where the mark is given.

Additional pages/objects: You **must** annotate the additional pages (before Question 1) and the additional objects for each script you mark. If no credit is to be awarded for the additional object, please use a suitable annotation (either ^ or SEEN).

The following questions should be fully annotated with ticks, crosses and other relevant annotations to show where marks have been awarded in the body of the text:

3ai

4a

5ai

Qı	uesti	on	Answer	Marks	Guidance
1	(a)	(i)	Mass of the isotope compared to 1/12th OR mass of the atom compared to 1/12th ✓ (the mass of an atom of) ¹² C ✓	2	ALLOW for ¹² C: carbon-12 OR C-12 OR C 12 OR 12C ALLOW mass of a mole of the isotope OR mass of a mole of atoms compared to 1/12th the mass of mole or 12 g of ¹² C for two marks ALLOW mass of the isotope or mass of the atom compared to ¹² C which has a mass of 12(.0) for two marks ALLOW one mark for responses which have individual atoms compared to one mole of 12C and vice versa eg mass of the isotope or mass of the atom compared to ¹² C which has a mass of 12(.0) g eg mass of an atom compared to 1/12th mass of one mole of ¹² C eg mass of one mole of atoms compared to 1/12th the mass of an atom of 12C ALLOW 2 marks for responses expressed as a fraction eg mass of the isotope mass of 1/12th mass of ¹² C IGNORE (weighted) mean OR average DO NOT ALLOW mass of element or mass of ion
		(ii)	19p and 20n ✓ ⁴¹ K ⁺ and 19p ✓	2	Mark by row ALLOW 41K+
	(b)		(1s²) 2s² 2p ⁶ 3s² 3p² ✓	1	ALLOW 1s² repeated ALLOW subscripts AND upper case etc

Q	uesti	ion	Answer	Marks	Guidance
1	(c)	(i)	First check the answer on the answer line. If answer = 3.01×10^{22} award 3 marks 170.1 \checkmark (ALLOW in working shown as $28.1 + 35.5 \times 4$) Correctly calculates amount of molecules $8.505 / 170.1 = 0.05(00)$ mol \checkmark Correctly calculates number of molecules $0.05 \times 6.02 \times 10^{23} = 3.01 \times 10^{22} \checkmark$	3	ALLOW 0.301 x 10^{23} for three marks If there is an alternative answer, check to see if there is any ECF credit possible using working below. ALLOW ECF from incorrect molar mass of SiC l_4 ALLOW 0.05(00) (mol) for two marks ALLOW ECF for incorrect number of mol of SiC l_4 ALLOW calculator value or rounding to 3 significant figures or more BUT IGNORE 'trailing' zeroes, eg 0.200 allowed as 0.2. DO NOT ALLOW any marks for: 8.505 x 6.02 x 10^{23} = 5.12 x 10^{24}
		(ii)	$Cl^ K^+$ $Cl^ K^+$ $Cl^ K^+$ K^+ $Cl^ K^+$ K^+	2	ALLOW the structure with ALL C1 - and K+ transposed ALLOW labels if seen outside circles but linked with an arrow eg K+
			Total	10	

Q	uesti	ion	Answer	Marks	Guidance
2	(a)	(i)	Al ³⁺ ✓ SO ₄ ²⁻ ✓	2	
		(ii)	Al ₂ O ₃ (s) + 3H ₂ SO ₄ (aq) → Al ₂ (SO ₄) ₃ (aq) + 3H ₂ O(l) Correct species AND correctly balanced ✓ state symbols on correct species ✓	2	ALLOW multiples
		(iii)	(The number of) water(s) of crystallisation ✓	1	IGNORE hydrated OR hydrous OR 'contains water'
		(iv)	First check the answer on the answer line. If answer = 16, award 3 marks Correctly calculates amount of Al₂(SO₄)₃: 6.846 / 342.3 = 0.02(00) mol ✓ Correctly calculates amount of H₂O: 5.760 / 18.0 = 0.32(0) mol ✓ Correctly calculates whole number ratio of mol of H₂O: Al₂(SO₄)₃ to give x = 16 ✓	3	If there is an alternative answer, check to see if there is any ECF credit possible using working below ALLOW as ECF from 12.606/342.3 = 0.0368(273) AND 0.32/0.0368(273) To give $\mathbf{x} = 9$ for two marks ALLOW calculator value or rounding to 2 significant figures or more BUT IGNORE 'trailing' zeroes, eg 0.200 allowed as 0.2. ALLOW ECF for calculation of correctly rounded whole number value of H_2O from incorrect mol of H_2O and / or incorrect mol of $Al_2(SO_4)_3$ BUT \mathbf{x} must be a whole number ALLOW alternative method Mol of $Al_2(SO_4)_3$: 6.846 / 342.3 = 0.02(00) mol (first mark) Molar mass of $Al_2(SO_4)_3$ • $\mathbf{x}H_2O$: 12.606 / 0.02(00) = 630.3 g mol $^{-1}$ (second mark) Mass of water per mol = 630.3 – 342.3 = 288 AND 288/18 to give $\mathbf{x} = 16$ (third mark)

	Question		Answer	Marks	Guidance
2	Questi (b)	on (i)	Answer $Cl_2 + H_2O \rightarrow HCl + HClO \checkmark$ H^+ ions are released OR HCl is acidic OR $HClO$ is acidic \checkmark	Marks 2	Guidance ALLOW HOC! ALLOW equilibrium sign IGNORE state symbols ALLOW formulae OR names If correct equation is seen: ALLOW 'product is acidic' OR 'acid is produced' IGNORE 'the solution is acidic' but ALLOW 'the solution formed is acidic' DO NOT ALLOW 'chlorine is acidic' ie acidity must be related to the product(s)
		(ii)	C/O⁻ ✓	1	If an incorrect equation is seen: ALLOW second mark if H ⁺ OR HC/ OR HC/O is given as a product in the equation AND is stated as being acidic If no equation is seen: ALLOW second mark if H ⁺ OR HC/ OR HC/O is produced AND is stated as being acidic ALLOW OC/
			Total	11	

C	uesti	on	Answer	Marks	Guidance
3	Questi (a)	(i)	Answer P in P ₄ is 0 AND in PH ₃ is -3 AND in NaH ₂ PO ₂ is (+)1 \checkmark	Marks 3	Guidance FULL ANNOTATIONS WITH TICKS, CROSSES, CON, etc MUST BE USED ALLOW oxidation states written above the equation if not seen in the text BUT IGNORE oxidation states written above the equation if seen in the text ALLOW 3- AND 1+ DO NOT ALLOW ions DO NOT ALLOW P3- in PH3 OR P+ in NaH2PO2
			Phosphorus has been oxidised (from 0) to +1 ✓ Phosphorus has been reduced (from 0) to -3 ✓		DO NOT ALLOW phosphide or phosphine or phosphate in place of phosphorus ALLOW P or P ₄ for phosphorus ALLOW ECF for the second and third marks if ONE incorrect oxidation number is assigned but directional changes are correct eg P = 0 and -3 and +2 instead of 0 and -3 and +1. IGNORE references to electron loss / gain If correct oxidation numbers are seen ALLOW second AND third marking points for: 'Phosphorus is oxidised to form NaH ₂ PO ₂ ' AND 'Phosphorus is reduced to form PH ₃ ' IF neither second and third marks have been awarded ALLOW for ONE mark: Phosphorus has been both oxidised and reduced OR Phosphorus's oxidation number has increased and decreased

C	uesti	on	Answer	Marks	Guidance
3	(a)	(ii)	First check the answer on the answer line. If answer = $360 \text{ (cm}^3\text{)}$ award 2 marks Correctly calculates amount of P ₄ = $1.86/124.0$ = $0.015(0)$ mol \checkmark	2	If there is an alternative answer, check to see if there is any ECF credit possible using working below
			Correctly calculates volume of $PH_3 = 0.015(0) \times 24000 = 360 \text{ (cm}^3) \checkmark$		ALLOW ECF for wrong amount of P ₄ x 24000 for second mark ALLOW one mark for (1.86/31.0) x 24000 = 1440 DO NOT ALLOW 2 nd mark for 1.86 x 24000 = 44640 ALLOW calculator value or rounding to 2 significant figures
					or more BUT IGNORE 'trailing' zeroes, eg 0.200 allowed as 0.2.
	(b)		$4PH_3 + 8O_2 \rightarrow P_4O_{10} + 6H_2O \checkmark$	1	ALLOW correct multiples IGNORE state symbols
	(c)	(i)	The hydrogen ions OR H ⁺ OR protons (of phosphoric acid) are replaced by sodium ions OR Na ⁺ ✓	1	ALLOW Na ions OR positive ions replace H ions OR metal ions have replaced hydrogen ions OR protons DO NOT ALLOW Na replaces H. Ions are key in either word or symbol form. DO NOT ALLOW incorrect charge on Na ions (eg Na ²⁺)
		(ii)	Correctly calculates $0.100 \times 15 / 1000$ = $1.5(0) \times 10^{-3}$ OR $0.0015(0) \checkmark$	1	
		(iii)	22.5 ✓	1	ALLOW ECF from (ii) Answer from (ii) x (3/0.2) x 1000
	(d)	(i)	hydrogen bonding ✓ Permanent dipole(–dipole interactions) ✓	2	

C	Questi	on	Answer	Marks	Guidance
3	(d)	(ii)	the intermolecular forces are weaker in PH₃ ✓	1	ALLOW the energy needed to overcome the intermolecular forces in NH ₃ is greater Check table in part (i) IF NH ₃ = hydrogen bonds AND PH ₃ = permanent dipoles OR van der Waal's forces; ALLOW 'Hydrogen Bonds are stronger' ORA IF NH ₃ = permanent dipoles AND PH ₃ = van der Waal's forces; ALLOW 'permanent dipoles are stronger' ORA IF NH ₃ = permanent dipoles are stronger' ORA IF NH ₃ = permanent dipoles are stronger in NH ₃ ' ORA DO NOT ALLOW PH ₃ has weaker vdW's than NH ₃ DO NOT ALLOW NH ₃ has stronger hydrogen bonds than PH ₃ DO NOT ALLOW implication that covalent bonds are broken
	(e)	(i)	Both electrons have been donated by one atom ✓	1	ALLOW 'they' for electrons IGNORE elements for atom DO NOT ALLOW 'transfer' in place of 'donated' DO NOT ALLOW more than one electron pair is donated

Question	Answer	Marks	Guidance
3 (e) (ii)	H	2	Must be 'dot-and-cross', but ALLOW other symbols for electrons of third and fourth atoms eg Δ, +, o, etc Circles for outer shells are not needed IGNORE inner shells IGNORE use of charges Non-bonding electrons of F do not need to be seen as pairs IGNORE dative-covalent arrows from N to B, but DO NOT ALLOW arrow from B to N DO NOT ALLOW two separate molecules for first mark DO NOT ALLOW dative covalent bond mark if electron pair matches the B electrons ie to be correct the dative pair must be the same symbol as non-bonding electrons on F atoms if only two symbols are used DO NOT ALLOW dative covalent bond mark if F atoms have no non-bonding electrons UNLESS B has different electron symbol to N or H atoms
(iii)	$BF_3 = 120(\circ) \checkmark$ $H_3NBF_3 = 109.5(\circ) \checkmark$	2	ALLOW 109–110(°) for H ₃ NBF ₃

Q	Question		Answer	Marks	Guidance
3	(e)	(iv)	(N in) NH₃ has three bonding pairs and one lone pair of electrons ✓	3	ALLOW 'bonds' for 'bonding pairs'
			(N in) H ₃ NBF ₃ has four bonding pairs (and no lone pairs) of electrons OR		
			Lone pair on N now becomes bonding pair ✓		
			Lone pair of electrons repels more than bonding pairs ✓		IGNORE 'electrons repel' DO NOT ALLOW 'atoms repel'
			Total	20	

Q	uestion	Answer	Marks	Guidance
4	(a)	Answer Reactivity increases (down the group) ✓ Increasing size mark Atomic radius increases OR There are more shells ✓ Increased shielding mark	Marks 5	Guidance FULL ANNOTATIONS WITH TICKS, CROSSES, CON, etc MUST BE USED 'Down the group' is not required ORA throughout ALLOW alternative phrases for 'reactivity increases' ALLOW 'there are more energy levels' ALLOW 'electrons are in higher energy levels' ALLOW 'electrons are further from the nucleus' IGNORE there are more orbitals OR more sub-shells ALLOW 'different shell' OR 'new shell'
		There is more shielding ✓		There must be clear comparison ie 'more shielding' OR 'increased shielding' ALLOW there is more electron repulsion from inner shells DO NOT ALLOW responses which have no comparative eg 'there is shielding'
		Nuclear attraction (to electron) mark Nuclear attraction (to electron) decreases OR (outermost) electrons experience less attraction (to nucleus) OR Increased nuclear charge is outweighed by increased		ALLOW 'there is less nuclear pull' OR 'electrons less tightly held' IGNORE there is less effective nuclear charge IGNORE 'nuclear charge' for 'nuclear attraction' If question is answered in terms of only Group 7, then ONLY
		shielding/distance ✓ Ease of electron loss mark Easier to remove (outer) electron(s) OR Ionisation energy decreases ✓ Quality of written communication electron(s) OR ionisation OR ionization OR oxidise OR oxidize spelled correctly at least once for last marking point		marks 2, 3 and 4 can be awarded ALLOW easier to oxidise

Question		on	Answer Marks		Guidance
4	(b)	(i)	AgNO ₃ (aq) OR silver nitrate OR AgNO ₃ ✓	1	ALLOW Ag ⁺ (aq)
		(ii)	Yellow AND precipitate ✓	1	ALLOW shades of yellow but not creamy yellow ALLOW ppt or solid for precipitate
		(iii)	$Ag^+(aq) + I^-(aq) \rightarrow AgI(s) \checkmark$	1	ALLOW correct multiples
		(iv)	concentrated (aqueous) NH ₃ ✓	1	
			Total	9	

Q	Question		Answer		Guidance
5	(a)	(i)		3	FULL ANNOTATIONS WITH TICKS, CROSSES, CON, etc MUST BE USED
			Nuclear charge mark		
			(Across the period) number of protons increases OR		Comparison should be used for each mark
			greater nuclear charge ✓		IGNORE atomic number increases, but ALLOW proton number increases
			Quality of written communication – nuclear OR		IGNORE nucleus gets bigger
			proton(s) OR nucleus spelled correctly ONCE for the first		IGNORE 'effective nuclear charge increases'
			marking point		DO NOT ALLOW 'charge' increases without reference to nuclear
			Distance / shielding mark		
			(Outermost) electrons are in the same shell OR		
			(Outermost) electrons experience the same shielding		
			OR Atomic radius decreases ✓		ALLOW shielding is similar BUT IGNORE 'there is shielding' DO NOT ALLOW sub-shells OR orbitals
			Atomic radius decreases •		DO NOT ALLOW Sub-Stiells OR Orbitals
			Nuclear attraction (to electron) mark		
			Greater nuclear attraction (on outermost electrons)		
			OR		ALLOW greater nuclear pull for greater nuclear attraction
			(outer) electrons are attracted more strongly (to the nucleus) ✓		DO NOT ALLOW use of greater nuclear charge for greater nuclear attraction for third mark
		(ii)	(Diamond and graphite form) gaseous atoms (of carbon when they are ionised) ✓	1	ALLOW the atoms are in the gaseous state

Question		Ans	swer		Marks	Guidance
(b)					6	
		Lithium	Carbon (diamond)	Fluorine		ALLOW shared pair of electrons for covalent (bond)
	Structure	Giant	Giant ✓	Simple		ALLOW vdw for van der Waals' ALLOW temporary-induced or instantaneous-induced for
	Force or bond overcome on melting	Metallic bond	Covalent (bond) ✓	van der Waals' (forces) OR induced dipoles ✓		van der Waals' ALLOW Positive ions for Li ⁺ ions IGNORE 'Lithium ions' but ALLOW 'Positive lithium ions' DO NOT ALLOW Li ²⁺
	Particles between which the force or bond is acting	Li ⁺ ions and (delocalised) electrons ✓	Atoms ✓	Molecules ✓		IGNORE C and IGNORE F ₂ IGNORE diagrams but ALLOW names of particles if seen as a label on a diagram DO NOT ALLOW implication that covalent bonds are broken in fluorine for the <i>particles</i> mark of fluorine as this implies the
						particles are atoms
				Total	10	