
Algorithms for the Cross-dock Door Assignment Problem

Monique Guignard Peter M. Hahn Artur A. Pessoa
Daniel Cardoso da Silva

Abstract

In a cross-dock facility, goods are moved by forklift from incoming truck platforms (strip
doors) to temporary holding areas and then to outgoing truck platforms (stack doors) or
directly from strip doors to stack doors. Costs within the cross-dock may be minimized
by appropriate assignment of strip doors to incoming trucks and stack doors to outgoing
trucks, thus minimizing the distances that forklifts must travel. Optimizing strip and stack
door assignments given the shape of the cross-dock and the origin-destination volumes of
goods is known as the Cross-dock Door Assignment Problem (CDAP). The CDAP is very
difficult for exact methods because of its quadratic objective function. We propose two
heuristics for this problem, one ad-hoc using local search, and the other a metaheuristic
called CH (for Convex Hull), designed explicitly for quadratic 0-1 problems with linear
constraints. We then compare the proposed heuristics with one exact solution method for
optimizing door assignments at typical cross-dock layouts having as many as 20 doors, 20
origins and 20 destinations and randomly generated origin-destination volumes of trucked
goods.

1 Introduction

1.1 Background and Literature Review

Cross-docking is a logistics technique used in the retail and trucking industries to rapidly con-
solidate shipments from disparate sources and realize economies of scale in outbound trans-
portation. Cross-docking essentially eliminates the costly inventory-holding functions of a
warehouse, while still allowing it to serve its consolidation and shipping functions. The idea
is to transfer shipments directly from incoming to outgoing truck trailers, without storage in
between. Shipments typically spend less than 24 hours in a cross-dock, sometimes less than
an hour. With the process of moving shipments from the receiving dock (strip door) to the
shipping dock (stack door), bypassing storage, cross-docking reduces inventory carrying cost,
transportation cost, and other costs associated with material handling. Research topics on the
design and operational problems in cross-docking include the size of the cross-dock, the num-
ber of strip and stack doors, the width of the cross-dock, shapes for different cross-dock sizes,
and assigning strip and stack doors to incoming and outgoing truck trailers, which is addressed
here.

In a cross-dock facility, goods are moved by forklift from the incoming strip door to the
appropriate outgoing stack door, for a specific destination. The dynamic nature of the flow pat-
terns between origin-destination combinations makes the assignment of origins to strip doors
and assignment of destinations to stack doors a difficult combinatorial optimization problem.

The cross-docking problem is a type of assignment problem for which many studies have
been reported in the literature. Peck [15] developed a simulation for the integer programming
model of the trailer-to-door assignments that minimizes the total transfer time. Tsui and Chang
[18, 19] presented a general model of the dock door assignments and then developed a solution
based on branch and bound. Kinnear [12] explained the advantages afforded by cross-docking.
Gue [7] addressed the cross-dock facility layout as the arrangement of strip/stack doors and

1



the assignment of destination trucks to stack doors. Gue proposed a look-ahead scheduling
algorithm to reduce more labor cost compared to first-come first-served policy. Bartholdi and
Gue [3] described models that guide a local search routine in cross-dock door assignment so as
to minimize the total labor cost. Their layout models balanced the cost of moving freight from
incoming trailer to outgoing trailers with the cost of delays due to different types of congestion.
Bermudez [5] developed a genetic algorithm for assigning doors in order to minimize the total
weighted travel distance. Sung and Song [17] designed an integrated service network for a
cross-docking supply chain network. Lim et al. [13] minimized the total shipping distance
of freight inside a cross-dock facility. Miao et al. [14] aimed to find an optimal assignment
of doors and scheduling of trucks that minimizes the operational cost of the cargo shipments
and the total number of unfulfilled shipments at the same time. Bozer and Carlo [6] proposed
a simulated annealing heuristic to determine the door assignments in cross-docks, which is
formulated as a Quadratic Assignment Problem (QAP) with rectilinear distances.

All previous works assumed that trucks are aggregated so that each group of incoming
(outgoing) trucks exactly fits into one strip (stack) door. Zhu et al. [21] proposed a new model
for the CDAP the generalizes the previous one allowing trucks to be aggregated in a more
natural way, e.g. by origins (destinations) in the case of incoming (outgoing) trucks. Their
model handles the situation where the strip door serves more than one origin and the stack
door serves more than one destination. From now on, let us refer to this generalized problem
simply as CDAP. In [21], Zhu et al. also apply the formulation of the Generalized Quadratic 3-
dimensional Assignment Problem (GQ3AP) to devise an exact branch-and-bound algorithm for
CDAP. Their method was only tested with one instance having 8 origins, 8 destinations, 4 strip
doors, and 4 stack doors, varying the door capacities. Based on its mathematical formulation,
the CDAP could be solved as a GQAP [10].

1.2 Zhu’s Cross-dock Door Assignment Problem

Here is Zhu’s mathematical model of the Cross-dock Door Assignment Problem (CDAP).
Parameters:

M number of origins,

N number of destinations,

I number of strip doors,

J number of stack doors,

wmn number of trips required by the material handling equipment to move items originating
from m to the cross-dock door where freight destined for n is being consolidated,

dij distance between strip door i and stack door j,

sm volume of goods from origin m,

Si capacity of strip door i,

rn demand from destination n,

Rj capacity of stack door j.

Decision Variables:

xmi = 1 if origin m is assigned to strip door i, xmi = 0 otherwise,

ynj = 1 if destination n is assigned to stack door j, ynj = 0 otherwise.

2



Formulation:

Minimize:
I∑

i=1

J∑
j=1

M∑
m=1

N∑
n=1

dijwmnxmiynj (1)

Subject to:
M∑

m=1
smxmi ≤ Si, i = 1, 2, ..., I (2)

I∑
i=1

xmi = 1, m = 1, 2, ...,M (3)

N∑
n=1

rnynj ≤ Rj , j = 1, 2, ..., J (4)

J∑
j=1

ynj = 1, n = 1, 2, ..., N (5)

xmi = 0 or 1 m = 1, 2, ...,M, i = 1, 2, ..., I

ynj = 0 or 1 n = 1, 2, ..., N, j = 1, 2, ..., J

Here, (2) makes sure that the capacity of each strip door Si is not exceeded, (3) makes sure
that each origin gets assigned only one receiving (strip) door, (4) makes sure that the capacity
of each outbound (stack) door Rj is not exceeded, and (5) makes sure that each destination is
assigned only one stack door.

1.3 Contribution and Paper Organization

The CDAP (even considering the previous model of Tsui and Chang) is very difficult for exact
methods because of its quadratic objective function. Besides, if the cost function is replaced by
a linear one, the resulting problem, although still NP-hard, can be solved much more efficiently
using commercial Mixed Integer Programming (MIP) solvers. Motivated by this observation,
we propose two heuristics for the CDAP, both using the exact methods for similar subprob-
lems with linear costs instead of quadratic. The first method is a multi-start local search that
alternates between optimally reassigning only incoming trucks and only outgoing trucks. The
second one uses a more sophisticated technique called Convex Hull Relaxation (CHR) to lin-
earize the quadratic CDAP function. It alternates between using a linear approximation of
the cost function at the current solution and minimizing the quadratic cost function over an
expanding inner approximation of the integer feasible region. In order to test the proposed
heuristics, we generate a more complete set of benchmark instances varying not only the door
capacities but also the number of origins/destinations and doors. The new set of instances
use typical cross-dock layouts with up to 20 doors, and randomly generated origin-destination
volumes of trucked goods. We then present experimental results comparing the two heuristics
and the algorithm of Zhu et al.

In Section 2, we describe our multi-start local search heuristic. In Section 3, we show how
the CDAP can be solved approximately, using CHR. In Section 4, we explain how the set of
bechmark instances has been generated and present our experimental results. Finally, our con-
clusions are presented in Section 5.

2 First Heuristic method: Local Search by MIP

2.1 Reducing a part of the CDAP as a GAP

Ross and Soland [16] defined the Generalized Assignment Problem (GAP) as the most basic
version of the assignment problems that allow an agent to be assigned to multiple tasks. Its
importance derives not only from its direct application, but also from the fact that it appears as

3



a subproblem in many other practical and more complex problems on the literature. The GAP
can be formulated as follows:

Minimize:
M∑

m=1

I∑
i=1

Cimzim (6)

Subject to:
M∑

m=1
aimzim ≤ bi, i = 1, 2, ..., I (7)

I∑
i=1

uimzim = 1, m = 1, 2, ...,M (8)

zim = 0 or 1 i = 1, 2, ..., I, m = 1, 2, ...,M (9)

where zim = 1 if agent i is assigned to task m, 0 otherwise, cim is the cost of assigning
agent i to task m, aim is the amount of capacity employed by agent i to execute task j, and bi is
the total capacity available for agent i. The first set of constraints ensures that the set of tasks
assigned to an agent does not exceed its capacity and the second set of constraints ensures that
every task is assigned to only one agent.

In the CDAP formulation in Section 2, the decision variables and the constraints are sepa-
rately defined for each side of the cross-dock. While xmi variables define the assignment of each
origin to a strip door and constraints (2) and (3) makes sure that the capacities of strip doors
were not exceeded and origins get assigned only once, respectively, on the inbound side of the
cross-dock, the variables and constraints (4) and (5) have the same purpose to the outbound
side.

Assuming a fixed assignment of all destinations to stack doors, i.e. fixed values for the
variables ynj , the restricted CDAP can solved as a GAP as follows:

(a) each agent corresponds to a strip door i, for i = 1, 2, . . . , I ;

(b) each task corresponds to an origin m, for m = 1, 2, . . . ,M ;

(c) set aim = sm and bi = Si, for i = 1, 2, . . . , I , and m = 1, 2, . . . ,M ;

(d) set cim =
N∑

n=1

J∑
j=1

dijwmnynj , for i = 1, 2, . . . , I , and m = 1, 2, . . . ,M ;

(e) solve the resulting GAP instance defined by (6)-(9);

(e) set xmi = zim, for i = 1, 2, . . . , I , and m = 1, 2, . . . ,M .

An analogous reduction can be done if the value of all xmi variables are fixed and one wants
to optimize the ynj variables.

2.2 Heuristic

In this section, we describe how the GAP reduction is used in a local search method, in order
to find good solutions for the CDAP. The heuristic has the following steps:

Step 1: Generate a random solution for the inbound side of the CDAP (xmi)

- For each origin m, randomly select a door i from the doors that are capable to assign
origin m.

- Assign originm to the selected door i and decrease the available capacity of the door.

- If there is no door capable to attend an origin m, then Step 1 is restarted.

4



Step 2: With the value of xmi variables found on Step 1, generate a GAP for the outbound side
of the CDAP and solve it. Keep the objective function value and the ynj variable values.

Step 3: With the value of ynj variables found on Step 2, generate a GAP for the inbound side
of the CDAP and solve it. If the objective function value found is better than the value
found on step 2, keep it and the xmi variable values, otherwise stop.

Step 4: Repeat step 3 alternating the side of cross-dock being optimized until the objective
function value does not improve. Keep the best objective function value found and the
corresponding xmi and ynj values.

In order to avoid getting stuck on a local optimum, steps 1 to 4 are repeated one hundred
times and the best solution is selected.

The previous version of the heuristic is referred to as LS1. Another variant of this method,
denoted by LS2, is also tested. It differs from LS1 only at Step 1. Instead of generating a
random solution that necessarily respects the door capacities, it randomly assigns each origin
m any strip door i. This variant is designed to save processing time in the generation of initial
solutions, specially for instances where the door capacities are tight. The modified Step 1 does
not affect feasibility of the final solution since all origins are reassigned at Step 3, this time
necessarily respecting the capacity restrictions.

3 Second Heuristic method: The CH heuristic

The convex hull (CH) heuristic is a multi-start metaheuristic, designed for pure integer non-
linear optimization problems with linear constraints. It is generic, in the sense that it can be
applied to any such nonlinear problem as long as linear problems subject to the same con-
straints are by comparison, much easier to solve, at least approximately. A single start of the
algorithm, loosely based on simplicial decomposition [20], alternates between a continuous
nonlinear problem with one linear constraint, whose number of variables increases by one at
each iteration, and one linear MIP problem subject to all original constraints. It can make use
of software features such as CPLEX’s solution pool to enlarge – and enhance the quality of –
the sample of integer feasible solutions found.

[2] and [1] independently introduced a relaxation method called convex hull relaxation
(CHR), an extension of the primal relaxation of [8], for computing both a lower bound on the
optimal value of a nonlinear integer minimization program, and good integer feasible solu-
tions. This can be defined for both convex and nonconvex problems, however it is only com-
putationally meaningful for convex problems. Indeed, in the nonconvex case, the algorithm
produces a value that is in general not a valid bound, yet it still generates, as a by-product,
what are almost always high quality integer feasible solutions. The main difference computa-
tionally with the convex case is that the convergence criterion (adapted from simplicial decom-
position) is usually satisfied very quickly, necessitating a restart from a different initial step if
one wants to generate a solution sample of reasonably large size. We will refer to this approach
as the convex hull heuristic, CH. Notice that in the convex case, the CH heuristic is by default
single-start, since the algorithm always converges to the same optimal value. Yet it might be
possible to make it multi-start as the sequence of extreme points generated may depend on
the starting point. This has no bearing on our study, however, as the cost matrix is in general
not positive semidefinite. In what follows, we will then apply the multi-start heuristic version
of the algorithm to the CDAP model described in subsection 1.2. A comparison of runtimes
and solution quality using exact solvers, the ad-hoc local search heuristic and the convex hull
heuristic is given in Section 7.

We now describe the CH heuristic in greater detail.
Consider the nonlinear integer programming program (NLIP)

5



(NLIP)

minyf(y)

s.t. Ay ≤ b
yεY

where f(y) is a nonlinear differentiable function of y,
A is an m × n constraint matrix,
b is a resource vector in Rm,
Y is a subset of Rn specifying integrality restrictions on y.

The convex hull relaxation (CHR) of NLIP is:
(CHR)

minyf(y)

s.t. yεConv {x|Ax ≤ b, xεY }

It is easy to see that (CHR) is indeed a relaxation of (NLIP). We will now describe the kth

iteration of the CH heuristic for a given start. Let us define the Convex Hull Subproblem (CHS)
at the kth iteration as

(CHS)

miny 5 f(x(k))T (y − x(k))
s.t. yεConv {x|Ax ≤ b, xεY }

where x(k) is a feasible point for CHR, i.e., in Conv {x|Ax ≤ b, xεY }.
x(k) is the current linearizing point, i.e., at x(k) one approximates the original quadratic

function f(y) by its first order approximation H(y):

H(y) = f(x(k)) +5f(x(k))T (y − x(k)).

Note that CHS is a linear program. As such it has an equivalent integer program, the Integer
Programming Subproblem (IPS):

(IPS)

miny 5 f(x(k))T (y − x(k))
s.t. Ay ≤ b (10)

yεY.

Let y(k) be the optimal solution of (IPS). y(k) depends on x(k) because the linear function
H(x) depends on the linearization point x(k). Because the objective function is linear, y(k) also
solves problem (CHS). At each iteration, one solves an LIP with a different linearized function
H(x), while the constraint set is always the same.

In the convex case, the solution to (IPS), y(k), is a new extreme point of the convex hull,
unless x(k) is optimal for the convex hull relaxation problem (CHR). In that case the algorithm
stops, because no new extreme point is generated, which means that the setConv

{
x0, y

(1), y(2), ...
}

already contains the global optimum. If the objective function is nonconvex, the algorithm
may stop even when x(k) is not the global optimum. In both cases, if y(k) is a new extreme
point, it is used to expand the area the program will search in the next iteration, as the set
Conv

{
x(0), y(1), y(2), ...

}
will expand and give a better approximation of the integer convex

hull. Until the algorithm stops, each iteration produces a new vertex y(k) of the integer convex
hull and then minimizes the original nonlinear objective function overConv

{
x(0), y(1), y(2), ...

}
.

6



This minimization can be written as a nonlinear continuous problem over a set of weights al-
located to each extreme point. The only constraints are that these weights are nonnegative and
add up to 1. There is one more weight to consider at each iteration, and the maximum number
of weights is the number of iterations plus 1. The solution of the nonlinear continuous problem
is the new linearization point, x(k+1).

If f(y) is convex, the algorithm will converge after a finite number p of iterations to a point
x(p) in Conv {y|Ay ≤ b, yεY }. In the worst case, the algorithm will generate all extreme points
of the integer convex hull. Convergence happens when f (x(p−1)) = f (x(p)), i.e., if the latest point
x(p) has not improved the nonlinear optimal value. In the convex case, f (x(p)) is a valid lower
bound on the integer optimum, because

f(x(p)) = min {f(y)|yεConv {Ay ≤ b, yεY }} .

A by-product of CHR is that it produces a number of feasible integer solutions, y(1), ...,
y(p), and we can compute f (y(1)), f (y(2)), ..., f (y(p)) and keep the best point, call it y∗, as a best
feasible value. Thus even in the nonconvex case, CHR works also as a primal heuristic. In
the convex case, CHR produces both a valid bound on the optimum, f (x(p)), and a best found
feasible integer solution y∗. In the nonconvex case, it only produces a best feasible integer
solution.

We allow two changes over a standard implementation of simplicial decomposition. First it
is not essential in the nonconvex case to solve every single intermediate problem (IPS) to opti-
mality. It does happen in practice that out of maybe fifty or sixty calls to the linear MIP solver,
one or two problems turn out to require substantially more time. To avoid this erratic behavior,
we impose an upper bound on the runtime of every (IPS) ten or 20% larger than the average
(IPS) runtime (one cannot do this in the convex case as this might affect the overall conver-
gence of the algorithm). It might however affect the final best value, positively or negatively,
but keeps the time manageable. The second deviation is based on the solution pool feature of
CPLEX. While solving (IPS) using commercial software, the BB code searches for a best feasible
value for the linearized objective function. Successive incumbents can also be tested on the fly
in terms of another criterion, in our case their value for the original nonlinear function, and the
best solution and its value are recorded. In many of our experiments, the best value obtained
was actually coming from the solution pool of CPLEX.

The performance of the CHR heuristic for solving CDAP is given below.

4 Experimental results

4.1 Input data

4.1.1 Flow matrix

Since it is very difficult to get complete sets of data from commercial shippers, we had to gen-
erate plausible datasets similar to the partial ones we obtained in order to test the algorithms
discussed in this paper. We needed to create a flow matrix based on the given demands of each
customer. The following process was developed to generate an origin-destination flow matrix
F .

We assume that each destination n will receive goods from at least one origin m and each
origin m will send goods for at least one destination n. First, for each origin m, one destination
n was randomly chosen and the demand from the corresponding origin wmn is given by a
random integer between 10 and 50. A similar process was performed for each destination n
which has not been drawn in the above process, giving a random integer between 10 and 50 to
a randomly assigned originm. A third step was made by choosing a random origin-destination
flow wmn and in case this flow has not been assigned before, give it a random integer between
10 and 50. The third step was repeated until at least 25% of the flow matrix has been filled.

7



All instances have been generated with M = N , following the procedure described above.

4.1.2 Distance matrix

According to Bartholdi and Gue [4], most cross-docks, specially the smaller ones, are long,
narrow rectangles. This I-shaped design offers the chance to move freight directly across the
dock, reducing handling costs and time of the operation. On most cross-docks the doors are
equally spaced and generally with a 12-foot offset, but the width of the cross-dock depends on
the estimated need of the operation and in the LTL trucking industry usually are 60-120 feet
wide.

Figure 1 shows a simple layout of a cross-dock, which has a long rectangular shape, with
strip doors on the left side and stack doors on the right side.

Figure 1: A simple cross-dock layout

Considering an average cross-dock width of 90 feet and doors with 12 feet, we have an
approximate proportion of 8 to 1. So, a typical set of distances between the five strip doors and
five stack doors are shown in the distance matrix D, where dij represents the distance from
strip door i to stack door j.

D =


8 9 10 11 12
9 8 9 10 11
10 9 8 9 10
11 10 9 8 9
12 11 10 9 8


All instances have been generated with I = J , with values of dij always ranging from 8 to

8 + I − 1 following the same pattern above.

4.1.3 Supplies of the origins and demands of the destinations

Once the origin-destination flow is generated, the volume of goods from each origin m is

calculated as sm =
N∑

n=1
wmn. Similarly, the demand from each destination n is calculated as

rn =
M∑

m=1
wmn. To complete the input data for the CDAP problem, the capacity of each strip

door is given an identical value, which is calculated by dividing the total volume of goods from
all origins by the total number of strip doors, and then adding a capacity slack to the quotient.
We use slacks of 5%, 10%, 15%, 20% and 30% for the strip door capacities. A similar procedure
is used to generate (identical) stack door capacities: divide the total demand from all destina-
tions by the total number of stack doors, and then add a capacity slack to the quotient which
corresponds to the same percentage used for the strip doors.

8



4.2 Results

Table 1 shows the results of the three proposed methods for the instances generated, as de-
scribed in Subsection 4.1.

Table 1: Experimental Results
LS1 heur. LS2 heur. CH heur. B&B

Best Proc. Best Time Best Time Opti- Time
Instance soln. (sec.) soln. (sec.) soln. (sec.) mum to opt.
8x4S30 5063 2 5063 2 5063 17 5063 0
8x4S20 5086 2 5086 3 5086 17 5086 0
8x4S15 5112 2 5112 2 5112 9 5112 0
8x4S10 5169 2 5169 3 5169 14 5169 0
8x4S5 5174 1 5174 2 5174 13 5174 0
9x4S30 5904 2 5904 2 5904 14 5904 0
9x4S20 5937 2 5937 2 5937 19 5937 0
9x4S15 5976 3 5976 3 5976 21 5976 0
9x4S10 6027 2 6027 3 6027 17 6027 0
9x4S5 6047 2 6047 3 6047 15 6047 0
10x4S30 6193 3 6193 3 6193 19 6193 0
10x4S20 6267 3 6267 4 6267 26 6267 0
10x4S15 6296 3 6296 3 6296 28 6296 0
10x4S10 6325 3 6325 3 6325 30 6325 0
10x4S5 6518 5 6518 6 6518 16 6518 2
10x5S30 6324 3 6333 4 6333 18 6308 0
10x5S20 6374 3 6363 4 6354 18 6342 0
10x5S15 6397 3 6397 4 6397 16 6397 0
10x5S10 6476 4 6476 5 6476 23 6476 0
10x5S5 6616 6 6616 6 6616 13 6616 7
11x5S30 7428 4 7424 5 7420 18 7420 15
11x5S20 7465 5 7465 5 7478 17 7439 14
11x5S15 7542 5 7542 5 7542 20 7535 126
11x5S10 7572 5 7572 6 7572 18 7572 33
11x5S5 7812 12 7812 12 7812 16 7812 731
12x5S30 7942 6 7925 6 7925 21 7923 21
12x5S20 7939 5 7939 6 7939 18 7939 32
12x5S15 7939 4 7939 6 7939 18 7939 9
12x5S10 7978 4 7988 5 7991 15 7978 16
12x5S5 8072 5 8072 7 8072 13 8072 68

9



Experimental Results (cont.)
Heur. 1 Heur.2 CHR heur. B&B

Best Proc. Best Proc. Best Proc. Opti- Time (sec.)
Instance soln. (sec.) soln. (sec.) soln. (sec.) mum to opt.
12x6S30 10228 6 10228 7 10277 20 10228 97
12x6S20 10331 7 10339 6 10323 16 10312 201
12x6S15 10395 5 10420 6 10374 17 10362 198
12x6S10 10475 6 10496 7 10480 14 10456 98
12x6S5 10891 10 10894 14 10894 14 10891 7,921
15x6S30 13567 10 13567 10 13626 16 13567 1,214
15x6S20 13769 10 13754 11 13720 17 13720 3,422
15x6S15 13769 9 13799 12 13765 18 13765 225
15x6S10 13856 11 13852 11 13872 15 13803 1,197
15x6S5 13960 13 13927 16 13983 18 13927 31,091
15x7S30 14415 13 14423 13 14414 19
15x7S20 14596 14 14533 16 14533 19 14514 unproven
15x7S15 14678 13 14680 14 14678 22
15x7S10 14841 15 14818 17 14810 22
15x7S5 15054 25 15054 25 15096 26
20x10S30 28800 39 28541 41 28571 62
20x10S20 29130 38 28992 40 29089 63
20x10S15 29278 35 29184 37 29529 65
20x10S10 29286 36 29286 36 29498 52
20x10S5 29945 254 30033 45 29933 87

For the CDAP heuristics described in this paper, Table 1 presents the best solution found by
each instance and the corresponding processing time in seconds needed to find that solution.
In order to demonstrate the worth of the three heuristics, two columns were added, continuing
respectively, the optimum for each problem (if it could be found by a branch and bound search)
and the time it took for the branch and bound search to find the first optimal solution (there
are sometimes several). We chose our Generalized Quadratic 3-dimensional Assignment Code
solver [21] to find optimal solutions for the CDAP test instances presented in this paper.

The runtime results presented in Table 1 for Heuristics LS1 and LS2 were recorded on a
single cpu of an AMD Phenom 9600 2.31GHz Quad-Core Processor. The operating system for
those heuristics was Windows XP Professional Version 2002, Service Pack 2 and the version of
CPLEX was 12.1. The runtime results presented for the CH heuristic were recorded on a single
cpu of a 3.00GHz Quad-Core Intel Xeon CPU E5450 Processor on a Dell PowerEdge 2950 Linux
server. The runs were made using GAMS version 28.2 and times include GAMS overhead.

For the forty instances whose optimum solutions were known, in only nine cases was the
optimum solution not found. In those nine cases, the worst gap between solution found and
optimum was only 1/4 of one percent, a negligible amount. In addition, there are negligible
differences between the three heuristic implementations.

For problem instances smaller than 11x5 (11 origins, 11 destinations, 5 strip doors and 5
stack doors), the branch and bound search is as efficient or possibly more efficient than any
of the heuristics. But, this is quickly overshadowed by what happens for larger instances. In
fact, for instances larger than 12x6 (with the exception of the 15x7S20 instance), the GQ3AP
solver gave up searching for optimum solutions after running168 hours (one week) on a single
Opteron 2.3 Ghz cpu of a Dell PowerEdge 1950/SunFire X2200 Cluster at Clemson University.
All of the branch-and-bound runtimes reported in Table 1 were measured on that computing
cluster. Regarding the single instance where a solution was found in the process of attempting
to solve the 15x7S20 instance, that solution is indeed better than any of the solutions found

10



by the heuristics. However, since the branch-and-bound search was not completed, it could
not be verified as optimal. Clearly, there is need for additional development for finding exact
solutions for the unsolved instances in the table. This work would, however, require much
more time than was available for the writing of this paper.

5 Conclusions

The CDAP is very difficult for exact methods because of its quadratic objective function. We
propose two heuristics for this problem, one ad-hoc using local search, and the other a meta-
heuristic called CH (for Convex Hull), designed explicitly for quadratic 0-1 problems with
linear constraints. We then compare the proposed heuristics with one exact solution method
for optimizing door assignments at typical cross-dock layouts having as many as 20 doors,
20 origins and 20 destinations and randomly generated origin-destination volumes of trucked
goods.

Data sets of CDAP for different solvers were generated and instances of different problem
sizes were tested with the above-mentioned algorithms. It was found that the input data of
CDAP should be modified to adapt the GQ3AP model, which was initially reported by Guig-
nard et al. [9].

Computational experiments were conducted by implementing the existing algorithmic tools.
Existing codes were used to solve CDAP test instances exactly using a GQ3AP algorithm. Also,
CDAP input data for the CHR heuristic was generated for testing the CHR heuristic algorithm
by others. As expected, the runtimes of the exact algorithm grow exponentially when problem
size grows. Recommendations regarding the use of the tested algorithms were made, based on
the results.

Acknowledgments
The material is partially based upon work supported by the U.S. National Science Founda-

tion, under Grant No. DMI-0400155.
The branch-and-bound results reported herein were made possible through the advanced

computing resources deployed and maintained by Clemson Computing and Information Tech-
nology and the Clemson University International Center for Automotive Research Center for
Computational Mobility Systems.

References

[1] A. Ahlatioglu and M. Guignard. The convex hull relaxation for nonlinear integer pro-
grams with linear constraints. Technical report, University of Pennsylvania, The Wharton
School, OPIM Department, 2007. latest revision January 2009.

[2] V. Albornoz. Diseno de Modelos y Algoritmos de Optimizacion Robusta y su Aplicacion a la
Planificacion Agregada de la Produccion. PhD thesis, Universidad Catolica de Chile, Santiago,
Chile, 1998.

[3] J. J. Bartholdi and K. R. Gue. Reducing labor costs in an LTL cross-docking terminal.
Operations Research, 48(6):823–832, 2000.

[4] J. J. Bartholdi and K. R. Gue. The best shape for a crossdock. Transportation Science,
38(2):235–244, 2004.

[5] R. A. Bermudez. A genetic algorithm approach to LTL break-bulk terminal door assign-
ment. Master’s thesis, University of Arkansas, Fayetteville, AR 72701, 2002.

11



[6] Y. A. Bozer and H. J. Carlo. Optimizing inbound and outbound door assignments in less-
than-truckload crossdocks. IIE Transactions, 40(11):1007–1018, 2008.

[7] K. R. Gue. The effects of trailer scheduling on the layout of freight terminals. Transportation
Science, 33(4):419–428, 1999.

[8] M. Guignard. Primal relaxations for integer programming. In Proceedings of the VII CLAIO,
Santiago, Chile, 1994.

[9] M. Guignard, P. M. Hahn, Z. Ding, B.-J. Kim, , and Y.-R. Zhu. Extensions and variations on
quadratic assignment problems including the quadratic 3-dimensional assignment prob-
lem (q3ap). In Proceedings of 2006 NSF Design, Service, and Manufacturing Grantees and
Research Conference, St. Louis, MO, 2006.

[10] P. M. Hahn. A discourse on the relationship between the cdap and the gqap. Private
Communication, University of Pennsylvania, ESE Department, 2006.

[11] P. M. Hahn, B. J. Kim, M. Guignard, J. M. Smith, and Y.-R. Zhu. An algorithm for the
generalized quadratic assignment problem. Computational Optimization and Application,
40(3):351–372, 2008.

[12] E. Kinnear. Is there any magic in cross-docking? Supply Chain Management: An Interna-
tional Journal, 2(2):49–52, 1997.

[13] A. Lim, H. Ma, and Z. Miao. Truck dock assignment problem with time windows and
capacity constraint in transshipment network through crossdocks. In Computational Science
and Its Applications: ICCSA 2006, pages 688–697, Glasgow, United Kingdom, 2006.

[14] Z. Miao, A. Lim, and H. Ma. Truck dock assignment problem with operational time con-
straint within crossdocks. European Journal of Operational Research, 4031:262–271, 2006.

[15] K. E. Peck. Operational analysis of freight terminals handling less than container load shipments.
PhD thesis, University of Illinois at Urbana-Champaign, Urbana, IL 61801, 1983.

[16] G. T. Ross and R. M. Soland. A branch and bound algorithm for the generalized assign-
ment problem. Mathematical Programming, 8:91–103, 1975.

[17] C. S. Sung and S. H. Song. Integrated service network design for a cross-docking supply
chain network. The Journal of the Operational Research Society, 54(12):1283–1295, 2003.

[18] L. Y. Tsui and C.-H. Chang. A microcomputer based decision support tool for assigning
dock doors in freight yards. Computers and Industrial Engineering, 19(1-4):309–312, 1990.

[19] L. Y. Tsui and C.-H Chang. An optimal solution to a dock door assignment problem.
Computers and Industrial Engineering, 23(1-4):283–286, 1992.

[20] Balder Von Hohenbalken. Simplicial decomposition in nonlinear programming algo-
rithms. Mathematical Programming, 13:49–68, 1977.

[21] Y.-R. Zhu, P. M. Hahn, Y. Liu, and M. Guignard. New approach for the cross-dock door as-
signment problem. In Anais do XLI Simpósio Brasileiro de Pesquisa Operacional, Porto Seguro,
Bahia, Brazil, 2009.

12


