CHERRY HILL TUITION EDEXCEL CHEMISTRY AS PAPER 7 MARK SCHEME

- 1) A (1)
- 2) C (1)
- 3) D (1)
- 4) D (1)
- 5) D (1)
- 6) D (1)
- 7) C (1)
- 8) C (1)
- 9) B (1)
- 10) A (1)
- 11) A (1)
- 12) D (1)
- 13) A (1)
- 14) C (1)

15)						
	In (a) any units given must be correct. Penalise incorrect units once only. Ignore SF except 1 SF in (i), (iii) and (iv). Penalise once only					
(a)(i)	Volume Added/cm ³	25(.00)	24.6(0)	24.5(0)		1
		24.55	(cm³)		24.70	
	Allow 24.6 (cm	3)			24.60	
(a)(ii)) NaOH + HCl → NaCl + H ₂ O				1	
	Ignore state symbols even if incorrect					
(a)(iii)	Number of moles of NaOH = $(24.55 \times 2.5) = 6.1375 \times 10^{-2} = 0.061375 \text{(mol)}$ $1000 \text{OR } 6.14 \times 10^{-2} = 0.0614$ $\text{OR } 6.1 \times 10^{-2} = 0.061$			0.0613 0.06	1	
	Allow TE from 20(a)(i)					
	6.1375 x 10 ⁻² /0	0.061375/ 6.14	× 10 ⁻² / 0.061 ⁴	1/0.061(mol)		1
(a)(iv)	Allow TE = answer to (a)(iii)					

(2)(11)	Multiply by 4 and by 36.5		(1)		2
(a)(v)	Using 6.1375 x 10 ⁻² gives 8.96075	= 8.96 (g)		
	OR Using 6.14 x 10 ⁻² gives 8.9644	= 8.96(g)			
	OR Using 6.1 x 10 ⁻² gives 8.906 Answer to 3 SF	= 8.91(g)	(1)		
	Correct answer without working score	(2)			
	Allow TE from (a)(iv) ALLOW one mark for correct answer to multiplication by 4 has been omitted, $(6.1375 \times 10^{-2} \times 36.5 = 2.2401875 = $	e.a.	(1)		
(a)(vi			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	lust not valid / /alid'	1
	Allow appropriate comment from a e.g 2.24 is not valid because it is t				
a(vii)	(Too) corrosive Damages eyes/burns (skin)/caustic	Just 'Harmful/Irrit	ant/Toxic,	/Hazardous	, 1
	Ignore Dangerous/Strong/Too concentrated	Acid			
(b)	oo XX				1
	H*O*Q*				
	Allow all dots or all crosses				
	ALLOW ionic dot and cross				
	Or dative covalent bond from chlor	rine			
	H×XXXXX 0:				
(c)	HCl + HOCl → H ₂ O + Cl ₂ Ignore state symbols even if incon	rect (1)			2
	Chlorine is toxic/poisonous Allow fumes are toxic Ignore references to smell or color		Just 'Harr irritant/da hazardou:	angerous/	

CHERRY HILL TUITION EDEXCEL CHEMISTRY AS PAPER 7 MARK SCHEME

Number				
(d)(i)	(2NaOH + Cl ₂ → NaCl + NaClO + H ₂ O) 0 -1 +1		2	
	All oxidation numbers correct (1)			
	Type: Disproportionation Allow phonetic spellings Allow redox and disproportionation	Just redox		
	Second mark consequential on the first except if			
	(i) all the oxidation numbers are zero (ii) the plus sign is missing, (iii) the first two oxidation numbers are correct and the third one is positive			
	If all the elemental oxidation numbers are given correctly then both marks are available			
(d)(ii)	Heat/increase temperature ALLOW (more) concentrated NaOH	Just 'warm' / 'excess NaOH'	1	
Harrison		Acid		
(d)(iii)	$3Cl_2 + 6NaOH \rightarrow 5NaCl + NaClO_3 + 3H_2O$ OR $3Cl_2 + 6OH^- \rightarrow 5Cl^- + ClO_3^- + 3H_2O$		2	
	Formula of NaClO ₃ / ClO ₃ (1) Rest of equation correct (1)			
	Ignore state symbols even if incorrect			
16)				
(a)(i)	C-F bond is strong(er than C-Cl bond/C-OH bond)	H-F bond is strong	1	
	OR C-F bond is hard(er) to break (than C-Cl bond/C-bond)	ОН		
	OR C-F bond enthalpy is high(er than C-Cl bond/C-OH bond)			

Ignore references to electronegativity

(a)(ii)	The C-Cl dipole is the wrong way round (1)	C+	3
(4)(4)	Allow reference to either only the carbon or only the chlorine having the wrong partial charge, e.g. "the carbon should be δ^+ not δ^- "	CI ⁻	
	The arrow goes from the carbon to the (oxygen of the) hydroxide ion but should be the other way around OR		
	The pair of electrons goes from the carbon to the (oxygen of the) hydroxide ion but should be the other way around (1)	OH group	
	Use of the term 'carbocation' means that only one of the first two marks may be awarded.		
	The carbon bond to the hydroxy group should be to the oxygen and not to the hydrogen (1)	Hydroxide	
	Allow the above points to be drawn out correctly instead of stated in words		
	Standalone marks		
	IGNORE δ- on fluorine atom Reference to lack of transition state Reference to absence of lone pair of electrons on the hydroxide ion		
(a)(iii)	CH ₃ CHClF + OH ⁻ → CH ₂ CHF + Cl ⁻ + H ₂ O		2
	Organic product (1) Rest of equation correct (1)	CH₃CF	
	The organic molecules can be drawn displayed		
	Allow any suitable metal hydroxide, e.g. CH ₃ CHClF + NaOH → CH ₂ CHF + NaCl + H ₂ O		
	Allow C₂H₃F for the organic product		
	Ignore state symbols even if incorrect.		
(b)	(i) Cl ₂ /chlorine (gas) (1)	Cl ₂ (aq)/Cl•	3
	(ii) PCl₅/phosphorus (V) chloride (1)		
1 1	Allow		
	Any other suitable reagents, such as HCl (and ZnCl ₂)		
1 1	OR NaCl + concentrated H ₂ SO ₄ OR SOCl ₂		
	OR PCl₃ OR (concentrated) hydrochloric acid for (ii)		
	(iii) HCl/hydrogen chloride (1)	HCl(aq)	
	Ignore Reaction conditions		

(c)(i)	CH ₃ CH ₂ Cl + NH ₃ → CH ₃ CH ₂ NH ₂ + HCl OR	C ₂ H ₇ N	1
	$CH_3CH_2CI + NH_3 \rightarrow CH_3CH_2NH_3^{(+)}CI^{(-)}$ OR		
	$CH_3CH_2CI + NH_3 \rightarrow CH_3CH_2NH_3^{(+)} + CI^{(-)}$		
	OR $C_2H_5CI + NH_3 \rightarrow C_2H_5NH_2 + HCI$		
	OR $CH_3CH_2CI + 2NH_3 \rightarrow CH_3CH_2NH_2 + NH_4^{(+)}CI^{(-)}$		
	OR $C_2H_5CI + 2NH_3 \rightarrow C_2H_5NH_2 + NH_4^{(+)}CI^{(-)}$		
(5)(11)		Elimination	2
(c)(ii)	Nucleophilic (1)	Elimination	2
	Substitution (1)	Addition	
	ALLOW Just 'S _N 2' for (1)	S _N 1	
Number			
(c)(iii)	A lone pair (of electrons on the nitrogen atom)/ pair of non-bonding electrons	Pairs Just 'spare pair'	1
(c) (iv)	Ethanol / C₂H₅OH / CH₃CH₂OH	Alcohol	1
Init	iation	Any	4
1 1	${}_{2}F_{2} \rightarrow CClF_{2}^{\bullet} + Cl^{\bullet}$ (1)	charges	⁻
	pagation 1		
	s must include a free radical from the initiation step cting with ozone		
1 1	$^{)}+ O_{3} \rightarrow CIO^{(*)} + O_{2}$		
OR CCI	$F_2^{(*)} + O_3 \rightarrow CCIF_2O^{(*)} + O_2$ (1)		
Pro	pagation 2 $(*)$ + $O^{(*)}$ \rightarrow $Cl^{(*)}$ + O_2		
OR			
Clo	$(^{\bullet}) + O_3 \rightarrow C ^{(\bullet)} + 2O_2$ (1)		
	ow propagation steps starting from CCIF2*/CCIF2O(*) either of the equations from propagation 1		
Tar	mination		
CI.	+ Cl * → Cl ₂		
OR CCI	$F_2^+ + Cl^+ \rightarrow CCl_2F_2$		
OR CIO	* + ClO* → Cl ₂ + O ₂ (1)		
	w other combinations of free radicals using those own above.		
	ore curly arrows		

CHERRY HILL TUITION EDEXCEL CHEMISTRY AS PAPER 7 MARK SCHEME

(d)(ii)	The depleted ozone layer allows in (more) UV (radiation) (1) Which results in (skin) cancer/cataracts/mutation/ DNA damage/ Any reference to a chain reaction/ One Cl ^(*) destroys many ozone molecules/ Cl ^(*) is regenerated/ Cl ^(*) catalyst/ death of marine organisms such as phytoplankton (1) Standalone marks	Cancer from Cl(*)	2
	Any reference to greenhouse effect or global warming or infrared radiation scores (0)		

7)				
(a)	(1s²) 2s² 2p ⁶ 3s² 3p ⁶ 3d ⁸ 4s² OR (1s²) 2s² 2p ⁶ 3s² 3p ⁶ 4s² 3d ⁸ ALLOW capital S P D Allow subscripts (e.g. (1s²) 2s₂ 2p ₆ 3s₂ 3p ₆ 4s₂ 3d ₈)			1
(b)	(A _r for Ni) = (58 x 0.6902) + (60 x 0.2732) + (62 x 0.0366) or a correct fraction using percentages	t (1)		2
	(= 58.6928) [calculator value]			
	= 58.69 (must be to 2 dp)	1)	58.68 (as rounding error)	
	2 nd mark CQ on numbers transcribed	d		
	Correct answer with no working			
	(2)		
	IGNORE Units of any kind (e.g. `g', `g mol ⁻¹ , `amu'_ etc.)			

(c)(i)	Moles of nickel = <u>5.87</u>		3
	58.7		
	= 0.1(00) (mol) (1)		
	Moles CO = $0.1(00) \times 4 = 0.4(00)$ (mol)		
	Answer CQ on 4 x mol Ni (1)		
	Volume of CO = $0.4(00) \times 24 \text{ (dm}^3$)	9.6 dm³ mol⁻¹ (no 3 rd mark)	
	= 9.6 (dm³)	9.6 dm ⁻³ (no 3 rd mark)	
	ALLOW 9600 cm ³	OR Any other incorrect units	
	Answer CQ on 24 x mol CO (1)	(no 3 rd mark)	
	Correct answer with no working scores (3)		
(c)(ii)	(Number of CO molecules		1
	= 0.400 x 6.02 x 10 ²³)		
	= 2.408 x 10 ²³		
	Answer CQ on moles / volume of CO in (c)(i)		
	IGNORE sf except 1 sf		
	IGNORE Any units, even if incorrect		
(d)(i)	Moles of NiO = $\frac{1.494}{74.7}$		3
	= 0.02(00) (mol) (1)		
	Moles HNO ₃ = 0.02(00) x 2 = 0.04(00) (mol)		
	Answer CQ on 2 x mol NiO (1)		
	Volume of HNO ₃ = <u>0.04(00) x 1000</u>		
	2.00 = 20(.0) (cm ³)		
	ALLOW 0.02(00) dm ³		
	Answer CQ on mol HNO ₃ (1)		
	Correct answer with no working scores (3)		
	Penalise wrong units ONCE only		
(d)(ii)	To ensure all the acid reacts / all the acid is used up / all the acid is neutralized	To ensure all the reactants are used up	1
	IGNORE		
	References to 'yield' / reaction going to completion / just 'acid is the limiting reagent'		

(d)((iii)	Fizzing / effervescence / frothing / bubbles / gas released	(Mixture) boils		1
		IGNORE spilling (over) / spillage References to 'vigorous', 'exothermic', 'violent' / just 'safety'	Quantity of rea 'displacement' on adding solic	of solution	
(d) (iv)		$_3(\mathbf{s}) + 2HNO_3(\mathbf{aq}) \rightarrow Ni(NO_3)_2(\mathbf{aq}) + H_2O_3(\mathbf{sq})$	(l) +CO ₂ (g)	H₂CO₃(aq) scores (0) overall	2
		W correct ionic equation $_3(\mathbf{s}) + 2H^+(\mathbf{aq}) \rightarrow Ni^{2+}(\mathbf{aq}) + H_2O(\mathbf{I}) + CO(\mathbf{I})$) ₂ (g)		
	All sp	pecies correct	(1)		
		ncing and all state symbols correct	(1)		
111011100	2nd r	mark is dependent on 1st mark (ie all spe	cies correct)		, —
* (d)(v)	First mark: Filter (off the excess nickel(II) carbonate / solid) (1)			4
		Second mark: Boil / heat (to drive off some of the water) (1)	Just "warm" t solution OR 'heat the filtra dryness'		
		IGNORE just 'evaporation' (as the technique of boiling / heating is required here)	ui yiicss		
		Third mark: Leave to cool / leave to crystallize / evaporate (water) slowly / leave (for water) to evaporate (1)			
		Fourth mark: Dry (the crystals) (1)	(Adding to a)	drying agent	
		IGNORE Any washing of the crystals immediately prior to drying them	Use of Bunsen direct heating crystals		
		NOTE If heat to dryness in the second stage, award (1) mark if filtration is first stage			
		If filtration is not the first stage, award (1) mark for steps 2, 3 and 4 all correct			

18)

10)		
(a)	(Protons) 18 (Electrons) 18 (Neutrons) 22 All three numbers correct for the mark	1
(b)	(Position in the Periodic Table) depends upon atomic number / proton number OR Ar (atom) has (one) fewer proton(s) (than K atom) OR K (atom) has (one) more proton(s) (than Ar atom) OR K has atomic number 19 (whereas) Ar has atomic number 18 OR Ar has 18 protons, K has 19 protons IGNORE 'Elements are not arranged in order of (relative) atomic mass' IGNORE Mention of numbers of electrons / numbers of shells (of electrons) IGNORE Arranged in vertical groups in accordance to properties / Argon is a noble gas	1

(c)	First mark Property / trend / pattern ALLOW Any named property (e.g. atomic radius, ionization energy, melting temperature) Second mark Repeated (across each period) OR Regular (across each period) OR Re-occurring (across each period) (1) NOTE Statement such as: "A repeating trend across a period / across each period" scores (2)		2
(d)(i)	Phosphorus / P / P ₄ OR Sulfur / S / S ₈ OR Chlorine / Cl / Cl ₂ IGNORE Argon / Ar		1
(d)(ii)	(The covalent) bonds are strong (throughout the lattice) (1)	MENTION OF ANY OF THE FOLLOWING SCORES (0) OVERALL	2
	(therefore) a lot of energy is required to break the bonds / a lot of energy is needed to overcome the attractions	`(simple) molecular silicon' (0)	
	(between atoms) / 'more energy' is required to break the bonds /'more energy' is needed to overcome the	'molecules of silicon' (0)	
	attractions (between atoms) / 'greater amount of energy ' is required to break the bonds /'greater amount of	`silicon has ions' / `silicon is ionic' (0)	
	energy' is needed to overcome the attractions (between atoms) (1)	`intermolecular forces' / `van der Waals' forces' / `London forces' / `forces between the molecules' (0)	
		'metallic bonding' (0)	

100				
ſ	(d)(iii)	ALLOW reverse arguments in ea	och	3
		Any two from four:- •magnesium ions / magnesium ato are smaller (than sodium ions / sodium atoms)	ms (1)	
		NOTE: Allow symbols (e.g. Mg or Mg ²⁺)		
		•magnesium ions are Mg ²⁺ wherea sodium ions are Na ⁺ OR		
		Mg ²⁺ / magnesium ions have a larg charge (density) (than Na ⁺ /sodium ions) (
		[NOTE: It follows that the statement that "Mg ²⁺ ions are smaller than Na ⁺ ions would score the first two scoring points above]	s"	
		magnesium has more delocalised electrons (than sodium)	i (1)	
		IGNORE 'free electrons' IGNORE just 'sea of electrons'		
		magnesium is close-packed (but sodium is not close-packed)	(1)	
		Third mark (stand-alone): · more / a lot of (heat) energy is needed to break (metallic) bonds in Mg (than in Na)	attraction between nucleus and (delocalised) electrons (no third mark)	
		OR		
		attraction between the positive ions and (delocalised) electrons is stronger in magnesium (than in sodium)	mention of intermolecular forces / molecules (no third mark)	
ı	l .	Lauran		
		IGNORE Just 'metallic bonding in Mg stronger than that in Na'	ionic bonding (no third mark)	
ı			attraction between Mg ²⁺ ions (no third mark)	
			NOTE: arguments based on ionization energies scores (0) overall	
			OR any suggestion of removal of outer shell electrons as part of the melting process scores (0) overall	