Question	Expected Answers	Marks	Additional Guidance
1 a	F B G E D FIVE correct ✓√√	3	ALLOW 1450 736 G 76 -642
b	FOUR correct $\checkmark \checkmark$ THREE correct \checkmark Correct calculation -642 - (+76 + (2 × 150) + 736 + 1450 + (2 × -349)) \checkmark -642 - 1864 = - 2506 \checkmark (kJ mol ⁻¹)	2	ALLOW for 1 mark: $-2705 (2 \times 150 \text{ and } 2 \times 349 \text{ not used for CI})$ $-2356 (2 \times 150 \text{ not used for CI})$ $-2855 (2 \times 349 \text{ not used for CI})$ +2506 (wrong sign) DO NOT ALLOW any other answers
C	Magnesium ion OR Mg ²⁺ has greater charge (than sodium ion OR Na ⁺) OR Mg ²⁺ has greater charge density ✓ Magnesium ion OR Mg ²⁺ is smaller ✓ Mg ²⁺ has a stronger attraction (than Na ⁺) to Cl ⁻ ion OR Greater attraction between oppositely charged ions ✓	3	ANNOTATIONS MUST BE USED ALLOW magnesium/Mg is 2+ but sodium/Na is 1+ DO NOT ALLOW Mg atom is 2+ but Na atom is 1+ ALLOW 'charge density' here only ALLOW Mg OR magnesium is smaller DO NOT ALLOW Mg ²⁺ has a smaller atomic radius ALLOW anion OR negative ion for CI ⁻ DO NOT ALLOW chlorine ions DO NOT ALLOW Mg has greater attraction ALLOW 'attracts with more force' for greater attraction but DO NOT ALLOW 'greater force (could be repulsion) ALLOW reverse argument throughout in terms of Na ⁺
	Total	8	

Qu	iesti	on	Expected Answers	Marks	Additional Guidance
2	а		$BrO_3^- + 5Br^- + 6H^+ \longrightarrow 3Br_2 + 3H_2O \checkmark$	1	ALLOW multiples
	b		<i>graph:</i> Straight/diagonal line through origin OR 0,0 AND 1st order with respect to BrO ₃ ⁻ ✓	1	 ANNOTATIONS MUST BE USED Both explanation and 1st order required for mark DO NOT ALLOW diagonal line OR straight line OR constant gradient on its own (no mention of origin OR 0,0) ALLOW 'As BrO₃⁻ doubles, rate doubles' AND 1st order
			<i>initial rates data:</i> When [Br ⁻] is doubled, rate × 2 \checkmark 1st order with respect to Br ⁻ \checkmark When [H ⁺] × 2, rate × 4 (2 ²) \checkmark 2nd order with respect to H ⁺ \checkmark <i>Rate equation</i> rate = k [BrO ₃ ⁻] [Br ⁻] [H ⁺] ² \checkmark	4	 ALLOW rate is proportional to concentration AND 1st order Mark order and explanation independently Mark order first, then explanation ALLOW ECF from candidate's orders above

Question	Expected Answers	Marks	Additional Guidance
	Calculation of rate constant (3 marks)	3	ANNOTATIONS MUST BE USED
	$k = \frac{\text{rate}}{[\text{BrO}_3^-][\text{Br}^-][\text{H}^+]^2}$		Calculation can be from any of the experimental runs – they all give the same value of <i>k</i>
	OR $\frac{1.19 \times 10^{-5}}{(5.0 \times 10^{-2})(1.5 \times 10^{-1})(3.1 \times 10^{-1})^2} \checkmark$ = 1.7×10^{-2} OR $1.65 \times 10^{-2} \checkmark \text{dm}^9 \text{ mol}^{-3} \text{ s}^{-1} \checkmark$		ALLOW mol ⁻³ dm ⁹ s ⁻¹ ALLOW 1.6510579 × 10 ⁻² and correct rounding to 1.7×10^{-2} Correct numerical answer subsumes previous marking point DO NOT ALLOW fraction: $\frac{238}{14415}$
			ALLOW ECF from incorrect rate equation. Examples are given below for 1st line of initial rates data. IF other rows have been used, then calculate the rate constant from data chosen. Example 1: 1st order with respect to H ⁺ rate = k [BrO ₃ ⁻] [Br ⁻] [H ⁺] $k = \frac{\text{rate}}{[\text{BrO}_3^-][\text{Br}^-][\text{H}^+]}$ OR $\frac{1.19 \times 10^{-5}}{(5.0 \times 10^{-2})(1.5 \times 10^{-1})(3.1 \times 10^{-1})} \checkmark$ = 5.1 × 10 ⁻³ OR 5.12 × 10 ⁻³ ✓ dm ⁶ mol ⁻² s ⁻¹ ✓ ALLOW 5.11827957 × 10 ⁻³ and correct rounding to 5.1 × 10 ⁻³
			Example 2: Zero order with respect to BrO_3^- rate = k [Br ⁻] [H ⁺] ² k = rate [Br ⁻][H ⁺] ² OR $\frac{1.19 \times 10^{-5}}{(1.5 \times 10^{-1})(3.1 \times 10^{-1})^2} \checkmark$ = 8.3 × 10 ⁻⁴ OR 8.26 × 10 ⁻⁴ ✓ dm ⁶ mol ⁻² s ⁻¹ ✓ ALLOW 8.255289629 × 10 ⁻⁴ and correct rounding to 8.3 × 10 ⁻⁴
	Total	10	

Qu	estic	on	Expected Answers		Additional Guidance
3	a		measured pH > 1 OR [H ⁺] < 0.1 (mol dm ⁻³) \checkmark	4	ALLOW C_2H_5 throughout question ALLOW $[H^+] < [CH_3CH_2COOH]$ OR $[H^+] < [HA]$ ALLOW measured pH is higher than expected ALLOW measured pH is not as acidic as expected ALLOW a quoted pH value or range > 1 and < 7 OR between 1 and 7
			$[H^+] = 10^{-pH} \checkmark$		ALLOW [H ⁺] = antilog –pH OR [H ⁺] = inverse log –pH
			$K_{a} = \frac{[H^{+}][CH_{3}CH_{2}COO^{-}]}{[CH_{3}CH_{2}COOH]} OR \frac{[H^{+}]^{2}}{[CH_{3}CH_{2}COOH]} \checkmark$		ALLOW $\underline{[H^+][A^-]}$ OR $\underline{[H^+]^2}$ [HA] [HA]
			Calculate K_a from $\frac{[H^+]^2}{0.100}$ \checkmark		IF K_a is NOT given and $K_a = \frac{[H^+]^2}{0.100}$ is shown, award mark for K_a also (i.e. $K_a = \frac{[H^+]^2}{0.100}$ is automatically awarded the last 2 marks)
	b		Marks are for correctly calculated values. Working shows how values have been derived.	2	ALLOW 3.467368505 × 10^{-14} and correct rounding to 3.5 × 10^{-14}
			$[H^+] = 10^{-13.46} = 3.47 \times 10^{-14} \text{ (mol dm}^{-3}) \checkmark$ $[OH^-] = \frac{1.0 \times 10^{-14}}{3.47 \times 10^{-14}} = 0.29 \text{ (mol dm}^{-3}) \checkmark$		ALLOW 0.28840315 and correct rounding to 0.29, i.e. ALLOW 0.288 ALLOW alternative approach using pOH:
					pOH = $14 - 13.46 = 0.54 \checkmark$ [OH ⁻] = $10^{-0.54} = 0.29 \pmod{\text{mol dm}^{-3}} \checkmark$ Correct answer gets BOTH marks

Question	Expected Answers	Marks	Additional Guidance
C	Propanoic acid reacts with sodium hydroxide forming propanoate ions/sodium propanoate OR CH ₃ CH ₂ COOH + NaOH → CH ₃ CH ₂ COONa + H ₂ O ✓ Some propanoic acid remains	7	ANNOTATIONS MUST BE USED ALLOW C ₂ H₅ throughout question ALLOW Adding NaOH forms propanoate ions/sodium propanoate (imples that the NaOH is added to the propanoic acid)
	OR propanoic acid AND propanoate (ions) / sodium propanoate present ✓		ALLOW: weak acid AND its conjugate base/salt present
	equilibrium: $CH_3CH_2COOH \Rightarrow H^+ + CH_3CH_2COO^-\checkmark$		Throughout, do not penalise comments that imply that pH is constant in presence of buffer DO NOT ALLOW HA and A ⁻ in this equilibrium expression For description of action of buffer below, ALLOW HA for CH_3CH_2COOH ; ALLOW A ⁻ for $CH_3CH_2COO^-$
	Added alkali CH_3CH_2COOH reacts with added alkali $OR CH_3CH_2COOH + OH^- \rightarrow$ OR added alkali reacts with H^+ $OR H^+ + OH^- \rightarrow \checkmark$		Equilibrium responses must refer back to a written equilibrium. IF no equilibrium shown, use the equilibrium as written in expected answers (which is also written on page 6 of the paper) ALLOW weak acid reacts with added alkali
	→ $CH_3CH_2COO^-$ OR Equilibrium → right \checkmark Added acid $CH_3CH_2COO^-$ reacts with added acid OR [H ⁺] increases \checkmark → CH_3CH_2COOH OR Equilibrium → left \checkmark		ALLOW conjugate base reacts with added acid DO NOT ALLOW salt reacts with added acid
		5	5

Question	Expected Answers	Marks	Additional Guidance
d	$HNO_3 + CH_3CH_2COOH \Rightarrow CH_3CH_2COOH_2^+ + NO_3^- \checkmark$ acid 1 base 2 acid 2 base 1 \checkmark	2	State symbols NOT required ALLOW 1 AND 2 labels the other way around. ALLOW 'just acid' and 'base' labels throughout if linked by lines so that it is clear what the acid–base pairs are. IF proton transfer is wrong way around then ALLOW 2nd mark for idea of acid–base pairs, i.e. HNO ₃ + CH ₃ CH ₂ COOH \Rightarrow CH ₃ CH ₂ COO ⁻ + H ₂ NO ₃ ⁺ × base 2 acid 1 base 1 acid 2 \checkmark
e i	2CH ₃ CH ₂ COOH + Mg → (CH ₃ CH ₂ COO) ₂ Mg + H ₂ \checkmark	1	IGNORE state symbols ALLOW ionic equation: $2H^+ + Mg \rightarrow Mg^{2+} + H_2$ IGNORE any random charges in formula of $(CH_3CH_2COO)_2Mg$ as long as the charges are correct (charges are treated as working) i.e. $(CH_3COO^-)_2Mg$ OR $(CH_3COO)_2^-Mg$ should not be penalised However, Mg^{2+} instead of Mg on the left side of equation is obviously wrong
ii	$2H^{+} + CO_{3}^{2-} \longrightarrow H_{2}O + CO_{2}$ OR $2H^{+} + CO_{3}^{2-} \longrightarrow H_{2}CO_{3}$ OR $H^{+} + CO_{3}^{2-} \longrightarrow HCO_{3}^{-} \checkmark$	1	State symbols NOT required
	Total	17	

Que	esti	on	Expected Answers	Marks	Additional Guidance
4	a	ī	Complete circuit (with voltmeter) and salt bridge linking two half-cells ✓ Pt electrode in solution of Fe ²⁺ /Fe ³⁺ ✓ Ag in solution of Ag ⁺ ✓	3	 DO NOT ALLOW 'solution of a silver halide', e.g. AgCl (as these are insoluble) but DO ALLOW any solution of any other silver salt (whether insoluble or not) IF candidate has used incorrect redox systems, then mark ECF as follows: (i) each incorrect system will cost the candidate one mark (ii) ECF if species have been quoted (see Additional Guidance below) (iii) ECF for equation (iv) ECF for cell potential YOU MAY NEED TO WORK OUT THESE ECF RESPONSES YOURSELF DEPENDING ON THE INCORRECT REDOX SYSTEMS CHOSEN
		ii	electrons AND ions ✓	1	For electrons, ALLOW e [−] For 'ions', ALLOW formula of an ion in one of the half-cells or salt bridge, e.g. Ag ⁺ , Fe ²⁺ , Fe ³⁺ ALLOW ECF as in (i)
		iii	$Ag + Fe^{3+} \longrightarrow Ag^{+} + Fe^{2+} \checkmark$	1	ALLOW ECF as in (i) ALLOW equilibrium sign
		iv	0.43 V 🗸	1	ALLOW ECF as in (i)
	b	i	Cl ₂ OR O ₂ AND H ⁺ ✓	1	ALLOW chlorine ALLOW O_2 AND $4H^+$ ALLOW O_2 AND acid DO NOT ALLOW O_2 alone DO NOT ALLOW equation or equilibrium
		ii		1	ALLOW 2I ⁻ OR iodide DO NOT ALLOW equation or equilibrium

Qu	esti	on	Expected Answers	Marks	Additional Guidance
	С		A fuel cell converts energy from reaction of a fuel	5	ANNOTATIONS MUST BE USED
			with oxygen into a voltage/electrical energy ✓		ALLOW combustion for reaction of fuel with oxygen/reactants
					ALLOW a fuel cell requires constant supply of fuel
					OR operates continuously as long as a fuel (and oxygen) are added
			$2H_2 + O_2 \rightarrow 2H_2O \checkmark$		ALLOW multiples, e.g. $H_2 + \frac{1}{2}O_2 \rightarrow H_2O$
					IGNORE state symbols
			Two from:		
			 under pressure OR at low temperature OR as a liquid 		
			adsorbed on solid		ALLOW 'material' OR metal for solid
			 absorbed within solid 		ALLOW as a metal hydride
			$\checkmark\checkmark$		
			Energy is needed to make the hydrogen		
			OR energy is needed to make fuel cell ✓		
			Total	13	

Qu	esti	ion	Expected Answers	Marks	Additional Guidance
5	а	i	$(K_{c} =) \frac{[NH_{3}]^{2}}{[N_{2}] [H_{2}]^{3}} \checkmark$	1	Must be square brackets
		ii	dm ⁶ mol ^{−2} ✓	1	ALLOW mol ⁻² dm ⁶ ALLOW ECF from incorrect <i>K</i> _c expression
	b		Unless otherwise stated, marks are for correctly calculated values. Working shows how values have been derived.	4	ANNOTATIONS MUST BE USED For all parts, ALLOW numerical answers from 2 significant figures up to the calculator value
			$[N_2] = \frac{7.2}{6.0} \text{ OR } 1.2 \text{ (mol dm}^{-3}\text{)}$		1st mark is for realising that concentrations need to be calculated.
			AND $[H_2] = \frac{12}{6.0}$ OR 2.0 (mol dm ⁻³) \checkmark $[NH_3] = \sqrt{(K_c \times [N_2] \times [H_2]^3)}$ OR $\sqrt{(8.00 \times 10^{-2} \times 1.2 \times 2.0^3)} \checkmark$		Correct numerical answer with no working would score all previous calculation marks
			= 0.876 OR 0.88 (mol dm ⁻³) ✓		ALLOW calculator value: 0.876356092 down to 0.88, correctly rounded
			amount NH₃ = 0.876 × 6 = 5.26 OR 5.3 (mol) ✓		ALLOW calculator value down to 5.3, correctly rounded

bEXAMPLES OF INCORRECT RESPONSES IN (b) THAT MAY BE WORTHY OF CREDIT ALLOW ECF from incorrect concentrations (For example, If concentrations not calculated a $[NH_3] = \sqrt{(8.00 \times 10^{-2} \times 7.2 \times 12.0^3)} \checkmark$ = 31.5 mol dm ⁻³ ✓ Equilibrium amount of NH ₃ = 31.5 × 6 = 189.6 (not show the state of the st	at start, then
are available in (b) by ECF Correct $[N_2]$ AND $[H_2] \checkmark$ $[NH_3] = \sqrt{\frac{[N_2][H_2]^3}{K_c}} = = \sqrt{\frac{1.2 \times 2^3}{8.00 \times 10^{-2}}} \checkmark$ $= 11.0 \text{ mol dm}^{-3} \checkmark$ Equilibrium amount of NH ₃ = 11.0 × 6 = 66.0 (m IF candidate has used K_c value of 8.00×10^{-2} A AND H_2 with powers wrong, mark by ECF from below (3 max in (b)) Correct $[N_2]$ AND $[H_2] \checkmark$ $[NH_3]$ expression × ECF: Calculated $[NH_3] \checkmark$ ECF: Calculated $[NH_3] \checkmark$	hen all 4 marks nol) ✓ AND values for N₂

Question	Expected Answers	Marks	Additional Guidance
CI	Equilibrium shifts to right OR Equilibrium towards ammonia ✓ Right hand side has fewer number of (gaseous) moles ✓	2	 ALLOW 'moves right' OR 'goes right' OR 'favours right' OR 'goes forwards' ALLOW 'ammonia side' has fewer moles
	K_c does not change \checkmark Increased pressure increases concentration terms on bottom of K_c expression more than the top OR system is now no longer in equilibrium \checkmark top of K_c expression increases and bottom decreases until K_c is reached \checkmark	3	ALLOW 'there are more (gaseous) moles on left'ANNOTATIONS MUST BE USEDAny response in terms of K_c changing scores ZERO for Part (ii)ALLOW K_c is temperature dependent only OR K_c does notchange with pressureALLOW $\frac{[NH_3]^2}{[N_2] [H_2]^3}$ no longer equal to K_c
d i	$CH_4 + H_2O \longrightarrow 3H_2 + CO \checkmark$	1	State symbols NOT required ALLOW : $CH_4+ H_2O \longrightarrow CH_3OH + H_2$ $CH_4+ 2H_2O \longrightarrow 4H_2 + CO_2$ $CH_4+ H_2O \longrightarrow 2H_2 + HCHO$ $CH_4+ 2H_2O \longrightarrow 3H_2 + HCOOH$
ii	Electrolysis of water OR $H_2O \longrightarrow H_2 + \frac{1}{2}O_2 \checkmark$	1	ALLOW electrolysis of brine DO NOT ALLOW reforming DO NOT ALLOW cracking DO NOT ALLOW reaction of metal with acid

Question	Expected Answers	Marks	Additional Guidance	
e i	Unless otherwise stated, marks are for correctly calculated values.		ANNOTATIONS MUST BE USED	
	Working shows how values have been derived.		See Appendix 1 for extra guidance for marking 5e(i) and 5e(ii)	
	$\Delta S = \Sigma S(\text{products}) - \Sigma S(\text{reactants}) / = (2 \times 192) - (191 + 3 \times 131) \checkmark$ = -200 (J K ⁻¹ mol ⁻¹) OR -0.200 (kJ K ⁻¹ mol ⁻¹)		NO UNITS required at this stage IGNORE units	
	Use of 298 K (could be within ΔG expression below) \checkmark			
	$\Delta G = \Delta H - T\Delta S$ OR $\Delta G = -92 - (298 \times -0.200)$ OR $\Delta G = -92000 - (298 \times -200) \checkmark$			
	 –32.4 kJ mol⁻¹ OR –32400 J mol⁻¹ ✓ (Units must be shown) 	5	ALLOW –32.4 kJ OR –32400 J (Units must be shown) Award all 5 marks above for correct answer with no working	
			IF 25 °C has been used instead of 298 K, correctly calculated ΔG values are = -87 kJ mol ⁻¹ OR -87000 J mol ⁻¹ 4 marks are still available up to this point and maximum possible from (e)(i) is 5 marks	
	For feasibility, $\Delta G < 0$ OR ΔG is negative \checkmark	1		
ii	As the temperature increases, $T\Delta S$ becomes more negative OR $T\Delta S$ becomes more negative than ΔH OR $T\Delta S$ becomes more significant \checkmark	2	ALLOW $T\Delta S > \Delta H$ (i.e. assume no sign at this stage) ALLOW 'entropy term' as alternative for $T\Delta S$ ALLOW $-T\Delta S$ becomes more positive ALLOW $-T\Delta S$ decreases	
	Eventually $\Delta H - T \Delta S$ becomes positive \checkmark		ALLOW $\triangle G$ becomes positive OR $\triangle G > 0$	

CHERRY HILL TUITION OCR A CHEMISTRY A2 PAPER 25 MARK SCHEME

Question		Expected Answers	Marks	Additional Guidance
		Activation energy is too high OR reaction too slow ✓	1	ALLOW increases the rate OR more molecules exceed activation energy OR more successful collisions ALLOW rate constant increases IGNORE comments on yield
		Total	22	

Qu	esti	on	Expected Answers	Marks	Additional Guidance
6	а	i	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁵ 4s ¹ ✓	1	ALLOW 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹ 3d ⁵ (i.e. 4s before 3d) ALLOW [Ar]4s ¹ 3d ⁵ OR [Ar]3d ⁵ 4s ¹
		ii		1	ALLOW [Ar]3d ³ ALLOW 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ³ 4s ⁰ OR [Ar]3d ³ 4s ⁰
	b		$Zn \longrightarrow Zn^{2+} + 2e^{-} \checkmark$ $Cr_2O_7^{2-} + 14H^+ + 8e^- \longrightarrow 2Cr^{2+} + 7H_2O \checkmark$	3	ALLOW multiples WATCH for balancing of the equations printed on paper IF printed equations and answer lines have different balancing numbers OR electrons, IGNORE numbers on printed equations (i.e. treat these as working) and mark responses on answer lines only
			$4Zn + Cr_2O_7^{2-} + 14H^+ \longrightarrow 4Zn^{2+} + 2Cr^{2+} + 7H_2O \checkmark$		NO ECF for overall equation i.e. the expected answer is the ONLY acceptable answer
	С	i	Ligand substitution ✓	1	ALLOW ligand exchange
		ii	$[Cr(H_2O)_6]^{3+} + 6NH_3 \longrightarrow [Cr(NH_3)_6]^{3+} + 6H_2O$	2	1 mark is awarded for each side of equation ALLOW equilibrium sign ALLOW 1 mark for 2+ shown instead of 3+ on both sides of equation ALLOW 1 mark for substitution of 4 NH ₃ : $[Cr(H_2O)_6]^{3^+} + 4NH_3 \longrightarrow [Cr(NH_3)_4(H_2O)_2]^{3^+} + 4H_2O$
	d	i	Donates an electron pair to a metal ion OR forms a coordinate bond to a metal ion ✓	1	ALLOW donates an electron pair to a metal ALLOW dative (covalent) bond for coordinate bond
		ii	Donates two electron pairs OR forms two coordinate bonds ✓	2	First mark is for the idea of two coordinate bonds
			Lone pairs on two O atoms ✓		ALLOW lone pair on O and N DO NOT ALLOW lone pairs on COO ⁻ (could involve C)
					Second mark is for the atoms that donate the electron pairs Look for the atoms with lone pairs also on response to (d)(iii) and credit here if not described in (d)(ii)

III Forms two optical isomers OR two enantiomers OR two non-superimposable mirror images ✓ 3 IGNORE any charges shown IGNORE any charges shown
ALLOW any attempt to show bidentate ligand. Bottom line is the diagram on the left. 1 mark for 3D diagram with ligands attached for ONE stereoisomer. Must contain 2 out wedges, 2 in wedges and 2 lines in plane of pape Must contain 2 out wedges, 2 in wedges and 2 lines in plane of pape 2 mark for reflected diagram of SECOND stereoisomer. The diagram below would score the 2nd mark but not the first

Qu	estio	n Expected Answers	Marks	Additional Guidance
	e	N : H : Cr : O 11.1/14 : 3.17/1 : 41.27/52 : 44.45/16 OR 0.793 : 3.17 : 0.794 : 2.78 ✓	8	ANNOTATIONS MUST BE USED
		A : N ₂ H ₈ Cr ₂ O ₇ ✓		ALLOW A: (NH ₄) ₂ Cr ₂ O ₇
		lons: NH ₄ ⁺ \checkmark Cr ₂ O ₇ ²⁻ \checkmark		IF candidate has obtained NH₄CrO₄ for A, ALLOW NH₄ ⁺ DO NOT ALLOW CrO₄ ⁻
		B : Cr ₂ O ₃ ✓		
		Correctly calculates molar mass of C = $1.17 \times 24.0 = 28.08 \text{ (g mol}^{-1}) \checkmark$		ALLOW: (relative) molecular mass ALLOW: 28 ALLOW: 'C is 28'
		C : N ₂ ✓		
		Equation: $(NH_4)_2Cr_2O_7 \longrightarrow Cr_2O_3 + 4H_2O + N_2 \checkmark$		ALLOW N ₂ H ₈ Cr ₂ O ₇ in equation.
		Total	22	

Qu	iesti	on			Additional Guidance
7	а	i	$H_2O_2 \longrightarrow O_2 + 2H^+ + 2e^- \checkmark \checkmark$	2	All other multiples score 1 mark e.g. $\frac{1}{2}H_2O_2 \longrightarrow \frac{1}{2}O_2 + H^+ + e^-$ $5H_2O_2 \longrightarrow 5O_2 + 10H^+ + 10e^-$
	b		Marks are for correctly calculated values. Working shows how values have been derived.		ANNOTATIONS MUST BE USED
			$n(\text{KMnO}_4) = \frac{0.0200 \times 23.45}{1000} = 4.69 \times 10^{-4} \text{ (mol)} \checkmark$		DO NOT ALLOW 4.7×10^{-4}
			$n(H_2O_2) = 5/2 \times 4.69 \times 10^{-4} = 1.1725 \times 10^{-3} \text{ (mol)} \checkmark$		ALLOW 1.173 x 10^{-3} OR 1.17 x 10^{-3} (i.e. 3 significant figures upwards) ALLOW by ECF: 5/2 × ans above
			$n(H_2O_2)$ in 250 cm ³ solution = 10 × 1.1725 × 10 ⁻³ = 1.1725 x 10 ⁻² (mol) \checkmark		ALLOW by ECF 10 × ans above ALLOW concentration $H_2O_2 = 0.0469$ mol dm ⁻³
			concentration in g dm ⁻³ of original H ₂ O ₂ = 40 × 1.1725 × 10 ⁻² × 34 = 15.9 (g dm ⁻³) \checkmark	4	ALLOW by ECF $40 \times n(H_2O_2) \times 34$ ALLOW 0.0469 x 10 x 34 = 15.9 g dm ⁻³ \checkmark
					ALLOW two significant figures, 16 (g dm ⁻³) up to calculator value of 15.946 g dm ⁻³
			$n(O_2) = 5/2 \times 4.69 \times 10^{-4} = 1.1725 \times 10^{-3} \text{ (mol)} \checkmark$		ALLOW 0.028 dm ³ OR 0.02814 dm ³ ALLOW 28 cm ³ OR 28.14 cm ³
			volume $O_2 = 24.0 \times 1.1725 \times 10^{-3} = 0.0281 \text{ dm}^3 \checkmark$	2	Value AND units required DO NOT ALLOW 0.03 dm ³
					ALLOW by ECF : $24.0 \times$ calculated moles of O ₂ (2 significant figures up to calculator value)
			Total	8	

Appendix 1

Extra guidance for marking atypical responses to **5e(i)** and **5e(ii)**

Qu	Question		Expected Answer	Mark	Additional Guidance
5	e	i	TOTAL ENTROPY APPROACH: ALL MARKS AVAILABLE Unless otherwise stated, marks are for correctly calculated values. Working shows how values have been derived. $\Delta S = \Sigma S(\text{products}) - \Sigma S(\text{reactants}) / = (2 \times 192) - (191 + 3 \times 131) \checkmark$ $= -200 \text{ (J K}^{-1} \text{ mol}^{-1}) \text{ OR } -0.200 \text{ (kJ K}^{-1} \text{ mol}^{-1}) \checkmark$ Use of 298 K (could be within expression below) \checkmark $\Delta S_{\text{total}} = \Delta S_{\text{system}} + \Delta S_{\text{surroundings}}$		ANNOTATIONS MUST BE USED NO UNITS required at this stage IGNORE units
			$\Delta S_{\text{surroundings}} = -\frac{\Delta H}{T}$ OR $\Delta S_{\text{total}} = \Delta S_{\text{system}} - \frac{\Delta H}{T}$ OR $\Delta S_{\text{total}} = -0.200 - \frac{-92}{298}$ OR $\Delta S_{\text{total}} = -200 - \frac{-92000}{298} \checkmark$ $= 0.109 \text{ kJ} (\text{K}^{-1} \text{ mol}^{-1}) \text{ OR } 109 \text{ J} (\text{K}^{-1} \text{ mol}^{-1}) \checkmark$ Feasible when $\Delta S_{\text{total}} > 0 \checkmark$	5	ALLOW 0.109 kJ OR 109 J IF 25°C has been used instead of 298 K, correctly calculated ΔS_{total} values are = 3.48 kJ K ⁻¹ mol ⁻¹ OR 3,480 J K ⁻¹ mol ⁻¹

Qu	iesti	ion	Expected Answer	Mark	Additional Guidance
5	e	i	MAX/MIN TEMPERATURE APPROACH: 5 MARKS MAX AVAILABLE Unless otherwise stated, marks are for correctly calculated values. Working shows how values have been derived.		ANNOTATIONS MUST BE USED This candidate has not answered the question but many marks are still available.
			$\Delta S = \Sigma S(\text{products}) - \Sigma S(\text{reactants}) /$ = (2 × 192) - (191 + 3 × 131) \checkmark = -200 (J K ⁻¹ mol ⁻¹) OR -0.200 (kJ K ⁻¹ mol ⁻¹) \checkmark Use of 298 K (could be within ΔG expression below) \checkmark		NO UNITS required at this stage IGNORE units
			$\Delta G = \Delta H - T\Delta S$ OR When $\Delta G = 0$, $0 = \Delta H - T\Delta S$; OR $T = \frac{\Delta H}{\Delta S} = \frac{-92}{-0.200}$ OR $T = \frac{\Delta H}{\Delta S} = \frac{-92000}{-200} \checkmark$ $= 460 \text{ K} \checkmark$ $= 187 ^{\circ}\text{C} \text{ (use of 298) } \checkmark$		
			The condition $\Delta G = 0$ because temperature at which $\Delta G = 0$ is the maximum temperature for feasibility AND justification for the being the maximum \checkmark		By this approach, the calculated temperature is the switchover between feasibility and non-feasibility but it cannot be assumed that this is the maximum temperature

Question	Expected Answer	Mark	Additional Guidance
5 e ii	As the temperature increases, $\Delta H/T$ becomes less negative OR $\Delta H/T$ becomes more negative than ΔS (system) OR $\Delta H/T$ becomes less significant OR ΔS (surroundings) becomes less significant OR ΔS (system) > $\Delta H/T$ OR ΔS (system) > ΔS (surroundings) \checkmark Eventually ΔS (total) becomes negative \checkmark	2	ALLOW $\Delta H/T > \Delta S_{system}$ (i.e. assume no sign at this stage) ALLOW $-\Delta H/T$ becomes more positive ALLOW $-\Delta H/T$ increases