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1 INTRODUCTION

A number of simple models have been introduced to describe the low frequency vibrational modes
of the violin, notably the Beldie mass-spring model described in mathematical detail by Cremer™.
The modes of the doubly-arched violin body have also been compared to those of a cylindrical
shell, used in many textbooks as an introduction to flexural waves on curved surfaces (for example,
Calladinez). However, none of these models adequately describe the strongly radiating CBR, B1-
and B1+ signature modes responsible for almost all the radiated sound of the violin below around 1
kHz, let alone the higher frequency modes.

In contrast, our knowledge of the vibrational modes of violins has advanced rapidly in recent years.
This has largely been largely due to experimental modal analysis measurements pioneered by
Marshall® and in later extensive measurements by Bissinger4 and Stoppanis. Such measurements
have provided detailed information about the vibrational modes and acoustic properties of many fine
Stradivari, Guarneri and modern violins, as well as less valuable instruments. In addition, finite
element computations, notably by Knott®, Roberts’, Rogers and Anderson® and Bretos et al.’, have
described many modes of the violin in terms of their underlying physical properties.

The present model is similarly based on a finite element approach, but aimed at understanding
rather than simply reproducing the mode shapes and frequencies of a specific instrument. The
model suggests that the dynamics of all instruments of the violin family can be described as the
modes of a shallow, thin-walled, doubly arched, guitar-shaped, box-like shell structure. Surprisingly,
there are very few published examples of the dynamical modes of even rectangular box shell
structures, let alone shallow boxes with arched or shaped plates. In all such structures, the plates
and ribs introduce strong boundary conditions around their edges resulting in a very different set of
vibrational modes than those of a cylindrical shell.

By varying the geometric size, physical properties and coupling strengths over a wide range of
values, the present model illustrates a direct relationship between the modes of the free top and
back plates and those of the assembled instrument. The model shows how the flexural plate
modes of the assembled shell, before adding the soundpost, f-holes, base bar, neck and
fingerboard, form a set of component or basis modes. These modes are then coupled together by
the soundpost and other structural components, to form the non-interacting normal modes of the
instrument, observed as strong resonances in admittance and acoustic radiation measurements.

In addition to providing a coherent model, potentially describing the vibrational modes of all
instruments of the violin family, it is hoped that the model will provide makers with some helpful
insights into the way that the various component parts of the fully assembled body couple together,
to give the characteristic acoustic properties of individual instruments.

2 FINITE ELEMENT MODE

The finite element geometry of the violin illustrated in Fig.1 is loosely based on the internal rib
outline, arching and other physical dimensions of the Titian Strad (Zygmuntowiczlo). As we are
interested in the vibrational properties of all instruments of the violin family, the exact dimensions
and detailed geometry are of secondary importance. Variations in physical and geometric properties
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can always be included later as relatively small perturbations, changing specific mode frequencies,
but not their underlying shapes. The model will be described in detail in a separate publication.

Figure 1. The unmeshed geometric model used
for the finite element computations illustrating the
guitar-shaped outline and arching of the plates
and schematic representation of the neck. The
transverse and longitudinal lines indicate the
cross-sections along which the arching profiles
were defined. The circular disc is used to
demonstrate the induced f-hole Helmholtz
vibrations.

The unmeshed geometric model used for the finite element computations is illustrated in figure 1.
The 15 mm high arching profiles of the plates were defined by simple mathematical functions, with
identical top and back plate profiles across the width, but slightly different profiles along the length.

For initial simplicity, plates of uniform thickness have initially been considered, with uniform elastic
properties representing the geometric mean of the anisotropic properties along and across the
grains. This ensures the correct mode density at high frequencies (Cremerl, chpt.10). The plate
thicknesses, densities and elastic constants were chosen to closely match typical front and back
plate masses and free plate mode #2 and #5 frequencies. The influence on mode shapes and
frequencies of elastic anisotropy and graduations of plate thicknesses will be described in a later
paper.

An underlying assumption in taking the above approach is that the mode shapes and frequencies of
the assembled instrument will largely depend on the modal frequencies and masses of the free
plates rather than how such values are determined by the specific arching, elastic anisotropies and
thickness graduations used to achieve them. This is a very similar approach to that taken by those
makers who tune free plate frequencies and mode shapes before assembling the instrument.

To investigate the influence of the ribs, f-holes, bass bar, soundpost, neck and fingerboard on mode
shapes and frequencies, their strengths have been varied from zero to typical normal values. In
addition, the important influence of soundpost position both along and across the length of the
instrument has been investigated. The influence of internal air resonances and the Helmholtz f-hole
resonances in particular is also described.

The addition of corner and end blocks, linings, plate over- hangs, tailpiece, fingerboard and string
resonances can all be incorporated into the model later, either as minor perturbation of factors like
the effective rib mass and elastic strength or as weakly coupled resonators in the case of the
fingerboard, tailpiece, strings and higher order cavity air resonances.

Although all the computations presented in this paper are for the violin, the mode shapes and
dependencies of modal frequencies on physical and geometric factors are expected to be much the
same for instruments of any size, as the symmetry of the modes is largely determined by the
symmetry of the shell structure, which is much the same for all instruments of the violin family.

The computations were made using the structural mechanics shell module of COMSOL 3.5
Multidisciplinary software. An automated mesh with typically 50,000 degrees of freedom was
generated. The first 100 or so vibrational modes of the freely supported instrument could be
computed in a few tens of seconds on a desk-top PC, though many such computations were
required to achieve the resolution required to identify the influence of coupling on the veering and
splitting of individual modes, particular in regions of mode crossing.

The influence on the vibrational modes of the individual plates, the ribs, f-holes, the Helmholtz f-hole
resonance, a central and offset soundpost will now be considered in turn. Space precludes a
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description of the computed influence of the neck/fingerboard assembly, anisotropy, and coupling to
all other vibrational modes of the instrument (fingerboard, higher order cavity air modes, the
tailpiece, bridge and stretched string) or the predicted radiation of sound, all of which will be
described in subsequent papers. In addition, to limit the scope of this paper, only modes below
1 kHz will be considered in any detail.

3 FREE PLATE MODES

Figure 2 illustrates the computed modes shapes and frequencies of the free plates used to model
the assembled instruments, before f-holes have been cut or bass bar added. Throughout this paper
a colour scale will be used to illustrate displacements perpendicular to the plates, with dark red and
blue representing equal but opposite displacements perpendicular to the plate, with the nodes at the
transition between green and yellow (see figure 3).

Figure 2. The first six modes
of the isotropic, uniform thick-
ness, arched, top and back
plates without f-holes.
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The arching results in a strong coupling between flexural waves perpendicular to and longitudinal
waves parallel to the shell surface. This can double the frequency of the low frequency plate
modes, though arching becomes less important as the mode frequencies increase. Such coupling
also induces significant in-plane edge contractions and extensions, which is responsible for the
coupling between the bending and breathing modes of the assembled instrument. The plate
frequencies will therefore be strongly dependent on how they are supported by the ribs - both in-
plane and perpendicular to their edges. Figure 1 demonstrates that even relatively small changes in
arching profile along the lengths of the top and back plate can reverse the order of the free-plate
mode frequencies, even though their arching heights are the same.

The individual modes are either symmetric or anti-symmetric about the longitudinal central axis.
This remains true for their coupled motions in the assembled instrument, in the absence of the
symmetry-breaking bass bar and offset soundpost.

Mode #1 is a torsional mode of relatively little acoustic importance.  Modes # 2 and #4 involve
flexural bending vibrations of the lower and upper bouts respectively. Mode #2 is often referred to
as the X-mode, on account of the shape of its nodal lines, though in reality they never cross. As
demonstrated in the next section, the ribs couple the two modes together to form the anticlastic
(curvatures in opposite directions along and across the instrument) bending mode components of
the B1- and B1+ signature modes.
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Mode #3 is a higher order torsional mode, which includes some bending. When coupled by the
ribs, these modes form the CBR signature mode, which is usually a relatively weak radiator of
sound, though it can be excited quite strongly by an asymmetrically rocking bridge, when an offset
soundpost is introduced.

Acoustically, mode #5 is by far the most important free plate mode. We will show that rib coupling
transforms this mode into the volume-changing, breathing mode component of the B1- and B1l+
signature modes. The component breathing mode is directly or indirectly (by excitation of the
Helmholtz f-hole resonance) responsible for virtually all the sound radiated by the violin and other
stringed instruments at frequencies over their first two octaves.

4 RIB COUPLING
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Figure 3. The computed transformation of the first eight modes of the free plates to
those of the fully assembled but empty (and without f-holes), doubly-arched, guitar-
shaped, shell structure, as a function of rib coupling strength increased from a very
small value to that of a typical violin (see text). The mode frequencies are also
strongly perturbed by the illustrated contrary rotational and linear displacements
modes of the rigid plates about their three orthogonal axis, with unperturbed
vibrational frequencies proportional to (rib strength/plate mass)”z.
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Figure 3 illustrates how the modes of the free plates are transformed into those of the assembled
instrument on increasing the rib coupling “strength” from close to zero to a representative normal
value. The rib coupling strength is proportional to En(t/h)*>, where E,, is the effective elastic
constant across the ribs of height h and thickness t. In the computations, the rib height (3 cm) and
thickness (1 mm) were held constant, while E, was scaled from a very small value to 10 GPa. For
the cello, with its significantly larger rib height to thickness ratio, the rib coupling strength will be
significantly weaker than that of the violin. This will result in relatively larger stretching and bending
of the ribs.

The density was also simultaneously scaled by the same factor to maintain the frequency of the
flexural rib modes at their normal high frequency, typically ~5-10 kHz for the violin and > 800 Hz for
the cello (Stoppani, private communication) - well above the range of frequencies considered here.
At lower frequencies, the ribs simply act as a series of parallel cantilevered springs inhibiting plate
separation and bending around their edges. Nevertheless the isolated rib garland can easily be bent
and twisted about its length with very little energy. Such vibrations are involved in the CBR and B1-
and B1+ signature modes of the violin, with large amplitude twisting and bending of the ribs along
their edges, but relatively small amounts of stretching and bending between opposing plate edges.

Figure 3 shows that the ribs have a major influence on the frequencies and shapes of the low-lying
modes of the assembled shell, which are ultimately responsible for the signature modes of the fully
modeled instrument. The coupling is especially strong between free plate modes with matching
mode shapes and closely spaced frequencies.

As well as the coupled free plate modes, there are six additional modes involved in the coupled plate
vibrations. These are derived from the twelve zero-frequency degrees of freedom of the two isolated
plates, which describe their rigid body displacements along and rotations about their three orthogonal
symmetry axis. Six of these simply become the rigid whole-body linear displacements and rotations
of the assembled instrument.

The remaining six modes are transformed into modes with linear displacements and rotations of the
rigid plates in opposite directions, as illustrated in Figure 3. Because such vibrations involve the
stretching and compression of the ribs, their frequency will increase with rib strength as
w’m , where M will be a mode-specific effective plate mass. Their unperturbed

plates
frequencies therefore increase with slope %2, when frequency and rib strength are plotted in figure 3
on logarithmic scales.

At intermediate coupling strengths, these modes cross and couple to any of the flexural wave modes
of the top and back plates sharing a common symmetry. This results in considerable veering and
splitting of several mode frequencies in the cross-over region. The splitting of modes is proportional
to the rib-induced interaction strength. Modes not sharing a common symmetry do not interact. Their
frequencies simply cross.

At full coupling strength, the influence of the rigid plate modes are less important, but still account
for the small amounts of rib stretching, bending, rotation and twisting observed in experimental
modal analysis measurements. Because of these interactions, the dependence of shell mode
frequencies on rib strength is rather complicated and frequently difficult to interpret. Therefore, in
figures 5a-d below, we have extracted those parts of the dispersion curves that identify the
transformation of specific plate modes into to the low frequency modes of the assembled instrument.

Before leaving figure 3, it is important to note that, despite the complexity of the modal frequency
plot, the number of modes of the assembled structure is always conserved and is equal to the
number of initial modes of vibration involved. It is therefore possible to follow every single mode of
the interacting system from those of the uncoupled plates to the modes of the fully coupled structure,
as the modes are adiabatically (smoothly) transformed on increasing the rib coupling strength over
many orders of magnitude. However, as the coupling strength increases each mode increasingly
includes additional coupled component vibrations of the initial system. As a result of the increase in
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mode frequencies with increasing rib strength, the number of low frequency modes of the shell at full
coupling strength is relatively small.

The five lowest modes of the assembled shell are illustrated in Figure 4. These will be referred to as
the cbr (centre bout rotation), bl- (breathing), b1+ (bending), Id (longitudinal dipole) and td
(transverse dipole) modes of the empty shell. Note the use of small letters to denote what eventually
become contributing component vibrational modes of the non-interacting CBR, B1- and B1+ normal

modes of the assembled instrument.

Figure 4. The first five component or basis
modes of the assembled guitar-shaped box
at full rib-coupling strength.
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Figures 5a-d. Extracted dispersion curves for the transformations of the first
five free plate modes to the lowest frequency modes of the assembled shell.
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The transformation of each of the first five free plate modes into the modes of the freely supported
assembled shell will now be described.

Figure 5a illustrates the influence of rib coupling on the #1 torsional plate mode. At even very small
coupling, the top and back plates are coupled together to form two new modes with the plates
twisting in either the same or opposite directions. Twisting in the same direction avoids stretching
the ribs. This mode therefore increases far less rapidly with rib coupling strength than the higher
frequency mode, which rapidly rises in frequency into the multiplicity of flexural plate modes above
1 kHz. In contrast, the frequency of the mode with plates twisting in the same direction increases
smoothly to become a transitional mode between the low frequency signature modes and closely
spaced, overlapping (because of damping) higher frequency modes of the assembled shell.

Figure 5b illustrates a similar initial behavior of the free plate modes #2 and #4, with the component
pair of coupled lower and upper bout bending vibrations in opposite directions again increasing very
rapidly in frequency because of the stretching of the ribs. In contrast, the coupled plate modes
bending in the same sense simply cross the rising “bouncing” mode frequency. The lowest of these
two modes transforms into the b1+ bending mode of the assembled shell, with the longitudinal
bending of the original #2 an #4 modes flexing in both bouts and both plates in the same directions.
This involves large plate edge displacements made possible by the ease with which the rib garland
can be bent in this way. The upper of this pair of modes retains the symmetry of the lower bout
bending of the individual plates, but is now coupled to a breathing mode in the upper bout, with both
component sets of vibration confined within the plate edges.

In summary, the important bending mode component b1+ of the B1- and B1+ signature modes is
derived from the coupled #2 and #4 of the free plates. This upper member of this pair, with a strong
breathing mode in the upper bout, may well be responsible for the strong peak in monopole
radiation of the violin observed by Curtin'! for a couple of Stradivari violins at around 1 kHz.

The two free plate #3 modes illustrated in figure 5¢c behave in much the same way, with plates
vibrating in opposite senses increasing rapidly in frequency, as they interact strongly with the rib
bouncing and stretching modes. However, in this case, the rotational mode of the two plates
vibrating in the same direction crosses and interacts strongly with the rigid plate transverse shearing
mode. As a result, the emerging cbr mode at full coupling strength still retains the centre bout
rotation, but acquires an additional shearing component. The shearing component leads to a
rhombohedral distortional vibration of the central bout cross section, which explains the origin of the
CBR name - Centre Bout Rhombohedral cross-section. However, we prefer the name Centre Bout
Rotation, as it is its rotation rather than shear motion that determines how strongly it is excited by the
string-induced rocking of the bridge. The cbr mode involves little change in volume, so it usually
plays relatively minor role in the acoustics of the violin.

Figure 5d is the most important of all the plots. It illustrates the very strong interaction of the #5
modes with the rising frequency bouncing mode. Once again, at small coupling strengths, the
frequency of the coupled plate modes vibrating in opposite directions again increases very quickly
because of the energy required to stretch the ribs. However, this mode shares the same overall
symmetry as the bouncing mode resulting in a very strong interaction between them. This leads to a
strong veering of the mode frequency as it interacts with the rapidly rising frequency of the bouncing
plate mode and a splitting of the interacting modes at rib coupling strengths at which they would
otherwise have crossed. As expected for any pair of strongly interacting component modes, the
emerging lowest frequency mode of the interacting vibrations is depressed below that of the initial
coupled free pate modes, because of its continued interaction with the higher frequency bouncing
mode after it has risen above the crossing regime. The flexural plate vibrations are now in opposite
directions resulting in large volume changes and a strong monopole source of sound. In addition
there is very little displacement around the plate edges. In contrast to the above mode, the initial
#5 mode with the plates flexing in the same direction now simply crosses the bouncing mode and is
transformed into a relatively weakly-radiating mode in the transition region below 1 kHz.
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For all the illustrated examples, the mode frequencies are still rising for a coupling factor of unity-
but only weakly. This reflects the increasing strength of the supporting ribs, which increasingly
constrain the bending of the flexural waves around the plate edges

5 F-HOLES AND ISLAND AREA

The open f-holes on the front plate and the island area between them play a major role in the sound
of the violin and related instruments, as recognized by Cremer* (chpt.10). Firstly, the open holes in
the front plate introduce the AO Helmholtz cavity resonance, which boosts the sound of all members
of the violin family over their first octave or so. Secondly, the free f-hole edges define the shape of
the island area, which strongly influences the penetration of flexural waves from the lower and outer
bouts towards the two feet of the rocking bridge, which excite them. Thirdly, the island area does
not have to bend as much as the outer plate edges attached to the ribs. This result in an increased
change of volume of the shell as it bends. This contributes to the coupling between the bending and
breathing vibrations, which is such an important feature of the signature modes of the assembled
instrument. As described later in this paper, the penetration of flexural waves into the island area
and resulting excitation of radiating modes is also strongly influenced by the strength and position of
the soundpost in the island area — and by offset bass bar and extra loading of the of the bridge and
strings.

6.1 Theisland area

Figure 6 illustrates the influence of the f-holes on the low frequency flexural wave modes of the shell.
The frequencies were computed as a function of f-hole strength varied by simultaneously decreasing
the elastic constant and density of the f-hole areas by the same factor from unity (no f-holes) to 10®
(effectively open f-holes).
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6.2 The Helmholtz A0 resonance.

The combined open area A of the two f-holes together with the volume V of the internal cavity, if
rigid, would form a Helmholtz resonator, with resonant frequency

Z‘ﬁHaEmhoErz = cp'\l’ gﬂl;"E;rV’ (1)

where ¢, is the velocity of sound within the cavity and g is a f-hole shape-dependent constant of
order unity.
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Although the Helmholtz frequency, proportional to the velocity of sound in air, is independent of
pressure, the strength of the coupling between the induced cavity pressure fluctuations and flexural
plate vibrations that excite them is proportional to the ambient pressure. Figure 7 illustrates the
dependence of the shell modes and AO f-hole frequencies on ambient pressure.

The computations make the usual simplifying assumption that the pressure within the cavity is
uniform. The pressure results from the volume changes of the modes exciting the Helmholtz
resonance, which also reacts back on the shell wall vibrations themselves. Therefore, only those
modes with a significant volume changing component are affected by their coupling to the
Helmholtz resonance. Such modes will also radiate strongly in the signature monopole regime. For
the empty shell, these are the b1- breathing and, to a lesser extent, the b1+ bending modes.

The computations confirm the very strong perturbation of the A0 and b1- breathing modes, as the
ambient pressure is increased. At zero pressure, implicitly assumed in the previously described
computations, the computed empty shell breathing mode frequency of around 300 Hz is very close
to that of the ideal Helmholtz resonator at 309 Hz. On increasing the internal pressure to a “normal”
ambient value, the coupling is so great that the predicted AO mode would drop to around 200 Hz,
while the breathing mode would be raised to around 400 Hz. Analytic models predict that the
product of the resulting A0 and b1- mode frequencies should remain constant, as confirmed by the
computations.

In practice, computations show that the internal pressure driving the Helmholtz vibrations of the air
in and out of the f-holes is reduced below the average pressure, because of significant pressure
drops associated with the flow of air from the upper and lower bouts. This reduces the effective
pressure driving the f-hole resonance by a factor of ~0.7, which is equivalent to reducing the
effective ambient pressure by the same factor. Measurements on violins with and without
soundposts by Stoppani (private communication) show typical drops in the AO frequency from
around 280 Hz to 240 Hz, in qualitative agreement with the above model.

Initially, none of the other modes are significantly affected by changes in ambient pressure.
However, as the pressure increases, the frequency of the bl- breathing mode approaches and
would otherwise cross that of the b1+ bending mode. Because both modes share similar in-plane
contractions and extensions around the edges of the plates they are relatively strongly coupled.
They then form what become the B1- and B1+ modes of the assembled instrument with bending
and breathing component vibrations in either the same or opposite phases, as illustrated in figure 7.
Their combination also demonstrates the illustrated reversal of the baseball like nodal lines of the
two modes, which is one of the characteristic features of such modes in real instruments. In addition
there is a somewhat smaller interaction with the higher frequency longitudinal dipole mode
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illustrated in figure 4 and a higher frequency mode just above 900 Hz. Moreover, the bl- and b1+
modes never cross, but become the in and out of phase vibrational components of the B1- and B1+
normal modes of the assembled instrument.

6. THE SOUNDPOST

Below 10 kHz or so, the soundpost acts as a fairly rigid beam exerting equal and opposite forces
and couples to the plates across its ends. This imposes almost equal displacements and slopes of
the plates across its ends assuming intimate contact with the plates. This adds a localized, bell-
shaped, flexural wave mode to the modes of the open shell structure which, well away from local
boundaries, decays exponentially as e " 12 at large distances, where x=27z/4 is given by the

usual flexural wave dispersion relationship, @ ~ tkz, determining the wavelengths A1 of the
standing waves in the upper and lower bouts (t is the plate thickness). The soundpost therefore
locally perturbs the modes of the empty shell to give almost equal displacements across its ends.
However, they need not be exact nodes, as the two ends can still vibrate in the same direction.

When located within the island area, the soundpost acts as a gate inhibiting the penetration of
flexural waves in the lower bout past the soundpost into the upper bout and vice versa. The
flexural wave amplitudes close to the soundpost are rather small and vary rapidly with distance. Its
position relative to the two feet of the bridge exciting the mode vibrations is therefore crucial in
terms of the strength with which they are excited and hence the intensity and perceived quality of
the radiated sound. This is why the soundpost position is so critical in setting up a violin for optimal
sound quality.
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The soundpost strength is varied by simultaneously increasing its elastic constant and density to
maintain its resonant modes at a high value - above ~5 kHz for the violin. A central soundpost can
only strongly perturb the symmetric shell modes.

The most important feature is the strong increase in frequency of the b1- breathing mode. This first
crosses the frequency of the cbr mode with a small amount of coupling-induced veering and
splitting of mode frequencies. The frequency then continues to rise, approaching and otherwise
crossing the initially higher frequency b1+ bending mode. In the crossover region, all three nearby
bl- breathing, b1+ bending, and longitudinal dipole Id component vibrational modes are coupled
together to give three new B1-, B1+ and B2, non-interacting, normal modes of the shell. The sound
radiated by each mode will be determined by the strength of its coupled b1- breathing component
and the strength with which it is excited by the rocking bridge.

Vol. 35. Pt.1 2013



Proceedings of the Institute of Acoustics

750 .
Figure 8. Influence on mode

frequencies of shifting the
soundpost along the central
axis

700

/

650 -

As the soundpost is moved
along the central axis towards
, 1 the lower bouts, the decrease
Vb, , bending in frequency of the higher
: bl+ frequency upper bout ubl-
mode and increase in
frequency of the lower bout
Ib1l- mode result in the modes
crossing. In our model, their
frequencies would coincide
for the soundpost about 1 cm
behind the bridge. As evident
from figure 8 the modes are
effectively orthogonal as they
cross without any evident
-6 -4 -2 0 2 4 6 mode veering or splitting.
sound post offset from center (cm) However, — both  breathing
modes are relatively strongly
coupled to the b1+ bending mode, leading to the veering and splitting of the modes on either side
of coincidence. This results in the maximum in the frequency of the lower mode, which changes in
character from a breathing mode largely localized within the lower bouts to an equivalent
mode largely localized in the upper bouts as the sound post is moved across the maximum towards
the lower bouts.

600

530

frequency (Hz)

500 -

4350

400

lower bou‘t f—ho!e notch upper bout

350

The low frequency mode at coincidence involves breathing modes of similar amplitudes in both the
upper and lower bouts. This mode is similar to the bl- breathing mode of the empty shell with a
soundpost induced minimum near the centre of the violin.  In contrast, the two degenerate higher
frequency modes involve breathing mode components of opposite polarities in the upper and lower
bouts, with relative amplitudes that change on moving away from coincidence. This mode is very
similar to that of the Id longitudinal dipole mode of the empty shell, with its node near the soundpost
position. The connection of the above modes to those of the empty shell, suggests the potential
value of measuring the vibrational modes of the empty shell as a characterization tool (Stoppani®),
especially since such measurements can easily be made before the final thickness graduation of the
plates.

The influence of offsetting the centrally placed sound post away from the central axis is illustrated in
figure 9. The frequencies of both IB1- and uB1- breathing modes are decreased as the soundpost,
acting rather like a gate, is moved sideways. This opens up the pathway through the island area on
the bass side allowing the lower and upper bout breathing vibrations to penetrate further into the
opposite bout, hence lowering their frequencies. This results in a twisting of the central bout region
pivoting about the soundpost position. Just as for lengthwise offsets of the soundpost, the most
important effect of sideways offsetting is to modify the coupling of the modes to the now
asymmetrically rocking bridge. The asymmetry introduced by the offset soundpost and to a lesser
extent the bass bar allows the horizontal component of the bowed string force to excite the
symmetrical breathing modes and radiate sound effectively.
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Figure 9. The influence of offsetting a centrally
placed sound post from the central axis.

The added influence of anisotropy, bass bar,
fingerboard-neck assembly and coupled air

; ; ; modes and the interaction of the shell modes
\ with the vibrational modes of higher order air

: : 3 5 modes, the fingerboard, the bridge and bowed
strings, and the resulting radiation of sound will
be described elsewhere. However, because
the mode shapes described in this paper are
largely determined by the symmetry of the
guitar-shaped shell, they will be common to all
instruments of the violin family, even if their
relative frequencies and excitation strengths
may vary from one instrument to another within

frequency (Hz)

350 i i i i ! /ith
0 5 10 15 20 25 the same class and certainly between the violin,

soundpost offset (mm) viola, cello and basses

7. HIGHER FREQUENCY MODES

Space precludes any detailed discussion of the computed higher frequency modes between 1 and 4
kHz. Because it is only possible to localise an integral number of half-wavelength in the upper or
lower bouts of the top or back plates at specific frequencies, the modes of the assembled shell
become increasingly localized in one of the four locations. Specific localised modes always first
appear in the lower bout of the more flexible top plate. However, localized modes with common
symmetries and frequencies are weakly coupled via the central bout regions giving composite
modes with generally very different vibrational amplitudes in each of the four weakly coupled
surface areas, as described in a subsequent publication.
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