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1 INTRODUCTION 

A number of simple models have been introduced to describe the low frequency vibrational modes 
of the violin, notably the Beldie mass-spring model described in mathematical detail by Cremer

1
.  

The modes of the doubly-arched violin body have also been compared to those of a cylindrical 
shell, used in many textbooks as an introduction to flexural waves on curved surfaces (for example, 
Calladine

2
). However, none of these models adequately describe the strongly radiating CBR, B1- 

and B1+ signature modes responsible for almost all the radiated sound of the violin below around 1 
kHz, let alone the higher frequency modes. 
 
In contrast, our knowledge of the vibrational modes of violins has advanced rapidly in recent years.  
This has largely been largely due to experimental modal analysis measurements pioneered by 
Marshall

3
 and in later extensive measurements by Bissinger

4
 and Stoppani

5
.  Such measurements 

have provided detailed information about the vibrational modes and acoustic properties of many fine 
Stradivari, Guarneri and modern violins, as well as less valuable instruments. In addition, finite 
element computations, notably by Knott

6
, Roberts

7
, Rogers and Anderson

8
 and Bretos et al.

9
,  have 

described  many modes of the violin in terms of their underlying physical properties.  
 

The present model is similarly based on a finite element approach, but aimed at understanding 
rather than simply reproducing the mode shapes and frequencies of a specific instrument. The 
model suggests that the dynamics of all instruments of the violin family can be described as the 
modes of a shallow, thin-walled, doubly arched, guitar-shaped, box-like shell structure. Surprisingly, 
there are very few published examples of the dynamical modes of even rectangular box shell 
structures, let alone shallow boxes with arched or shaped plates. In all such structures, the plates 
and ribs introduce strong boundary conditions around their edges resulting in a very different set of 
vibrational modes than those of a cylindrical shell.  
 
By varying the geometric size, physical properties and coupling strengths over a wide range of 
values, the present model illustrates a direct relationship between the modes of the free top and 
back plates and those of the assembled instrument.  The model shows how the flexural plate 
modes of the assembled shell, before adding the soundpost,  f-holes, base bar, neck and 
fingerboard,  form a set of  component or basis modes. These modes are then coupled together by 
the soundpost and other structural components, to form the non-interacting normal modes of the 
instrument, observed as strong resonances in admittance and acoustic radiation measurements.  
 
In addition to providing a coherent model, potentially describing the vibrational modes of all 
instruments of the violin family, it is hoped that the model will provide makers with some helpful 
insights into the way that the various component parts of the fully assembled body couple together, 
to give the characteristic acoustic properties of individual instruments. 
 

2 FINITE ELEMENT MODE 

The finite element geometry of the violin illustrated in Fig.1 is loosely based on the internal rib 
outline, arching and other physical dimensions of the Titian Strad (Zygmuntowicz

10
). As we are 

interested in the vibrational properties of all instruments of the violin family, the exact dimensions 
and detailed geometry are of secondary importance. Variations in physical and geometric properties 
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can always be included later as relatively small perturbations, changing specific mode frequencies, 
but not their underlying shapes.   The model will be described in detail in a separate publication.   

Figure 1. The unmeshed geometric model used 
for the finite element computations illustrating the 
guitar-shaped outline and arching of the plates 
and schematic representation of the neck. The 
transverse and longitudinal lines indicate the 
cross-sections along which the arching profiles 
were defined. The circular disc is used to 
demonstrate the induced f-hole Helmholtz 
vibrations. 

 
The unmeshed geometric model used for the finite element computations is illustrated in figure 1. 
The 15 mm high arching profiles of the plates were defined by simple mathematical functions, with 
identical top and back plate profiles across the width, but slightly different profiles along the length.  
 
For initial simplicity, plates of uniform thickness have initially been considered, with uniform elastic 
properties representing the geometric mean of the anisotropic properties along and across the 
grains. This ensures the correct mode density at high frequencies (Cremer

1
, chpt.10). The plate 

thicknesses, densities and elastic constants were chosen to closely match typical front and back 
plate masses and free plate mode #2 and #5 frequencies.  The influence on mode shapes and 
frequencies of elastic anisotropy and graduations of plate thicknesses will be described in a later 
paper.  
     
An underlying assumption in taking the above approach is that the mode shapes and frequencies of 
the assembled instrument will largely depend on the modal frequencies and masses of the free 
plates rather than how such values are determined by the specific arching, elastic anisotropies and 
thickness graduations used to achieve them.  This is a very similar approach to that taken by those 
makers who tune free plate frequencies and mode shapes before assembling the instrument. 
  
To investigate the influence of the ribs, f-holes, bass bar, soundpost, neck and fingerboard on mode 
shapes and frequencies, their strengths have been varied from zero to typical normal values.  In 
addition, the important influence of soundpost position both along and across the length of the 
instrument has been investigated. The influence of internal air resonances and the Helmholtz f-hole 
resonances in particular is also described. 
 
The addition of corner and end blocks, linings, plate over- hangs, tailpiece, fingerboard and string 
resonances can all be incorporated into the model later,  either as minor perturbation of factors like 
the effective rib mass and elastic strength or as weakly coupled resonators in the case of the 
fingerboard, tailpiece,  strings and higher order cavity air resonances.  
 
Although all the computations presented in this paper are for the violin, the mode shapes and 
dependencies of modal frequencies on physical and geometric factors are expected to be much the 
same for instruments of any size, as the symmetry of the modes is largely determined by the 
symmetry of the shell structure, which is much the same for all instruments of the violin family. 
  
The computations were made using the structural mechanics shell module of COMSOL 3.5 
Multidisciplinary software. An automated mesh with typically 50,000 degrees of freedom was 
generated. The first 100 or so vibrational modes of the freely supported instrument could be 
computed in a few tens of seconds on a desk-top PC, though many such computations were 
required to achieve the resolution required to identify the influence of coupling on the veering and 
splitting of individual modes, particular in regions of mode crossing.  
 
The influence on the vibrational modes of the individual plates, the ribs, f-holes, the Helmholtz f-hole 

resonance, a central and offset soundpost will now be considered in turn. Space precludes a 
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description of the computed influence of the neck/fingerboard assembly, anisotropy, and coupling to 
all other vibrational modes of the instrument (fingerboard, higher order cavity air modes, the 
tailpiece, bridge and stretched string) or the predicted radiation of sound, all of which will be 
described in subsequent papers. In addition, to limit the scope of this paper, only modes below 
1 kHz will be considered in any detail.  
 

3 FREE PLATE MODES 

Figure 2 illustrates the computed modes shapes and frequencies of the free plates used to model 
the assembled instruments, before f-holes have been cut or bass bar added. Throughout this paper 
a colour scale will be used to illustrate displacements perpendicular to the  plates, with dark red and 
blue representing equal but opposite displacements perpendicular to the plate, with the nodes at the 
transition between green and yellow (see figure 3).   
 

 

 

 

 

Figure 2. The first six modes 

of the isotropic, uniform thick-

ness, arched, top and back 

plates without f-holes.  

 

 

 

 

 

 

 

The arching results in a strong coupling between flexural waves perpendicular to and longitudinal 

waves parallel to the shell surface.  This can double the frequency of the low frequency plate 

modes, though arching becomes less important as the mode frequencies increase.  Such coupling 

also induces significant in-plane edge contractions and extensions, which is responsible for the 

coupling between the bending and breathing modes of the assembled instrument. The plate 

frequencies will therefore be strongly dependent on how they are supported by the ribs - both in-

plane and perpendicular to their edges. Figure 1 demonstrates that even relatively small changes in 

arching profile along the lengths of the top and back plate can reverse the order of the free-plate 

mode frequencies, even though their arching heights are the same. 

 

The individual modes are either symmetric or anti-symmetric about the longitudinal central axis. 

This remains true for their coupled motions in the assembled instrument, in the absence of the 

symmetry-breaking bass bar and offset soundpost. 

 

Mode #1 is a torsional mode of relatively little acoustic importance.    Modes # 2 and #4 involve 

flexural bending vibrations of the lower and upper bouts respectively.  Mode #2 is often referred to 

as the X-mode, on account of the shape of its nodal lines, though in reality they never cross. As 

demonstrated in the next section, the ribs couple the two modes together to form the anticlastic 

(curvatures in opposite directions along and across the instrument) bending mode components of 

the B1- and B1+ signature modes.  
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Mode #3 is a higher order torsional mode, which includes some bending.  When coupled by the 

ribs, these modes form the CBR signature mode, which is usually a relatively weak radiator of 

sound, though it can be excited quite strongly by an asymmetrically rocking bridge, when an offset 

soundpost is introduced.     

 

Acoustically, mode #5 is by far the most important free plate mode.  We will show that rib coupling 

transforms this mode into the volume-changing, breathing mode component of the B1- and B1+ 

signature modes. The component breathing mode is directly or indirectly (by excitation of the 

Helmholtz f-hole resonance) responsible for virtually all the sound radiated by the violin and other 

stringed instruments at frequencies over their first two octaves. 

 

4 RIB COUPLING 

 
 

Figure 3.  The computed transformation of the first eight modes of the free plates to 

those of the fully assembled but empty (and without f-holes), doubly-arched, guitar-

shaped, shell structure, as a function of rib coupling strength increased from a very 

small value to that of a typical violin (see text). The mode frequencies are also 

strongly perturbed by the illustrated contrary rotational and linear displacements 

modes of the rigid plates about their three orthogonal axis, with unperturbed 

vibrational frequencies proportional to (rib strength/plate mass)
1/2

. 
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Figure 3 illustrates how the modes of the free plates are transformed into those of the assembled 
instrument on increasing the rib coupling “strength” from close to zero to a representative normal 

value. The rib coupling strength is proportional to Erib(t/h)
3
,  where Erib is the effective elastic 

constant across the ribs of height h  and thickness t.  In the computations, the rib height (3 cm) and 
thickness (1 mm) were held constant, while Erib was scaled from a very small value to 10 GPa.  For 
the cello, with its significantly larger rib height to thickness ratio, the rib coupling strength will be 
significantly weaker than that of the violin. This will result in relatively larger stretching and bending 
of the ribs. 
 
The density was also simultaneously scaled by the same factor to maintain the frequency of the 
flexural rib modes at their normal high frequency, typically ~5-10 kHz for the violin and > 800 Hz for 
the cello (Stoppani, private communication) - well above the range of frequencies considered here. 
At lower frequencies, the ribs simply act as a series of parallel cantilevered springs inhibiting plate 
separation and bending around their edges. Nevertheless the isolated rib garland can easily be bent 
and twisted about its length with very little energy.  Such vibrations are involved in the CBR and B1- 
and B1+ signature modes of the violin, with large amplitude twisting and bending of the ribs along 
their edges, but relatively small amounts of stretching and bending between opposing plate edges.  
 
Figure 3 shows that the ribs have a major influence on the frequencies and shapes of the low-lying 
modes of the assembled shell, which are ultimately responsible for the signature modes of the fully 
modeled instrument. The coupling is especially strong between free plate modes with matching  
mode shapes and closely spaced frequencies. 
 
As well as the coupled free plate modes, there are six additional modes involved in the coupled plate 
vibrations.  These are derived from the twelve zero-frequency degrees of freedom of the two isolated 
plates, which describe their rigid body displacements along and rotations about their three orthogonal 
symmetry axis. Six of these simply become the rigid whole-body linear displacements and rotations 
of the assembled instrument.  
 
The remaining six modes are transformed into modes with linear displacements and rotations of the 
rigid plates in opposite directions, as illustrated in Figure 3. Because such vibrations involve the 
stretching and compression of the ribs, their frequency will increase with rib strength as 

 , where   will be a mode-specific effective plate mass. Their unperturbed 

frequencies therefore increase with slope ½, when frequency and rib strength are plotted in figure 3  
on logarithmic scales. 
 
At intermediate coupling strengths, these modes cross and couple to any of the flexural wave modes 
of the top and back plates sharing a common symmetry.  This results in considerable veering and 
splitting of several mode frequencies in the cross-over region. The splitting of modes is proportional 
to the rib-induced interaction strength. Modes not sharing a common symmetry do not interact. Their 
frequencies simply cross. 
 
At full coupling strength, the influence of the rigid plate modes are less important,  but still account 
for the small amounts of rib stretching, bending, rotation and twisting observed in experimental 
modal analysis measurements.   Because of these interactions, the dependence of shell mode 
frequencies on rib strength is rather complicated and frequently difficult to interpret.  Therefore, in 
figures 5a-d below, we have extracted those parts of the dispersion curves that identify the 
transformation of specific plate modes into to the low frequency modes of the assembled instrument.  
 
Before leaving figure 3, it is important to note that, despite the complexity of the modal frequency 
plot, the number of modes of the assembled structure is always conserved and is equal to the 
number of initial modes of vibration involved. It is therefore possible to follow every single mode of 
the interacting system from those of the uncoupled plates to the modes of the fully coupled structure,  
as the modes are adiabatically (smoothly) transformed on increasing the rib coupling strength over 
many orders of magnitude. However, as the coupling strength increases each mode increasingly 
includes additional coupled component vibrations of the initial system. As a result of the increase in 
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mode frequencies with increasing rib strength, the number of low frequency modes of the shell at full 
coupling strength is relatively small.  
 
The five lowest modes of the assembled shell are illustrated in Figure 4. These will be referred to as 
the cbr (centre bout rotation), b1- (breathing), b1+ (bending), ld (longitudinal dipole) and td 
(transverse dipole) modes of the empty shell.  Note the use of small letters to denote what eventually 
become contributing component vibrational modes of the non-interacting CBR, B1- and B1+ normal 
modes of the assembled instrument.  
 
 
 
 
 

 
Figure 4. The first five component or basis 
modes of the assembled guitar-shaped box 
at full rib-coupling strength. 
 
 

 

 

 
 
 

 
 
 
 

Figures 5a-d. Extracted dispersion curves for the transformations of the first 
five free plate modes to the lowest frequency modes of the assembled shell.  
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b1+ bending ld longitudinal dipole

td transverse dipole
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The transformation of each of the first five free plate modes into the modes of the freely supported 
assembled shell will now be described. 
 
Figure 5a illustrates the influence of rib coupling on the #1 torsional plate mode.  At even very small 
coupling, the top and back plates are coupled together to form two new modes with the plates 
twisting in either the same or opposite directions. Twisting in the same direction avoids stretching 
the ribs. This mode therefore increases far less rapidly with rib coupling strength than the higher 
frequency mode, which rapidly rises in frequency into the multiplicity of flexural plate modes above 
1 kHz.   In contrast, the frequency of the mode with plates twisting in the same direction increases 
smoothly to  become a transitional mode between the low frequency signature modes and closely 
spaced, overlapping (because of damping)  higher frequency modes of the assembled shell.  
 
Figure 5b illustrates a similar initial behavior of the free plate modes #2 and #4, with the component 
pair of coupled lower and upper bout bending vibrations in opposite directions again increasing very 
rapidly in frequency because of the stretching of the ribs. In contrast, the coupled plate modes 
bending in the same sense simply cross the rising “bouncing” mode frequency.  The lowest of these 
two modes transforms into the b1+ bending mode of the assembled shell, with the longitudinal 
bending of the original #2 an #4 modes flexing in both bouts and both plates in the same directions. 
This involves large plate edge displacements made possible by the ease with which the rib garland 
can be bent in this way. The upper of this pair of modes retains the symmetry of the lower bout 
bending of the individual plates, but is now coupled to a breathing mode in the upper bout, with both 
component sets of vibration confined within the plate edges. 
 
In summary, the important bending mode component b1+ of the B1- and B1+ signature modes is 
derived from the coupled #2 and #4 of the free plates. This upper member of this pair, with a strong 
breathing mode in the upper bout,  may well be responsible for the strong peak in monopole 
radiation of the violin observed by Curtin

11
 for a couple of Stradivari  violins at around 1 kHz.  

 
The two free plate #3 modes illustrated in figure 5c behave in much the same way, with plates 
vibrating in opposite senses increasing rapidly in frequency, as they interact strongly with the rib 
bouncing and stretching modes. However, in this case, the rotational mode of the two plates 
vibrating in the same direction crosses and interacts strongly with the rigid plate transverse shearing 
mode.  As a result, the emerging cbr mode at full coupling strength still retains the centre bout 
rotation, but acquires an additional shearing component. The shearing component leads to a 
rhombohedral distortional vibration of the central bout cross section, which explains the origin of the 
CBR name - Centre Bout Rhombohedral cross-section.  However, we prefer the name Centre Bout 
Rotation, as it is its rotation rather than shear motion that determines how strongly it is excited by the 
string-induced rocking of the bridge. The cbr mode involves little change in volume, so it usually 
plays relatively minor role in the acoustics of the violin.  
 
Figure 5d is the most important of all the plots. It illustrates the very strong interaction of the #5 
modes with the rising frequency bouncing mode.  Once again, at small coupling strengths, the 
frequency of the coupled plate modes vibrating in opposite directions again increases very quickly 
because of the energy required to stretch the ribs. However, this mode shares the same overall 
symmetry as the bouncing mode resulting in a very strong interaction between them. This leads to a 
strong veering of the mode frequency as it interacts with the rapidly rising frequency of the bouncing 
plate mode and a splitting of the interacting modes at rib coupling strengths at which they would 
otherwise have crossed.    As expected for any pair of strongly interacting component modes, the 
emerging lowest frequency mode of the interacting vibrations is depressed below that of the initial 
coupled free pate modes, because of its continued interaction with the higher frequency bouncing 
mode after it has risen above the crossing regime.  The flexural plate vibrations are now in opposite 
directions resulting in large volume changes and a strong monopole source of sound. In addition 
there is very little displacement around the plate edges.   In contrast to the above mode, the initial 
#5 mode with the plates flexing in the same direction now simply crosses the bouncing mode and is 
transformed into a relatively weakly-radiating mode in the transition region below 1 kHz. 
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For all the illustrated examples, the mode frequencies are still rising for a coupling factor of unity- 
but only weakly.  This reflects the increasing strength of the supporting ribs, which increasingly 
constrain the bending of the flexural waves around the plate edges 

 

5 F-HOLES AND ISLAND AREA 

 
The open f-holes on the front plate and the island area between them play a major role in the sound 
of the violin and related instruments, as recognized by Cremer

1
 (chpt.10). Firstly, the open holes in 

the front plate introduce the A0 Helmholtz cavity resonance, which boosts the sound of all members 
of the violin family over their first octave or so. Secondly, the free f-hole edges define the shape of 
the island area, which strongly influences the penetration of flexural waves from the lower and outer 
bouts towards the two feet of the rocking bridge, which excite them. Thirdly, the island area does 
not have to bend as much as the outer plate edges attached to the ribs. This result in an increased 
change of volume of the shell as it bends. This contributes to the coupling between the bending and 
breathing vibrations, which is such an important feature of the signature modes of the assembled 
instrument. As described later in this paper, the penetration of flexural waves into the island area 
and resulting excitation of radiating modes is also strongly influenced by the strength and position of 
the soundpost in the island area – and by offset  bass bar and extra loading of the of the bridge and 
strings. 
 

6.1  The island area 
 
Figure 6 illustrates the influence of the f-holes on the low frequency flexural wave modes of the shell.  
The frequencies were computed as a function of f-hole strength varied by simultaneously decreasing 
the elastic constant and density of the f-hole areas by the same factor from unity (no f-holes) to 10

-5
 

(effectively open f-holes). 
 

Figure 6. The influence of the f-
holes on the empty shell mode 
frequencies and shapes in the 
island area. 
 
Opening the f-holes has little 
effect on mode shapes, but 
lowers their frequencies by in-
creasing their penetration into 
the island area towards the free 
edges of the island area.  As a 
result, the inside edges of the f-
holes can vibrate with larger 
amplitudes, almost inde-
pendently from the outer edges 
constrained by the ribs, as 

illustrated.  
 

6.2   The Helmholtz A0  resonance.  
 
 The combined open area A of the two f-holes together with the volume V of the internal cavity, if 
rigid, would form a Helmholtz resonator, with resonant frequency  

 

                                            (1)   

                                                                                                                                                                                           
where co is the velocity of sound within the cavity and g is a f-hole  shape-dependent constant of 
order unity. 
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Figure 7. The variation of the 
low frequency modes of the 
empty guitar-shaped shell with 
f-holes cut into the top plate, 
as a function of ambient 
pressure normalized to normal 
air pressure. The dashed line 
indicates the unperturbed 
Helmholtz frequency of 307 Hz   
Also illustrated are the mode 
shapes and reversed baseball-
like nodal lines of the coupled 
b1-breathing and b1+ compo-
nent bending modes.  
 

 
Although the Helmholtz frequency, proportional to the velocity of sound in air, is independent of 
pressure, the strength of the coupling between the induced cavity pressure fluctuations and flexural 
plate vibrations that excite them is proportional to the ambient pressure.  Figure 7 illustrates the 
dependence of the shell modes and A0 f-hole frequencies on ambient pressure.  
 
The computations make the usual simplifying assumption that the pressure within the cavity is 
uniform.  The pressure results from the volume changes of the modes exciting the Helmholtz 
resonance, which also reacts back on the shell wall vibrations themselves.  Therefore, only those 
modes with a significant volume changing component are affected by their coupling to the 
Helmholtz resonance.  Such modes will also radiate strongly in the signature monopole regime.  For 
the empty shell, these are the b1- breathing and, to a lesser extent, the b1+ bending modes.   
 
The computations confirm the very strong perturbation of the A0 and b1- breathing modes, as the 
ambient pressure is increased. At zero pressure, implicitly assumed in the previously described 
computations, the computed empty shell breathing mode frequency of around 300 Hz is very close 
to that of the ideal Helmholtz resonator at 309 Hz.  On increasing the internal pressure to a “normal” 
ambient value, the coupling is so great that the predicted A0 mode would drop to around 200 Hz, 
while the breathing mode would be raised to around 400 Hz. Analytic models predict that the 
product of the resulting A0 and b1- mode frequencies should remain constant, as confirmed by the 
computations. 
 
In practice, computations show that the internal pressure driving the Helmholtz vibrations of the air 
in and out of the f-holes is reduced below the average pressure, because of significant pressure 
drops associated with the flow of air from the upper and lower bouts. This reduces the effective 
pressure driving the f–hole resonance by a factor of ~0.7, which is equivalent to reducing the 
effective ambient pressure by the same factor.  Measurements on violins with and without 
soundposts by Stoppani (private communication) show typical drops in the A0 frequency from 
around 280 Hz to 240 Hz, in qualitative agreement with the above model.  
 
Initially, none of the other modes are significantly affected by changes in ambient pressure.  
However, as the pressure increases, the frequency of the b1- breathing mode approaches and 
would otherwise cross that of the b1+ bending mode.  Because both modes share similar in-plane 
contractions and extensions around the edges of the plates they are relatively strongly coupled. 
They then form what become the B1- and B1+ modes of the assembled instrument with bending 
and breathing component vibrations in either the same or opposite phases, as illustrated in figure 7.  
Their combination also demonstrates the illustrated reversal of the baseball like nodal lines of the 
two modes, which is one of the characteristic features of such modes in real instruments. In addition 
there is a somewhat smaller interaction with the higher frequency longitudinal dipole mode 
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illustrated in figure 4 and a higher frequency mode just above 900 Hz.  Moreover, the b1- and b1+ 
modes never cross, but become the in and out of phase vibrational components of the B1- and B1+ 
normal modes of the assembled instrument.   
 

6. THE SOUNDPOST 
 
Below 10 kHz or so, the soundpost acts as a fairly rigid beam exerting equal and opposite forces 
and couples to the plates across its ends. This imposes almost equal displacements and slopes of 
the plates across its ends assuming intimate contact with the plates. This  adds a localized, bell-
shaped, flexural wave mode to the modes of the open shell structure which, well away from local 

boundaries,  decays exponentially as e
-kr

 /r
1/2 

 at large distances, where    is given by the 

usual flexural wave dispersion relationship, ~ tk
2
,  determining the  wavelengths   of the 

standing waves in the upper and lower bouts (t is the plate thickness). The soundpost therefore 
locally perturbs the modes of the empty shell to give almost equal displacements across its ends. 
However, they need not be exact nodes, as the two ends can still vibrate in the same direction.   
 
 When located within the island area, the soundpost acts as a gate inhibiting the penetration of 
flexural waves in the lower bout past the soundpost into the upper bout and vice versa.  The  
flexural wave amplitudes close to the soundpost are rather small and vary rapidly with distance. Its  
position relative to the two feet of the bridge exciting the mode vibrations is therefore crucial in 
terms of the strength with which they are excited and hence the intensity and perceived quality of 
the radiated sound. This is why the soundpost position is so critical in setting up a violin for optimal 
sound quality.  

 

Figure 7. Influence on mode 

frequencies and shapes of 

the strength of a centrally 

placed soundpost. 

 

 
 
 
Figure 7 illustrates the de-
pendence of mode frequen-
cies on the strength of a cen-
trally placed in-line with the f-
hole notches, for the violin 
body shell without bass bar, 
fingerboard/neck assembly 
and neglecting coupling to the 
Helmholtz cavity resonance.  

 
The soundpost strength is varied by simultaneously increasing its elastic constant and density to 
maintain its resonant modes at a high value - above ~5 kHz for the violin.  A central soundpost can 
only strongly perturb the symmetric shell modes.  
 
The most important feature is the strong increase in frequency of the b1- breathing mode. This first 
crosses the frequency of the cbr mode with a small amount of coupling-induced veering and 
splitting of mode frequencies. The frequency then continues to rise, approaching and otherwise 
crossing the initially higher frequency b1+ bending mode. In the crossover region, all three nearby 
b1- breathing,  b1+ bending, and longitudinal dipole ld  component vibrational modes are coupled 
together to give three new B1-, B1+ and B2, non-interacting,  normal modes of the shell. The sound 
radiated by each mode will be determined by the strength of its coupled b1- breathing component 
and the strength with which it is excited by the rocking bridge.  
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Figure 8. Influence on mode 
frequencies of shifting the 
soundpost along the central 
axis 
 
 
As the soundpost is moved 

along the central axis towards 

the lower bouts, the decrease 

in frequency of the higher 

frequency upper bout ub1- 

mode and increase in 

frequency of the lower bout 

lb1- mode result in the modes 

crossing. In our model, their 

frequencies would coincide 

for the soundpost about 1 cm 

behind the bridge.  As evident 

from figure 8 the modes are 

effectively orthogonal as they 

cross without any evident 

mode veering or splitting. 

However, both breathing 

modes are relatively strongly 

coupled to the b1+ bending mode, leading to the veering and splitting of the modes on either side 

of coincidence. This results in the maximum in the frequency of the lower mode, which changes in 

character from a breathing mode largely localized within the lower bouts to an equivalent                       

mode largely localized in the upper bouts as the sound post is moved across the maximum towards 

the lower bouts.   

 

The low frequency mode at coincidence involves breathing modes of similar amplitudes in both the 

upper and lower bouts. This mode is similar to the b1- breathing mode of the empty shell with a 

soundpost induced minimum near the centre of the violin.    In contrast, the two degenerate higher 

frequency modes involve breathing mode components of opposite polarities in the upper and lower 

bouts, with relative amplitudes that change on moving away from coincidence. This mode is very 

similar to that of the ld longitudinal dipole mode of the empty shell, with its node near the soundpost 

position.   The connection of the above modes to those of the empty shell, suggests the potential 

value of measuring the vibrational modes of the empty shell as a characterization tool (Stoppani
5
), 

especially since such measurements can easily be made before the final thickness graduation of the 

plates. 

 

The influence of offsetting the centrally placed sound post away from the central axis is illustrated in 

figure 9. The frequencies of both lB1- and uB1- breathing modes are decreased as the soundpost, 

acting rather like a gate, is moved sideways. This opens up the pathway through the island area on 

the bass side allowing the lower and upper bout breathing vibrations to penetrate further into the 

opposite bout, hence lowering their frequencies.  This results in a twisting of the central bout region  

pivoting about the soundpost position. Just as for lengthwise offsets of the soundpost, the most 

important effect of sideways offsetting is to modify the coupling of the modes to the now 

asymmetrically rocking bridge.  The asymmetry introduced by the offset soundpost and to a lesser 

extent the bass bar allows the horizontal component of the bowed string force to excite the 

symmetrical breathing modes and radiate sound effectively.   
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Figure 9.  The influence of offsetting a centrally 

placed sound post from the central axis.   

 

The added influence of anisotropy, bass bar, 

fingerboard-neck assembly and coupled air 

modes and the interaction of the shell modes 

with the vibrational modes of higher order air 

modes, the fingerboard, the bridge and bowed 

strings, and the resulting radiation of sound will 

be described elsewhere.  However, because 

the mode shapes described in this paper are 

largely determined by the symmetry of the 

guitar-shaped shell, they will be common to all 

instruments of the violin family, even if their 

relative frequencies and excitation strengths 

may vary from one instrument to another within 

the same class and certainly between the violin, 

viola, cello and basses  

 

7. HIGHER FREQUENCY MODES  
 

Space precludes any detailed discussion of the computed higher frequency modes between 1 and 4 
kHz. Because it is only possible to localise an integral number of half-wavelength in the upper or 
lower bouts of the top or back plates at specific frequencies, the modes of the assembled shell 
become increasingly localized in one of the four locations.  Specific localised modes always first 
appear in the lower bout of the more flexible top plate. However, localized modes with common 
symmetries and frequencies are weakly coupled via the central bout regions giving composite 
modes with generally very different vibrational amplitudes in each of the four weakly coupled 
surface areas, as described in a subsequent publication.  
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