CHERRY HILL TUITION EDEXCEL CHEMISTRY AS PAPER 7 MARK SCHEME - 1) A (1) - 2) C (1) - 3) D (1) - 4) D (1) - 5) D (1) - 6) D (1) - 7) C (1) - 8) C (1) - 9) B (1) - 10) A (1) - 11) A (1) - 12) D (1) - 13) A (1) - 14) C (1) | 15) | | | | | | | |----------|---|----------------|---|----------------|-------|---| | | In (a) any units given must be correct. Penalise incorrect units once only. Ignore SF except 1 SF in (i), (iii) and (iv). Penalise once only | | | | | | | (a)(i) | Volume
Added/cm ³ | 25(.00) | 24.6(0) | 24.5(0) | | 1 | | | | 24.55 | (cm³) | | 24.70 | | | | Allow 24.6 (cm | 3) | | | 24.60 | | | (a)(ii) |) NaOH + HCl → NaCl + H ₂ O | | | | 1 | | | | Ignore state symbols even if incorrect | | | | | | | (a)(iii) | Number of moles of NaOH
= $(24.55 \times 2.5) = 6.1375 \times 10^{-2} = 0.061375 \text{(mol)}$
$1000 \text{OR } 6.14 \times 10^{-2} = 0.0614$
$\text{OR } 6.1 \times 10^{-2} = 0.061$ | | | 0.0613
0.06 | 1 | | | | Allow TE from 20(a)(i) | | | | | | | | 6.1375 x 10 ⁻² /0 | 0.061375/ 6.14 | × 10 ⁻² / 0.061 ⁴ | 1/0.061(mol) | | 1 | | (a)(iv) | Allow TE = answer to (a)(iii) | | | | | | | (2)(11) | Multiply by 4 and by 36.5 | | (1) | | 2 | |---------|---|------------------------|--|-------------------------------|-----| | (a)(v) | Using 6.1375 x 10 ⁻² gives 8.96075 | = 8.96 (g |) | | | | | OR
Using 6.14 x 10 ⁻² gives 8.9644 | = 8.96(g) | | | | | | OR
Using 6.1 x 10 ⁻² gives 8.906
Answer to 3 SF | = 8.91(g) | (1) | | | | | Correct answer without working score | (2) | | | | | | Allow TE from (a)(iv)
ALLOW one mark for correct answer to
multiplication by 4 has been omitted,
$(6.1375 \times 10^{-2} \times 36.5 = 2.2401875 = $ | e.a. | (1) | | | | (a)(vi | | | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | lust
not valid /
/alid' | 1 | | | Allow appropriate comment from a
e.g 2.24 is not valid because it is t | | | | | | a(vii) | (Too) corrosive
Damages eyes/burns (skin)/caustic | Just
'Harmful/Irrit | ant/Toxic, | /Hazardous | , 1 | | | Ignore
Dangerous/Strong/Too
concentrated | Acid | | | | | (b) | oo XX | | | | 1 | | | H*O*Q* | | | | | | | Allow all dots or all crosses | | | | | | | ALLOW ionic dot and cross | | | | | | | | | | | | | | Or dative covalent bond from chlor | rine | | | | | | H×XXXXX 0: | | | | | | (c) | HCl + HOCl → H ₂ O + Cl ₂
Ignore state symbols even if incon | rect (1) | | | 2 | | | Chlorine is toxic/poisonous
Allow fumes are toxic
Ignore references to smell or color | | Just 'Harr
irritant/da
hazardou: | angerous/ | | ## CHERRY HILL TUITION EDEXCEL CHEMISTRY AS PAPER 7 MARK SCHEME | Number | | | | | |----------|--|--------------------------------|---|--| | (d)(i) | (2NaOH + Cl ₂ → NaCl + NaClO + H ₂ O)
0 -1 +1 | | 2 | | | | All oxidation numbers correct (1) | | | | | | Type: Disproportionation Allow phonetic spellings Allow redox and disproportionation | Just redox | | | | | Second mark consequential on the first except if | | | | | | (i) all the oxidation numbers are zero
(ii) the plus sign is missing,
(iii) the first two oxidation numbers are correct
and the third one is positive | | | | | | If all the elemental oxidation numbers are given correctly then both marks are available | | | | | (d)(ii) | Heat/increase temperature
ALLOW (more) concentrated NaOH | Just 'warm' /
'excess NaOH' | 1 | | | Harrison | | Acid | | | | (d)(iii) | $3Cl_2 + 6NaOH \rightarrow 5NaCl + NaClO_3 + 3H_2O$
OR
$3Cl_2 + 6OH^- \rightarrow 5Cl^- + ClO_3^- + 3H_2O$ | | 2 | | | | Formula of NaClO ₃ / ClO ₃ (1) Rest of equation correct (1) | | | | | | Ignore state symbols even if incorrect | | | | | 16) | | | | | | (a)(i) | C-F bond is strong(er than C-Cl bond/C-OH bond) | H-F bond
is strong | 1 | | | | OR C-F bond is hard(er) to break (than C-Cl bond/C-bond) | ОН | | | | | OR C-F bond enthalpy is high(er than C-Cl bond/C-OH bond) | | | | Ignore references to electronegativity | (a)(ii) | The C-Cl dipole is the wrong way round (1) | C+ | 3 | |----------|--|--------------------------|---| | (4)(4) | Allow reference to either only the carbon or only the chlorine having the wrong partial charge, e.g. "the carbon should be δ^+ not δ^- " | CI ⁻ | | | | The arrow goes from the carbon to the (oxygen of the) hydroxide ion but should be the other way around OR | | | | | The pair of electrons goes from the carbon to the (oxygen of the) hydroxide ion but should be the other way around (1) | OH
group | | | | Use of the term 'carbocation' means that only one of the first two marks may be awarded. | | | | | The carbon bond to the hydroxy group should be to the oxygen and not to the hydrogen (1) | Hydroxide | | | | Allow the above points to be drawn out correctly instead of stated in words | | | | | Standalone marks | | | | | IGNORE δ- on fluorine atom Reference to lack of transition state Reference to absence of lone pair of electrons on the hydroxide ion | | | | (a)(iii) | CH ₃ CHClF + OH ⁻ → CH ₂ CHF + Cl ⁻ + H ₂ O | | 2 | | | Organic product (1) Rest of equation correct (1) | CH₃CF | | | | The organic molecules can be drawn displayed | | | | | Allow any suitable metal hydroxide, e.g.
CH ₃ CHClF + NaOH → CH ₂ CHF + NaCl + H ₂ O | | | | | Allow C₂H₃F for the organic product | | | | | Ignore state symbols even if incorrect. | | | | (b) | (i) Cl ₂ /chlorine (gas) (1) | Cl ₂ (aq)/Cl• | 3 | | | (ii) PCl₅/phosphorus (V) chloride (1) | | | | 1 1 | Allow | | | | | Any other suitable reagents, such as
HCl (and ZnCl ₂) | | | | 1 1 | OR NaCl + concentrated H ₂ SO ₄
OR SOCl ₂ | | | | | OR PCl₃
OR (concentrated) hydrochloric acid for (ii) | | | | | (iii) HCl/hydrogen chloride (1) | HCl(aq) | | | | Ignore
Reaction conditions | | | | (c)(i) | CH ₃ CH ₂ Cl + NH ₃ → CH ₃ CH ₂ NH ₂ + HCl
OR | C ₂ H ₇ N | 1 | |-----------|--|---------------------------------|--------------| | | $CH_3CH_2CI + NH_3 \rightarrow CH_3CH_2NH_3^{(+)}CI^{(-)}$ OR | | | | | $CH_3CH_2CI + NH_3 \rightarrow CH_3CH_2NH_3^{(+)} + CI^{(-)}$ | | | | | OR
$C_2H_5CI + NH_3 \rightarrow C_2H_5NH_2 + HCI$ | | | | | OR
$CH_3CH_2CI + 2NH_3 \rightarrow CH_3CH_2NH_2 + NH_4^{(+)}CI^{(-)}$ | | | | | OR
$C_2H_5CI + 2NH_3 \rightarrow C_2H_5NH_2 + NH_4^{(+)}CI^{(-)}$ | | | | (5)(11) | | Elimination | 2 | | (c)(ii) | Nucleophilic (1) | Elimination | 2 | | | Substitution (1) | Addition | | | | ALLOW
Just 'S _N 2' for (1) | S _N 1 | | | Number | | | | | (c)(iii) | A lone pair (of electrons on the nitrogen atom)/
pair of non-bonding electrons | Pairs
Just 'spare
pair' | 1 | | (c) (iv) | Ethanol / C₂H₅OH / CH₃CH₂OH | Alcohol | 1 | | Init | iation | Any | 4 | | 1 1 | ${}_{2}F_{2} \rightarrow CClF_{2}^{\bullet} + Cl^{\bullet}$ (1) | charges | ⁻ | | | | | | | | pagation 1 | | | | | s must include a free radical from the initiation step
cting with ozone | | | | 1 1 | $^{)}+ O_{3} \rightarrow CIO^{(*)} + O_{2}$ | | | | OR
CCI | $F_2^{(*)} + O_3 \rightarrow CCIF_2O^{(*)} + O_2$ (1) | | | | | | | | | Pro | pagation 2
$(*)$ + $O^{(*)}$ \rightarrow $Cl^{(*)}$ + O_2 | | | | OR | | | | | Clo | $(^{\bullet}) + O_3 \rightarrow C ^{(\bullet)} + 2O_2$ (1) | | | | | ow propagation steps starting from CCIF2*/CCIF2O(*) either of the equations from propagation 1 | | | | Tar | mination | | | | CI. | + Cl * → Cl ₂ | | | | OR
CCI | $F_2^+ + Cl^+ \rightarrow CCl_2F_2$ | | | | OR
CIO | * + ClO* → Cl ₂ + O ₂ (1) | | | | | w other combinations of free radicals using those own above. | | | | | ore curly arrows | | | ## CHERRY HILL TUITION EDEXCEL CHEMISTRY AS PAPER 7 MARK SCHEME | (d)(ii) | The depleted ozone layer allows in (more) UV (radiation) (1) Which results in (skin) cancer/cataracts/mutation/ DNA damage/ Any reference to a chain reaction/ One Cl ^(*) destroys many ozone molecules/ Cl ^(*) is regenerated/ Cl ^(*) catalyst/ death of marine organisms such as phytoplankton (1) Standalone marks | Cancer
from Cl(*) | 2 | |---------|---|----------------------|---| | | Any reference to greenhouse effect or global warming or infrared radiation scores (0) | | | | 7) | | | | | |-----|---|----------|---------------------------|---| | (a) | (1s²) 2s² 2p ⁶ 3s² 3p ⁶ 3d ⁸ 4s²
OR
(1s²) 2s² 2p ⁶ 3s² 3p ⁶ 4s² 3d ⁸
ALLOW capital S P D
Allow subscripts
(e.g.
(1s²) 2s₂ 2p ₆ 3s₂ 3p ₆ 4s₂ 3d ₈) | | | 1 | | (b) | (A _r for Ni) = (58 x 0.6902) + (60 x 0.2732) + (62 x 0.0366) or a correct fraction using percentages | t
(1) | | 2 | | | (= 58.6928) [calculator value] | | | | | | = 58.69 (must be to 2 dp) | 1) | 58.68 (as rounding error) | | | | 2 nd mark CQ on numbers transcribed | d | | | | | Correct answer with no working | | | | | | (| 2) | | | | | IGNORE Units of any kind (e.g. `g', `g mol ⁻¹ , `amu'_ etc.) | | | | | (c)(i) | Moles of nickel = <u>5.87</u> | | 3 | |---------|--|--|---| | | 58.7 | | | | | = 0.1(00) (mol) (1) | | | | | Moles CO = $0.1(00) \times 4 = 0.4(00)$ (mol) | | | | | Answer CQ on 4 x mol Ni (1) | | | | | Volume of CO = $0.4(00) \times 24 \text{ (dm}^3$) | 9.6 dm³ mol⁻¹ (no 3 rd mark) | | | | = 9.6 (dm³) | 9.6 dm ⁻³ (no 3 rd mark) | | | | ALLOW 9600 cm ³ | OR
Any other incorrect units | | | | Answer CQ on 24 x mol CO (1) | (no 3 rd mark) | | | | Correct answer with no working scores (3) | | | | (c)(ii) | (Number of CO molecules | | 1 | | | = 0.400 x 6.02 x 10 ²³) | | | | | = 2.408 x 10 ²³ | | | | | Answer CQ on moles / volume of CO in (c)(i) | | | | | IGNORE
sf except 1 sf | | | | | IGNORE
Any units, even if incorrect | | | | (d)(i) | Moles of NiO = $\frac{1.494}{74.7}$ | | 3 | | | = 0.02(00) (mol) (1) | | | | | Moles HNO ₃ = 0.02(00) x 2 = 0.04(00) (mol) | | | | | Answer CQ on 2 x mol NiO (1) | | | | | Volume of HNO ₃ = <u>0.04(00) x 1000</u> | | | | | 2.00
= 20(.0) (cm ³) | | | | | ALLOW
0.02(00) dm ³ | | | | | Answer CQ on mol HNO ₃ (1) | | | | | Correct answer with no working scores (3) | | | | | Penalise wrong units ONCE only | | | | (d)(ii) | To ensure all the acid reacts / all the acid is used up / all the acid is neutralized | To ensure all the reactants are used up | 1 | | | IGNORE | | | | | References to 'yield' / reaction going
to completion / just 'acid is the
limiting reagent' | | | | (d)(| (iii) | Fizzing / effervescence / frothing / bubbles / gas released | (Mixture) boils | | 1 | |-------------|--------|---|---|------------------------------------|----------------| | | | IGNORE
spilling (over) / spillage
References to 'vigorous', 'exothermic',
'violent' / just 'safety' | Quantity of rea
'displacement'
on adding solic | of solution | | | (d)
(iv) | | $_3(\mathbf{s}) + 2HNO_3(\mathbf{aq}) \rightarrow Ni(NO_3)_2(\mathbf{aq}) + H_2O_3(\mathbf{sq})$ | (l) +CO ₂ (g) | H₂CO₃(aq)
scores (0)
overall | 2 | | | | W correct ionic equation
$_3(\mathbf{s}) + 2H^+(\mathbf{aq}) \rightarrow Ni^{2+}(\mathbf{aq}) + H_2O(\mathbf{I}) + CO(\mathbf{I})$ |) ₂ (g) | | | | | All sp | pecies correct | (1) | | | | | | ncing and all state symbols correct | (1) | | | | 111011100 | 2nd r | mark is dependent on 1st mark (ie all spe | cies correct) | | , — | | * (d |)(v) | First mark: Filter (off the excess nickel(II) carbonate / solid) (1) | | | 4 | | | | Second mark: Boil / heat (to drive off some of the water) (1) | Just "warm" t
solution
OR
'heat the filtra
dryness' | | | | | | IGNORE just 'evaporation' (as the technique of boiling / heating is required here) | ui yiicss | | | | | | Third mark:
Leave to cool / leave to crystallize /
evaporate (water) slowly / leave (for
water) to evaporate (1) | | | | | | | Fourth mark:
Dry (the crystals) (1) | (Adding to a) | drying agent | | | | | IGNORE
Any washing of the crystals
immediately prior to drying them | Use of Bunsen
direct heating
crystals | | | | | | NOTE If heat to dryness in the second stage, award (1) mark if filtration is first stage | | | | | | | If filtration is not the first stage,
award (1) mark for steps 2, 3 and 4
all correct | | | | 18) | 10) | | | |-----|--|---| | (a) | (Protons) 18 (Electrons) 18 (Neutrons) 22 All three numbers correct for the mark | 1 | | (b) | (Position in the Periodic Table) depends upon atomic number / proton number OR Ar (atom) has (one) fewer proton(s) (than K atom) OR K (atom) has (one) more proton(s) (than Ar atom) OR K has atomic number 19 (whereas) Ar has atomic number 18 OR Ar has 18 protons, K has 19 protons IGNORE 'Elements are not arranged in order of (relative) atomic mass' IGNORE Mention of numbers of electrons / numbers of shells (of electrons) IGNORE Arranged in vertical groups in accordance to properties / Argon is a noble gas | 1 | | (c) | First mark Property / trend / pattern ALLOW Any named property (e.g. atomic radius, ionization energy, melting temperature) Second mark Repeated (across each period) OR Regular (across each period) OR Re-occurring (across each period) (1) NOTE Statement such as: "A repeating trend across a period / across each period" scores (2) | | 2 | |---------|--|---|---| | | | | | | (d)(i) | Phosphorus / P / P ₄ OR Sulfur / S / S ₈ OR Chlorine / Cl / Cl ₂ IGNORE Argon / Ar | | 1 | | (d)(ii) | (The covalent) bonds are strong
(throughout the lattice) (1) | MENTION OF ANY OF THE FOLLOWING SCORES (0) OVERALL | 2 | | | (therefore) a lot of energy is required
to break the bonds / a lot of energy is
needed to overcome the attractions | `(simple) molecular silicon' (0) | | | | (between atoms) / 'more energy' is
required to break the bonds /'more
energy' is needed to overcome the | 'molecules of silicon' (0) | | | | attractions (between atoms) / 'greater
amount of energy ' is required to
break the bonds /'greater amount of | `silicon has ions' / `silicon is ionic' (0) | | | | energy' is needed to overcome the attractions (between atoms) (1) | `intermolecular forces' / `van
der Waals' forces' / `London
forces' / `forces between the
molecules' (0) | | | | | 'metallic bonding' (0) | | | 100 | | | | | |-----|----------|--|---|---| | ſ | (d)(iii) | ALLOW reverse arguments in ea | och | 3 | | | | Any two from four:- •magnesium ions / magnesium ato are smaller (than sodium ions / sodium atoms) | ms (1) | | | | | NOTE:
Allow symbols (e.g. Mg or Mg ²⁺) | | | | | | •magnesium ions are Mg ²⁺ wherea
sodium ions are Na ⁺
OR | | | | | | Mg ²⁺ / magnesium ions have a larg
charge (density) (than Na ⁺ /sodium
ions) (| | | | | | [NOTE:
It follows that the statement that
"Mg ²⁺ ions are smaller than Na ⁺ ions
would score the first two scoring
points above] | s" | | | | | magnesium has more delocalised electrons (than sodium) | i
(1) | | | | | IGNORE 'free electrons'
IGNORE just 'sea of electrons' | | | | | | magnesium is close-packed (but
sodium is not close-packed) | (1) | | | | | Third mark (stand-alone): · more / a lot of (heat) energy is needed to break (metallic) bonds in Mg (than in Na) | attraction between nucleus
and (delocalised) electrons
(no third mark) | | | | | OR | | | | | | attraction between the positive ions and (delocalised) electrons is stronger in magnesium (than in sodium) | mention of intermolecular
forces / molecules
(no third mark) | | | ı | l . | Lauran | | | | | | IGNORE Just 'metallic bonding in Mg stronger than that in Na' | ionic bonding
(no third mark) | | | ı | | | attraction between Mg ²⁺ ions
(no third mark) | | | | | | NOTE:
arguments based on
ionization energies scores
(0) overall | | | | | | OR any suggestion of removal of outer shell electrons as part of the melting process scores (0) overall | |