1)	
A 2)	
В	_
3) A	
4)	_
A	_
5)	
D	<u> </u>
6) C	_
7)	
C 8)	
D	
9)	
D	
10)	
11)	
(a)	В
. ,	
lestion	Correct Answer
mber	

lestion Imber	Correct Answer
(c)	C

Α

(b)

12) (b)(i)	Because the ions are free to move (when a potential difference is applied)	Electrons / particles are free to move	1
estion mber	Acceptable Answers	Reject	Mark
(b)(ii)	The cations / barium and calcium (ions) are different sizes Ignore any discussion of reasons (could select either the calcium ion because it has more water molecules associated with it OR the barium ion because it has more shells of electrons and so larger)	Atoms are different sizes	1
(b)(iii)	Mass of calcium ions in 1 kg = 0.100 x 40 (= 4.0) (g) (1) If mass quoted must be correct to score first mark Hence 4.0 g per 1000 g of solution So ppm = (4.0/1000) x 1000000 = 4000 (ppm) (1) OR Mass of calcium ions in 1 kg = 0.100 x 40.1 (= 4.01) (g) (1) Hence 4.01 g per 1000 g of solution So ppm = (4.01/1000) x 1000000 = 4010 (ppm) (1) Correct answer alone = 2 marks Allow TE for second mark from incorrect mass		2

13) (a)	H * C * O * H	2
	(1) for around carbon and its hydrogens (1) for around oxygen and its hydrogen	
	Allow all dots or all crosses Ignore circles around atoms	

estion mber	Acceptable Answers	Reject	Mark
(b)(i)	C(s) / (graphite) + 2H ₂ (g) + 2O ₂ (g) Correct species (1)		2
	Allow oxygen above arrows rather than in box		
	Balancing and state symbols (1)		
	Second mark dependent on correct species except as below with either hydrogen or oxygen or both as atoms		
	e.g		
	C(s) / (graphite) + 4H(g) + 4O(g)		
	Scores second mark		
	the state of the s		

estion mber	Acceptable Answers	Reject	Mark
(b)(ii)	Enthalpy / energy / heat(energy) change when one mole of a substance (1)	heat required / heat given out / heat taken in	3
	Is formed from its elements (in their most stable / standard states) (1)		
	Under standard conditions of 298K/ 25 °C / any stated temperature AND 1 atm pressure /		

CHERRY HILL TUITION EDEXCEL CHEMISTRY AS PAPER 13 MARK SCHEME

(b)(iii)	$\Delta H_{c}^{\Theta} = -\Delta H_{1}^{\Theta} + \Delta H_{2}^{\Theta} (1)$ = $(2 \times -285.8 + -393.5) - (-239.1)$ = $-726 (1)$ Ignore units Correct answer alone = 2 marks +726 = 1 -440.2 = 1 if omit multiply by 2		2
estion mber	Acceptable Answers	Reject	Mari
(c)(i)	20.7 x 200 x 4.18 = 17305(.2) (J) ignore sf except 1 sf i.e. 20000 OR 20.7 x 200 x 0.00418 = 17.305(2) kJ ignore sf except 1 sf i.e. 20 ignore signs ignore mol ⁻¹		1
estion mber	Acceptable Answers	Reject	Mari
(c) (ii)	0.848/32 = 0.0265 (mol) ignore sf except 1 sf i.e. 0.03		1

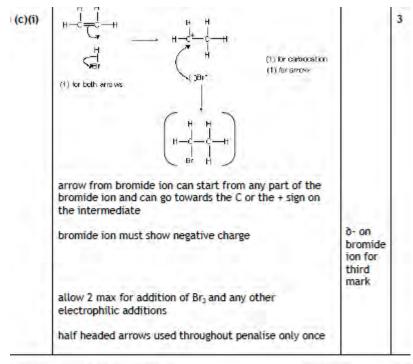
CHERRY HILL TUITION EDEXCEL CHEMISTRY AS PAPER¹³ MARK SCHEME

(c)(iii)	17305.2/0.0265 = -653000 (J mol ⁻¹) (3sf)		1
	OR		
	-653 (kJ mol ⁻¹) (3sf)		
	Ignore missing units but penalise incorrect units		
	Allow TE from (c)(i) & (ii)		
estion mber	Acceptable Answers	Reject	Mar
(c)(iv)	Any two from		2

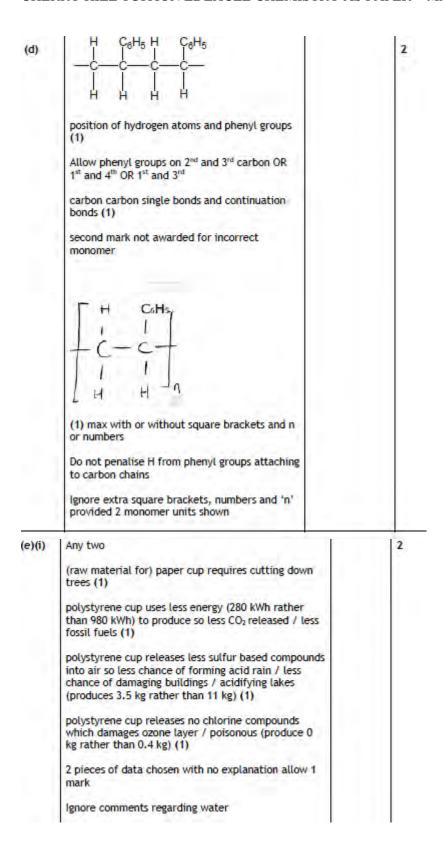
mber mber	Acceptable Answers	Reject	Mar
(c)(iv)	Any two from		2
	As heat/energy absorbed by apparatus / heat/energy 'lost' to surroundings (1) methanol not completely burnt / incomplete	just heat/energy loss	
	combustion (1)	just incomplete	
	methanol 'lost' by evaporation (1)	reaction	
	cannot ensure all products are at standard conditions at end of reaction / water is produced as a gas / reaction not carried out in the standard conditions (1)		

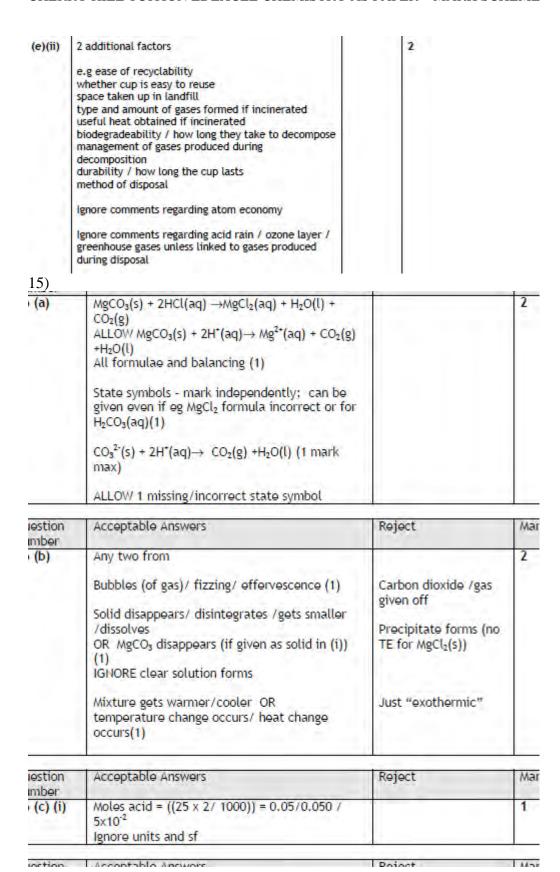
14)	to a some some some some some	1.00	
(a)(i)	Crude oil / petroleum / coal	Oil on its own / Natural gas / fossil fuels / any named fraction of crude oil	1

estion mber	Acceptable Answers	Reject	Mar
(a)(ii)	use of high temperatures / heat (in the absence of air) / thermal decomposition / catalysts (1)		2
	Either		
	to break large molecules / to form smaller molecules / to break bonds in large molecules / to break carbon-carbon bonds (1)		
	OR		
	producing alkenes / producing carbon-carbon double bonds (1)		


CHERRY HILL TUITION EDEXCEL CHEMISTRY AS PAPER¹³ MARK SCHEME

Risk	Amendment	2000
exposure to harmful / toxic fumes	Set up in fume cupboard	Dangerous
Escape of flammable / harmful / toxic reactants or products from ill fitting bung	Correct fitting of bung	
Escape of flammable / harmful /toxic reactants or products from poorly positioned delivery tube	Placement of delivery tube below mouth of test tube / use a longer delivery tube	collect in syringe
suck back	Attach Bunsen valve / remove delivery tube from water before stopping heating etc	
Mark all 4 points independ If escaping gases linked to	ently	


uestion umber	Acceptable Answers	Reject	Mark
(b)(i)	Reagent - Hydrogen/H ₂ (1) Catalyst - Nickel/Ni/palladium/Pd/platinum/Pt (1) Mark independently		2


estion imber	Acceptable Answers	Reject	Mark
(b)(ii)	1,2 - dibromoethane (1)	1,2 - bromoethane dibromoethane	2
	ignore punctuation H H I I H-C-C-H Br Br (1)	Skeletal formula	
	Mark independently Allow CH ₂ BrCH ₂ Br	C ₂ H ₄ Br ₂	
(b)(iii)	From purple / pink → colourless	clear	1

CHERRY HILL TUITION EDEXCEL CHEMISTRY AS PAPER 13 MARK SCHEME

estion mber	Acceptable Answers	Reject	Mari
(c)(ii)	Bromine / bromide / hydrogen could add to either carbon (in the double bond) / bromide / bromine could add to either primary or secondary carbocation / (propene is unsymmetrical) so could form 1-bromopropane and / or 2-bromopropane. Allow correct structural or displayed formulae.	bromine could add to any of the three carbons	1

muder		Carrier and the	
(c) (ii)	Mass Mg CO ₃ = $((0.05 \times 84.3+2))$ = $2.1075/2.108/2.11/2.1$ (g) ALLOW TE from (c)(i) and (a) ALLOW Moles acid $\times 84.3 + 2$ for TE(from (i) (1) (4.2(15)) if factor of 2 missing for TE from (a)) Ignore sf except 1 sf Ignore units	2 / 2.12(g)	1
(c) (iii)	To ensure all acid reacts/ all acid is used up / to ensure product is neutral/ it (HCl) is neutralised	All reactants used up To ensure reaction is complete (without reference to HCl) To ensure yield is high To ensure magnesium carbonate is in excess	1
estion	Acceptable Answers	Reject	Marl
mber (c) (iv)	Filter ALLOW centrifuge/ decant/ pour off / (use) filter paper Ignore comments about heating solution first to concentrate it	Sieve Collect MgCl ₂ in filter paper Use filter paper to dry crystals Evaporate	1
(c) (v)	100% yield = (203.3 x 0.025) /5.08(25)g) (1) yield = (3.75 x 100) = 74 % (1) OR Mol magnesium chloride = (3.75 203.3) = 0.018445/0.01845/0.0184/0.018 (1) yield = (100 X 0.01845) 0.025 = 74 % (1) Second mark can be given as TE if expected yield or number of moles is wrong. ALLOW 73.82/73.78/73.8 /73.6 /other answers rounding to 74 % from earlier approximations /72 (from 0.018 moles) Allow TE from (a) and or (c)(i) and or (c)(ii) If the ratio HCl to MgCl ₂ is 1:1 ans 37 % (2) If moles of HCl in (c)(i) are wrong (2) If (a) and (c)(i) are correct 37 % scores (1) If moles MgCO ₃ = 0.05 allow TE giving 37/ 36.9% Ignore sf except 1 sf	70	2

(c) (vi)	Some stays in solution / losses on transferring from one container to another/ loss on filtering /crystals left behind/some left on filter paper etc Any one ALLOW correct answers with other comments which are not incorrect eg "there may be some spillage and also"	Incomplete reaction/side reaction Lost as waste products Lost to environment Lost in manipulation? Hydrolysis Weighing errors Just "spillage"	1.
nestion Imber	Acceptable Answers	Reject	Mar
(d)(i)	Not 100% ionic /almost completely ionic OR (partial) covalent character/ almost no covalency OR Discrepancy in BH values indicates polarisation (of ions) (1) Mark can be given if answer here refers to bond strength and the answer above is included in (ii)	Magnesium chloride is covalent Magnesium chloride is partially ionic Just "polarity of ions"	1
iestion imber	Acceptable Answers	Reject	Mar
(d)(ii)	QWC I' larger (than Cl') (1) so (ion) easier to polarise / distort (1) ALLOW for 2 nd mark increases covalent character / more covalent than MgCl ₂ / converse for MgCl ₂ / description of polarisation instead of the term If clearly ions, allow reference to iodine instead of iodide ("iodine has a larger ion") Read in conjunction with (i). Direct comparison not needed if (i) covers bonding in chloride.	Size of atoms rather than ions I ₂ is larger than Cl ₂ I ₂ molecules are polarised Mg ^{2*} is polarised Iodine more electronegative than chlorine	2
(e) (i)	(100 x 20) = 2 x 10 ⁻³ (g) 10 ⁶ ALLOW 0.002(g) 1/500 (g) 2 x 10 ⁻⁶ kg IGNORE % as unit	2 × 10 ⁻³ = 0.0002	1
IIIIDEL			
(e) (ii)	(More) soluble (in water)/ (more) soluble in blood stream/ can be given as solution/ won't produce gas in stomach / won't react with stomach acid/ doesn't produce CO₂ Converse answers for MgCO₃ Or other valid answers ALLOW can be given in liquid form	MgCl ₂ is a liquid MgCO ₃ is too reactive	1