PHYS 110 TECHNICAL PHYSICS STUDENT WORKBOOK
 (3 ${ }^{\text {rd }}$ Edition July 2020)
 Kevin Kimball, B.S.
 USN - retired
 Professor - SMCC Physical Science Department

ABOUT THIS WORKBOOK

This book is based on the formatted notebook model used by United States Navy class " A " technical schools. This format is a well proven and time-tested method of instruction; no fluff, no filler, and yet comprehensive and thorough.

As an example, this method allows a Navy student to complete a fully transferrable undergraduate level three-credit course in Oceanography in two weeks!

Key points in this format:

1. It minimizes the potential for ambiguity and enables the student to more effectively identify key points in a given lecture
2. It enables the student to more effectively "compare notes" with classmates
3. Both student and instructor are literally "on the same page."
4. Student ownership of specific course information is clearly delineated
5. It WORKS!

Topic/Lab 1: SCIENTIFIC NOTATION

Scientific Notation: Provides a means of managing and calculating
\qquad and \qquad
\qquad numbers.

Based on an understanding of \qquad
\qquad

*

and the \qquad
\qquad

Algebra:
Scientific Notation:

The same rules pertaining to \qquad , and
\qquad in Scientific Notation also apply in algebra.

Coefficient:

Base:

Oog, the Cave Man

Exponent:

Positive Exponents

Negative Exponents

Bottom line:

A negative exponent means you're dealing with a \qquad or a \qquad
"Zero" power: $\left(x^{0}\right)$
Any non-zero number to the "zero power" equals \qquad
Rationale:

First power: $\left(x^{1}\right)$
Any number to the $1^{\text {st }}$ power equals \qquad

Standard Notation:

Lab exercises:

$3.8^{0}=$	
$3.8 \times 10^{0}=$	
$3.8^{1}=$	
$3.8 \times 10^{1}=$	
$5^{3}=$ (standard notation)	
$672 \times 10^{3}=$ (standard notation)	
$6^{-2}=$ (include both possible answers)	
In the expression " $3.12 \times 10^{4 \prime}$ the " 3.12 is called the	
$9.36^{-1}=$	
$x^{5} \times x^{7}=$	
$y^{6} \div y^{4}=$	
$53^{0}=$	
$87^{1}=$	
$2.38 \times 10^{0}=$	
Definition of an exponent:	
In the expression " 8.75×10 " the " 10 " is called the	
A negative exponent indicates you're dealing with a \qquad or a \qquad	
$5^{15} \times 5^{-17}=$ (include all possible answers)	

R

Converting numbers in standard notation to scientific notation

If the decimal point moves to the \qquad , the exponent goes \qquad

If the decimal point moves to the \qquad , the exponent goes \qquad

Converting numbers in Scientific Notation to Standard Notation

If the exponent moves \qquad , the decimal point moves \qquad

If the exponent moves \qquad , the decimal point moves \qquad

"Cheater Rule" for Standard Notation:

Any number in standard notation can be expressed as \qquad times \qquad

General Rule for correct scientific notation:
"Only one \qquad in the \qquad to the \qquad of the decimal"

Very Important Exception:

It is often more convenient to ignore this rule during \qquad
\qquad
(In other words, don't get hung up on this and create more problems than necessary)

Example 1: Convert 873.463 into correct scientific notation	Example 2: Convert 0.00785 into correct scientific notation	Example3: Convert 56.98 $\times 10^{5}$ into correct scientific notation

Convert to correct scientific notation:

186,000	0.0045
5280	34.78×10^{3}
783.487×10^{-8}	2.85
0.000859×10^{-9}	0.0835×10^{6}
0.0000386×10^{12}	73.96
$1 / 4$.937

Convert to standard notation:

1.63×10^{3}	3.637×10^{-1}
2.94×10^{-6}	36.345×10^{2}

Operations in Scientific Notation

Multiplication Critical Rules:

Multiply \qquad

Retain \qquad

Add \qquad

NOTE:
Adding a negative number is the same as \qquad a \qquad

Example 1:
$\left(4.75 \times 10^{3}\right) \times\left(2.43 \times 10^{7}\right)$

Example 2:
$\left.\left(3.72 \times 10^{7}\right) \times 1.67 \times 10^{-2}\right)$

Division Critical Rules:

Divide

Retain

\qquad

Subtract \qquad

NOTE:
Subtracting a negative number is the same as \qquad a \qquad

Example 1:
$\left(9.35 \times 10^{8}\right) \div\left(3.54 \times 10^{4}\right)$

Example 2:
$\left(8.62 \times 10^{6}\right) \div\left(3.97 \times 10^{-3}\right)$

Addition/Subtraction Critical Rules:

Exponents \qquad

Add/Subtract \qquad

Retain \qquad

Retain \qquad

Example 1:
$\left(6.72 \times 10^{3}\right)+\left(2.97 \times 10^{3}\right)$

Example 2 :
$\left(9.56 \times 10^{5}\right)-\left(8.47 \times 10^{4}\right)$

Squaring and Cubing numbers in Scientific Notation - Critical Rules

Square / Cube \qquad
Retain \qquad
Multiply \qquad by \qquad or \qquad
RECALL:
Multiplying unlike signs results in a \qquad
Multiplying like signs results in a \qquad

Square Roots/Cube Roots in Scientific Notation - Critical Rules
Exponent must be divisible by \qquad or \qquad
Square/Cube root \qquad
Retain \qquad
Divide \qquad by \qquad or \qquad RECALL:
Dividing unlike signs results in a \qquad
Dividing like signs results in a \qquad

Example 1:			
		$\sqrt{9.46 \times 10^{6}}$	
		$\sqrt[3]{9.46 \times 10^{6}}$	
Example 2:			
	$\sqrt{8.1 \times 10^{5}}$	Example 4:	

$\left(3.93 \times 10^{7}\right) \times\left(5.37 \times 10^{6}\right)$	Answer:
$\left(3.92 \times 10^{3}\right) \times\left(3.48 \times 10^{-5}\right)$	
$\left(8.16 \times 10^{-5}\right) \div\left(4.89 \times 10^{6}\right)$	Answer:

$\begin{array}{r} \left(3.93 \times 10^{7}\right) \times\left(5.37 \times 10^{6}\right) \\ 3.93 \times 10^{7} \\ 2.37 \times 10^{6} \\ 21.104 \times 10^{13} \\ =2.1104 \times 10^{14} \end{array}$	2.1104×10^{14}
$\begin{array}{r} \begin{array}{r} \left.3.92 \times 10^{3}\right) \times\left(3.48 \times 10^{-5}\right) \\ 3.48 \times 10^{-5} \end{array} \\ \begin{aligned} 13.642 & \times 10^{-2} \end{aligned} \\ =1.364 \times 10^{-1} \end{array}$	1.364×10^{-1}
$\begin{aligned} &\left(8.14 \times 10^{7}\right) \div\left(4.05 \times 10^{9}\right) \\ & \frac{8.14 \times 10^{7}}{4.05 \times 10^{9}} \\ &= 2.0098 \times 10^{-2} \end{aligned}$	2.0098×10^{-2}
$\begin{aligned} &\left(8.16 \times 10^{-5}\right) \div\left(4.89 \times 10^{6}\right) \\ & \frac{8.16 \times 10^{-5}}{4.89 \times 10^{6}} \\ &= 1.669 \times 10^{-11} \end{aligned}$	1.669×10^{-11}

$\sqrt{2.36 \times 10^{7}}$	
$\left(2.64 \times 10^{7}\right)\left(1.37 \times 10^{7}\right)$	
$\left(3.93 \times 10^{7}\right)^{2}$	
$\sqrt{8.26 \times 10^{8}}$	
$\left(5.37 \times 10^{6}\right)^{3}$	

$\sqrt{2.36 \times 10^{7}}$ $\text { Change to: } \begin{aligned} & \sqrt{23.6 \times 10^{6}} \text { (exponent divisible by 2) } \\ & =4.858 \times 10^{3} \end{aligned}$	4.858×10^{3}
$\begin{aligned} &\left(2.64 \times 10^{7}\right)-\left(1.37 \times 10^{7}\right) \\ & 2.64 \times 10^{7} \\ & \frac{-1.37 \times}{} \times 10^{7} \\ & \hline 1.27 \times 10^{7} \end{aligned}$	1.27×10^{7}
$\begin{aligned} \left(3.93 \times 10^{7}\right)^{2} & \\ & =15.445 \times 10^{14} \\ & =1.5445 \times 10^{15} \end{aligned}$	1.5445×10^{15}
$\begin{aligned} \left(5.37 \times 10^{6}\right)^{3} & =154.854 \times 10^{18} \\ & =1.54854 \times 10^{20} \end{aligned}$	1.5485×10^{20}
$\sqrt{8.26 \times 10^{8}}$ 2.874×10^{4}	2.874×10^{4}
$\begin{aligned} & \sqrt[3]{5.06 \times 10^{16}} \\ & \text { change to: } \begin{array}{r} \sqrt[3]{50.6 \times 10^{15}} \text { (exponent divisible by 3) } \\ =3.699 \times 10^{5} \end{array} \end{aligned}$	3.699×10^{5}

Metric System

Major advantage of the metric system:

It can be applied directly to \qquad

Uses a system of \qquad and \qquad

Units relate to specific \qquad ("whatcha got")

Prefixes are specific \qquad ("how many you got")

Prefixes are mathematically \qquad with \qquad of \qquad Examples of units:

Examples of prefixes:

UNIT: MEASUREMENT OF: PREFIX: EQUIVALENT:

8.5 centimeters $=8.5 \mathrm{x}$ \qquad meters

500 milliliters $=500 x$ \qquad liters
6.75 kilograms $=6.75 x$ \qquad grams

BOTTOM LINE:

Any prefix can be replaced or substituted with a \qquad of \qquad

COMMONLY USED METRIC PREFIXES: (Required knowledge!)
Prefix:

giga	/ Standard notation:	/ Fraction:	
mega			
kilo			
centi			
milli			
micro			

self check:

centi $=$ (standard notation)	
kilo $=$ (power of ten)	
$10^{9}=$ (prefix)	
$10^{-3}=$ (standard notation)	
$0.01=$ (prefix)	
giga $=$ (power of ten)	
$1000=$ (power of ten)	
$10^{6}=$ standard notation)	
milli $=$ (power of ten)	
micro $=$ (standard notation)	
$10^{-2}=$ (prefix)	
$0.001=$ (power of ten)	
$10^{3}=$ (prefix)	
mega $=$ (standard notation)	
milli $=$ (standard notation)	
$1,000,000=$ (power of ten)	
$0.000001=$ (power of ten)	
kilo $=$ standard notation	
$10^{6}=$ (prefix)	
$1,000,000,000=$ (power of ten)	

Informal Lab Exercise:

8.97 Kilograms $=\ldots \quad$ Scientific Notation	Standard Notation	
6.5 centimeters $=\ldots \ldots$ meters		
7.5 gigavolts $=\ldots$ volts		
4.7 microFarads $=\ldots \ldots$ Farads		
6,7 megawatts $=\ldots$ watts		
9.87 milliliters $-\ldots$ liters		

Quantity
5483 grams 0.0268 meters $9,700,000,000$ volts 0.0000056 Farads 0.0045 liters $4,300,000$ watts

Conversion hack:

Convert 3.567×10^{5} gigavolts to millivolts

5.98×10^{4} kilograms =_?_grams	
8.34×10^{-1} meters =_?_ centimeters	
5.92×10^{-4} megawatts =_?_ watts	

(Answer in standard notation:)

500 millivolts =_?_ volts	
345 grams =_?_ kilograms	
6.73×10^{5} centimeters =_?_ meters	
3.81×10^{-4} volts =_?_ microvolts	

(Answer in correct scientific notation:)

3.45×10^{5} microvolts =_?_ kilovolts	
7.93×10^{-5} kilograms = _?_milligrams	
5.78×10^{3} millimeters = _?_ centimeters	
4.32×10^{3} gigahertz =_?_ megahertz	

Physics terms

Displacement:

Definition(s):

1. \qquad and \qquad
2. \qquad and \qquad

Symbol: \qquad

Standard units:

1. British ("U.S Standard"): \qquad
2. Metric: \qquad

NOTE: In this context "displacement" does NOT refer to \qquad

Force:

Definition(s):

1. \qquad or a \qquad
2. That which may \qquad
\qquad

Symbol: \qquad (Weight is a measure of \qquad

Standard units:

1. British ("English"): \qquad
2. Metric: \qquad
NOTE:
Since a \qquad is a unit of force, then it is NOT a measure of \qquad .

Mass:

Definition(s):

1. \qquad
2. \qquad
3. \qquad

Standard units:

1. British: \qquad (not \qquad)
2. Metric: \qquad (not \qquad)

Volume:

Definition:

$$
1 .
$$

\qquad

Standard units:

1. British: \qquad 1 \qquad)
2. Metric: \qquad 1 \qquad)*

* NOTE: "_ "_ are also frequently used to measure volume in metric terms, but are no longer considered as "standard units."

Time:
Definition:

1. "That which we \qquad
\qquad ___ _ _

Standard unit: (both British and metric)

1. \qquad (NOT \qquad or \qquad
self check:
Answers:

a measure of inertia	
that which we measure with a clock	
distance and direction	
standard metric unit of force	
standard British unit of displacement	
a quantity of space	
standard metric unit of mass	
a push or a pull	
length and direction	
standard British unit of force	
standard metric unit of volume	
that which may affect motion	
weight is a measure of _?__	
resistance to a change in motion	
standard British unit of volume	
standard British unit of mass	
standard unit of time	
standard metric unit of displacement	
a quantity of material	
stuff	

CONVERSIONS

Based on the principles used in \qquad
\qquad , and
exploit the rules used in " \qquad - _"___

Example 1:
$\frac{3}{4} \times \frac{1}{3}=$

Example 2:
$\frac{a}{c} \times \frac{b}{a}=$

Example 3:

$$
\frac{\bigcirc}{\square} \times \frac{\Delta}{\bigcirc}=
$$

Rationale:

Applying method of multiplying fractions as a means of converting units (The "factor-labeling" method)

Example 1:

To convert 35 miles per hour to " x " feet per second:

Step 1: Restate 35 MPH in fraction form:
35 miles
1 hour

Step 2: Set up multiplication problem in fraction form so that the terms you
wish to change will be \qquad - \qquad :
$\frac{35 m i}{1 \text { hour }} \times \frac{}{m i} \times \frac{\text { hour }}{}$

Step 3: Replace terms with those you want:

$$
\frac{35 m i}{1 \text { hour }} \times \frac{\text { feet }}{m i} \times \frac{\text { hour }}{\text { seconds }}
$$

Step 4: Inert correct mathematical equivalences:

$$
\frac{35 \mathrm{mi}}{1 \text { hour }} \times \frac{5.28 \times 10^{3} \text { feet }}{1 \mathrm{mi}} \times \frac{1 \text { hour }}{3.6 \times 10^{3} \mathrm{sec}}
$$

Step 5: Cross-cancel terms:

Step 6: Restate with remaining terms:
35×5.28 feet
3.6 sec

Step 7: Perform normal calculations one operation at a time until you reach an answer in the desired terms *

$$
\frac{35 \times 5.28 \text { feet }}{3.6 \mathrm{sec}}=\frac{184.8 \text { feet }}{3.6 \mathrm{secs}}=
$$

Conversion factors you should know:				
1 mile $=5.28 \times 10^{3} \mathrm{ft}$	1 mile $=1.61 \times 10^{3}$ meters	1 kilometer $=10^{3}$ meters	1 hour $=3.6 \times 10^{3}$ seconds	

Self -check: conversions
Answers:

Convert 400 MPH to ft/sec	

Field - shorthand method for algebraic equations (Navy "egg")

Example 1

Given: "12", "3", and "4"
then:

$$
\begin{aligned}
& \frac{12}{3}=4 \\
& \frac{12}{4}=3
\end{aligned}
$$

and $3 \times 4=12$
Or:

X

Example 2
 Given:

 Then:

Example 3

Given:

Then: $30=$ \qquad
$2=$ \qquad

3 = \qquad
$5=$ \qquad
"People, listen up!
There is the Right Way, there is the Wrong Way, and then there is the Navy Way, and you better start learning the Navy Way!"
-Boatswain's Mate Second Class Donald Barger, USN, Navy Boot Camp Company Commander

Example 4:
Given: $\quad \frac{a b}{c d e}=f g \quad$ Solve for " d "
Traditional solution:

Using the "egg"
$\frac{a b}{c d e}=f g$, Solve for " d "

$d=$

Self check:

Structure of atom - a key to understanding "mass"
Example 1:
Hydrogen:

Proton:

1. \qquad charge
2. Has approximately \qquad times the mass of electron Electron:
3. \qquad charge

Hydrogen:

1. \qquad of all atoms
2. \qquad element in the universe
"There is more stupidity than hydrogen in the universe, and it has a longer shelf life."

- Frank Zappa

Example 2 - Helium atom

(NOT to scale!)

Nucleus:

1. Contains \qquad and \qquad
2. Accounts for \qquad of atom's mass

Neutron:

1. Slightly more \qquad than a proton, hence it also has approximately \qquad times the mass of electron
2. \qquad charge

By volume, an atom is over \qquad percent \qquad
\qquad

Atom Model History

Democritus - Fifth century B.C.

1. All matter is composed of \qquad
2. "Atom" : Greek for " \qquad "

John Dalton - 1803

1. Atom is a \qquad
\qquad

(AKA the "

\qquad
\qquad model")
2. Each element was composed of \qquad

3. Different elements composed of \qquad
4. Compounds are composed of atoms in \qquad
5. Chemical reactions are \qquad of \qquad ,

And mass is therefore \qquad .

Joseph John Thompson - 1897

1. "Plum \qquad " \qquad :
a. A sphere of diffuse \qquad electricity with

2. Discovered \qquad and was awarded \qquad in 1906

The " Solar System" Model

Ernest Rutherford - 1911

1. Discovered that the atom is mostly \qquad
\qquad with a dense \qquad charged \qquad surrounded by negative \qquad

Neils Bohr - 1913

1. Electrons travel in \qquad
\qquad

2. Only \qquad allowed
3. Modern \qquad of the \qquad

Electron Cloud Model-1920's

1. Erwin Schrodinger ${ }^{1}$ and Werner Heisenburg ${ }^{2}$

Developed \qquad functions to determine regions or clouds in which \qquad are most likely to be found
2. Heisenberg: Developed the \qquad Principle : Impossible to predict \qquad of single electron

James Chadwick - 1932

1. British experimental physicist credited with discovering the \qquad

Particles and average radii:

Particle	Approx. Radius
	10^{-9} meters
	10^{-10} meters
	$10^{-15}-10^{-14}$ meters
	10^{-15} meters
	10^{-18} meters

Early chemists describe the first dirt molecule.

More History: How We Got Here

The 3-legged stool of understanding is held up by history, languages, and mathematics. Equipped with these three you can learn anything you want to learn. But if you lack any one of them you are just another ignorant peasant with dung on your boots.

- Robert A. Heinlein, author, engineer, U.S. Naval Academy graduate, curmudgeon.

Aristotle

1. \qquad
2. \qquad
3. \qquad
4. \qquad

Pythagoras

\qquad
\qquad

Earth at the Center

Ptolemy
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad

Epicycles

Deferent

Crystal Spheres

Copernicus

1. \qquad
2. \qquad
3. \qquad
4. \qquad

"Until I see evidence to the contrary, I will continue to believe that I am the center of the universe."

Galileo

1. First to use the \qquad
2. Discovered the \qquad of \qquad
3. Discovered the \qquad of \qquad
4. Discovered \qquad
5. Prime author of the \qquad
6. Was tried for \qquad

GALILEO DESCRIBES HIS DISCOVERIES
TO THE CHGRCH

1. Wrote \qquad
\qquad
2. Discovered \qquad
\qquad
\qquad
3. Established the link \qquad
4. Sought to \qquad
\qquad
5. Emphasized A \qquad , \qquad results@
6. Invented \qquad
7. Derived planetary motions \qquad
\qquad
\qquad

The Scientific Method

Abstract

"Physicists are conservative revolutionaries. They do not give up tried and tested principles until experimental evidence - or an appeal to logical and conceptual simplicity - forces them into a new and sometimes revolutionary viewpoint. Such conservatism is at the core of the critical structure of inquiry. Pseudoscientists lack that commitment to existing principles, preferring instead to introduce all sorts of ideas from the outside."


```
- Dr. Heinz R. Pagels, "The Cosmic Code"
```

If it walks like duck, swims like duck, quacks like duck . . . it's probably not an elephant."

- Chief Petty Officer Ralph Caraway, Master Instructor, USN-retired, explaining the overarching theory of acoustic intelligence analysis.

You can observe a lot just by watching."
-Yogi Berra, American philosopher

The Scientific Method is a remarkably adaptable tool that allows us "mere mortals" to pursue the most profound truths. Its strength lies in both its beautifully articulated process and its flexibility.
We keep the Scientific Method around because it works, and most importantly, it has never failed. Not even once. Its self-correcting nature prohibits failure.
Now that's a pretty bold if not outrageous statement, so let's bring the topic into sharper focus by stipulating a distinction between the "Scientific Method" and "Science" itself:
While the Scientific Method does not fail, Science often does. It happens all the time, and is a normal, entirely expected part of the business. The Scientific Method gives us the means to (1) recognize and deal with these failures and (2) establish the credibility of successes through a rigorous, clearly defined vetting process.
In short, the Scientific Method is how we police the business of Science.

Though frequently viewed as an esoteric, intellectual protocol, it also has very practical, down-to-earth applications. One beautiful example of this (I believe) is the grand experiment of American Democracy. People a lot smarter and more credentialed than me have long argued that it's no coincidence that the architects of the American government were also products of the Galilean/Newtonian revolution of scientific rationale (think Thomas Jefferson and Benjamin Franklin, both well-established scientists, inventors, and philosophers in their own right). Look closely, and you will see a remarkable similarity between the Scientific Method and our constitutional system of informed candid debate, peer review, accountability and a formal regimen of "checks and balances."

Both protocols are ultimately beholden to unvarnished reality, and survive the most rigorous challenges to their very existence because they are specifically engineered as fluid, adaptive processes of deliberative, critical analysis and self-correction.
"Galileo was one of the first people to practice what we recognize today as the scientific process (or "method"): the dynamic interplay between experience (in the form of experiments and observations)
and thought (in the form of creatively constructed theories and hypotheses). This notion that scientists
learn not from authority or from inherited beliefs but rather from experience and rational thought is what makes Galileo's work, and science itself, so powerful and enduring.
"Galileo's methods have been crucial to science ever since. They included:

Experiments, designed to test specific hypotheses

Idealizations of real-world conditions, to eliminate (at least in ones's mind) any side effects that might obscure the main effects

Limiting the scope of inquiry by considering only one question at a time. For example, Galileo separated horizontal from vertical motion, studying only one of them at a time.

Quantitative methods. Galileo went to great lengths to measure the motion of bodies. He understood that a theory capable of making quantitative predictions was more powerful than one that could make only descriptive predictions, because quantitative predictions were more specific and could be experimentally tested in greater detail
"Observation refers to the data gathering process. A measurement is a quantitative observation, and an experiment is an observation that is designed and controlled by humans, perhaps in a laboratory.
" A scientific theory is a well- confirmed framework of ideas that explain what we observe.
A model is a theory that can be visualized, and a principle or law is one idea within a more general theory. The word law can be misleading because it sounds so certain. As we will see, scientific ideas are never absolutely certain.
"Note that a theory is a well-confirmed framework of ideas. It's a misconception to think that a scientific theory is mere guesswork, as nonscientists occasionally do when they refer to some idea as 'only a theory'. Some people who disliked Copernican theory [heliocentric system] argued that it was a 'mere theory' that need not be taken seriously. Today, people who dislike the theory of biological evolution attack it on similar grounds. Theories - well-confirmed explanations of what we observe are what science is all about and are as certain as any idea can be in science.
"The correct word for a reasonable but unconfirmed scientific suggestion (or guess) is hypothesis. For example, Kepler's first unconfirmed suggestion that the planets might move in elliptical orbits was a hypothesis. Once the data of Brahe and others confirmed Kepler's suggestion, elliptical orbits took on the status of theory rather than mere hypothesis."

- Dr. Art Hobson, "Physics -concepts and connections"

Scientific Method Flow Chart

IMPORTANT:
"Communication": Common to of the Scientific Method

Key Points in the lingo and protocol of science and the Scientific Method

1. Theory:
\qquad
\qquad
\qquad
\qquad
2. Hypothesis:
\qquad
3. Idealizations (Galileo):
\qquad
\qquad
\qquad
\qquad
4. Limiting the Scope of Inquiry (Galileo):
\qquad
5. Quantitative methods (Galileo):
6. Creating a model:
\qquad
\qquad
\qquad
7. Repeatable, predictable results/outcomes (Newton):
\qquad
\qquad
8. Fact-based rather than authority-based knowledge:

Volume:

Volume $=$ length x height x width

$$
={ }_{C}
$$

and also = \qquad x \qquad x \qquad
\qquad
\qquad

Therefore, \qquad M^{3} is equivalent to \qquad or \qquad cm^{3}

Additionally:
$1 \mathrm{M}^{3}=$ \qquad or \qquad liters (L)

1 liter = \qquad or \qquad milliliters (mL)

Using "factor-labeling" conversion method to determine \# mL in $1 \mathrm{M}^{3}$:

$$
\begin{array}{cccc}
1 \mathrm{M}^{3} & \times 10^{3} \text { Liters } & \times 10^{3} \text { milliliters } & = \\
1 & 1 \mathrm{M}^{3} & 1 \text { Liter }
\end{array} \text { milliliters }
$$

Since $1 \mathrm{M}^{3}$ equals \qquad cm^{3} and also \qquad mL ,
\qquad mL ; acm^{3} is also referred to as a " \qquad

Mass Density Calculations

Mass Density (D_{m}) (also referred to simply as "density")
is measured in \qquad per \qquad or \qquad

Example 1:

Determine the \mathbf{D}_{m} of a 67.5 gram sample of material with a volume of $30 \mathrm{~cm}^{\mathbf{3}}$

Solution:

Use factor-labeling to convert grams $/ \mathrm{cm}^{3}$ to Kilograms/ M^{3}

1. Restate the raw data as fraction:

$$
\frac{67.5 \mathrm{grams}}{30 \mathrm{~cm}^{3}}
$$

2. Add conversion factors for cancellation:

$$
\frac{67.5 \text { grams }}{30 \mathrm{~cm}^{3}} \times \frac{1 \mathrm{Kg}}{10^{3} \operatorname{grams}} \times \frac{10^{6} 10^{3} \mathrm{~cm}^{3}}{1 \mathrm{~m}^{3}}
$$

3. Restate with remaining terms and perform necessary calculations:

$$
\frac{67.5 \times 10^{3} \mathrm{Kg}}{30 \mathrm{~m}^{3}}=\ldots \mathrm{Kg} / \mathrm{m}^{3}
$$

NOTE:
Determining the D_{m} of a material can serve as an indicator of the chemical identity of the material.

Example 2:

Predicting the mass of a sample of known material

Given a $50 \mathrm{~cm}^{3}$ sample of lead, predict the mass
Solution: Set up a proportionality equation using the known D_{m} of lead
Step 1:
State the known D_{m} of lead

$$
\frac{11.3 \times 10^{3} \mathrm{Kg}}{m^{3}}
$$

Step 2:
Set up as equivalent to given sample

$$
\frac{11.3 \times 10^{3} \mathrm{Kg}}{m^{3}}=\frac{x g}{50 \mathrm{~cm}^{3}}
$$

Step 3:
Convert all quantities to like terms (grams, cm^{3}, since this is a small sample)

$$
\frac{11.3 \times 10^{6} \mathrm{~g}}{10^{6} \mathrm{~cm}^{3}}=\frac{x g}{50 \mathrm{~cm}^{3}}
$$

Step 4: Cross-multiply

$$
\frac{11.3 \times 10^{6} \mathrm{~g}}{10^{6} \mathrm{~cm}^{3}} \stackrel{\leftrightarrow}{\leftrightarrows} \longleftrightarrow \frac{x \mathrm{~g}}{50 \mathrm{~cm}^{3}}
$$

Review: Cross-multiplying	
$\frac{a}{b}=\frac{c}{d}$	$\frac{2}{3}=\frac{12}{18}$
$a \times d=b \times c$	$2 \times 18=3 \times 12$

Now the equation becomes:
\qquad x \qquad = \qquad x \qquad

After canceling like terms, the equation becomes
\qquad x \qquad $=$ \qquad
\qquad grams

Neutron Stars: The ultimate in mass density:

If a star has sufficient mass (that is to say, 8 to 20 times more than our own Sun)
when it goes \qquad the atoms of the remaining material in the core are ripped apart by the extreme \qquad and the extreme
\qquad . During this process electrons combine with protons to
form \qquad . Since the volume of a normal atom is over \qquad empty space, this once-empty volume is now filled with neutrons. The result is a material so dense that a teaspoon of this substance can weigh
\qquad
\qquad , or the same as \qquad aircraft carriers.

Self check:

| Determine the D_{m} of a 273 gram sample of material with a volume of 35 mL | answer: |
| :--- | :--- | :--- |
| Determine the mass of a $95 \mathrm{~cm}^{3}$ sample of iron | |

Vectors:

Two types of measurement used in Physics; they are

1. measures
b. Indicate \qquad only
2. \qquad measures
a. Indicate \qquad and \qquad

Examples:
Scalar
Vector
\qquad
\qquad
\qquad
\qquad

Since vector measures include the component of \qquad then that component must be taken into consideration during \qquad .

Example 1: Two bungee cords pulling in opposite directions:

Example 1a:

Net force: \qquad

Example 1b:

Net force: \qquad

Example 2: Two bungee cords pulling in the same direction:

Net force: \qquad

Note:
At this point you should see the \qquad of net forces, or the " \qquad -

Example 3: Two bungee cords pulling at a 90° angle relative to one another

Solution: Use " \qquad to \qquad " schematic

The sum of these two vectors is called a " \qquad

BUT,
The Pythagorean Theorem will solve \qquad only

What about direction?

Basic Right-Angle Trigonometry

(Invented by \qquad)

Given: a 30-60-90 triangle

One of the unique characteristics of a 30-60-90 triangle is that
the side \qquad the 30° angle
is always \qquad - \qquad the length of the \qquad .

In other words, given the \qquad angle,
the \qquad of the \qquad side over the \qquad
will always be \qquad - \qquad or \qquad .

In Right-Angle Trigonometry, this ratio is called the \qquad of the \qquad

Thus, we can state that the " \qquad of 30° is \qquad

Trig on a calculator:

Depending on what model calculator you are using, you will do trig functions in one of two ways. We will use the Sine ($\mathbf{s i n}$) of $\mathbf{3 0 ^ { \circ }}$ as an example.

Method 1:

1. Hit \sin
2. enter " $\mathbf{3 0}$ "
3. Hit " = "
4. Your answer should be "0.5."
5. If not, you're probably in "radian mode" and using a graphing calculator.
6. Go to mode (you may need to use "shift" or "2 $2^{\text {nd " }}$ to get there)
7. You should see a screen showing both"degree" and "radian."
8. Select "degree"
9. enter
10. clear
11.Repeat steps $1-3$, your answer should now be " 0.5 "

Method $\mathbf{2}$ (more common on simpler, less expensive calculators):

1. Enter " $\mathbf{3 0}$ "
2. Hit

3. Your answer should be "0.5"

Practice using other trig

 functions:Cosine $30^{\circ}=.866$
Tangent $30^{\circ}=.577$

θ ("Theta"): \qquad

Hypotenuse: \qquad

Opposite: \qquad

Adjacent: \qquad

Sine $\boldsymbol{\theta}(\sin \theta):$
the ratio of the \qquad side over the \qquad

Cosine $\boldsymbol{\theta}(\cos \theta):$
the ratio of the \qquad side over the \qquad

Tangent $\theta \quad(\tan \theta)$
\qquad side over the \qquad side

Stated more simply:

$$
\sin \theta=\frac{\mathrm{O}}{\mathrm{H}}
$$

$\cos \theta=\frac{\mathrm{A}}{\mathrm{H}}$
$\tan \theta=\frac{\mathrm{O}}{\mathrm{A}}$

Stated yet another way:

Using Trig

Example 1.

Determine the lengths of sides " O " and " A "

1. To determine "O" use "Sin", which uses the known angle and the known hypotenuse (H)

2. To determine " A " use "Cos", which uses the known angle and the known hypotenuse (H)

Example 2.

Determine the lengths of sides " H " and " O "

1. To determine "H" use "Cos", which uses the known angle and the known adjacent (A)

$\rightarrow H=\frac{A}{\operatorname{Cos} 28^{0}}$
$=\xrightarrow{25}$ $=$ \qquad
2. To determine " \mathbf{O} " use "Tan", which uses the known angle and the known adjacent (A)

Example 3:

Determine length of " H " and the value of " θ "

1. Begin by determining " θ ". Since " O " and " A " are known, use "Tan".

2. Determine "H" by using either Sine or Cosine
$H=\frac{0}{\sin \theta}$
$H=\frac{A}{\cos \theta}$

Using the "reciprocal function" on the calculator

Since we know that the Sine of $\mathbf{3 0}{ }^{\circ}$ is $\mathbf{0 . 5}$, we'll start there.

Method 1:

1. Hit "Shift" or " $\mathbf{2}^{\text {nd } "}$
2. Hit \sin
3. Enter ". 5 "
4. Hit" ="
5. Your answer should be " $\mathbf{3 0}$ "

Method $\mathbf{2}$ (for simpler, less expensive calculators):

1. Enter " . 5 "
2. Hit "Shift" or " $\mathbf{2 d}^{\text {nd }}$
3. Hit \sin
4. Your answer should be " $\mathbf{3 0}$ "

Practice using other trig functions:
 $\cos ^{-1} .866 \rightarrow 30^{0}$
 $\tan ^{-1} .577 \rightarrow 30^{0}$

Informal Lab: Practice problems

ASSIGNMENT: Solve for unknown sides and angles using trigonometry plus additional instructions below:

1. Do NOT Pythagorean Theorem!
2. DRAW these in larger scale on a separate paper - use a straight-edge if it helps. The idea is to get you used to drawing, as Galileo recommends!
3.

3.

4.

1. The sine, cosine, and tangent of any/every angle between \qquad and \qquad
is \qquad to that angle alone.
2. Thus, if we know the sine, cosine and/or tangent of an angle, then we have the means to \qquad the original angle.
3. NOTE:

This course will take the "old-school trig" approach in analyzing angles, and therefore all angles ("vectors") will be evaluated as if their measures are between \qquad and \qquad .

Example 1:

$$
125^{\circ} \text { will be evaluated as ___ }\left(180^{\circ}-125^{\circ}\right) \text { (measure from } x \text {-axis) }
$$

Example 2: 213° will be evaluated as ___ $\left(213^{\circ}-180^{\circ}\right)$ (measure from x-axis)
Example 3: 325° will be evaluated as ___ $\left(360^{\circ}-325^{\circ}\right)$ (measure from x-axis)

Informal Lab: Practice evaluating angles

Hint: Always measure from the closest horizontal (" x-axis")

2.

3.

$\theta=$ \qquad
4.

Common mistakes:

Do not measure from

Back to the beginning of this topic:

Given:

1. Two bungee cords attached at a common point.
2. Bungee "a" pulls with 5 pounds of force at 0°
3. Bungee " b " pulls with 3.5 pounds of force at 90°
4. What is the sum of the forces of the two bungee cords?

Solution:

Draw *:

Bungee "b"
$3.5 \mathrm{lbs}, 90^{\circ}$

Bungee "a", $5 \mathrm{lbs}, 0^{\circ}$ * \qquad to \qquad
schematic representation

* NOTE: Always draw
 \qquad vector first beginning with the
 \qquad

1. Calculate the tangent of the unknown angle " \qquad $": \tan =$ - $=$ \qquad
2. $\tan ^{-1}$ \qquad \rightarrow \qquad
3. Calculate the hypotenuse (or " \qquad ")

Using trig, we know that $\mathrm{H}=\frac{0}{\sin \theta}$ and/or $\frac{\mathrm{A}}{\cos \theta}$
Selecting the first trig formula,

$$
\mathrm{H}=\square=\square=\square \text { (solution) }
$$

Thus, the sum (\qquad) of the forces of the two bungee
cords is \qquad at \qquad degrees

Adding Vectors:

Example 1:
Given the following

Determine the sum of $\mathrm{V}_{\mathbf{1}}+\mathrm{V}_{\mathbf{2}}$

Solution:
(1) Draw each vector individually, and label accordingly
(2) Add component vectors and label accordingly
(3) Use trig to solve for components
(4) Add components
(5) Construct new vector ("resultant") using component sums
(6) Use trig to evaluate resultant
$V_{2}, 6.3$ Newtons, 63°

$A_{2}=$
) $\times(\ldots \quad$ _ $)$ $\begin{array}{ll}= \\ = & \mathrm{X}\end{array}$
$\mathrm{O}_{1}=($
) $\times(\ldots$ ___ $)$
\qquad X \qquad
V_{1}, 4.1 Newtons, 27°
$=$
$\mathrm{O}_{2}=($ \qquad) $\times(\ldots \quad$) $=\ldots \quad \times$ $=$

Construct/draw in order:
$A_{\text {total }}$
$\mathrm{O}_{\text {total }}$
Resultant

\qquad

Example 2:

$$
\begin{aligned}
& \mathrm{V}_{1}: 48^{\circ}, 50 \text { meters } / \mathrm{sec} \\
& \mathrm{~V}_{\mathbf{2}}: 147^{\circ}, 75 \text { meters } / \mathrm{sec}
\end{aligned}
$$

A_{1}	O_{1}
$\mathrm{~A}_{2}$	O_{2}
$\mathrm{~A}_{\mathrm{t}}$	O_{t}

Example 3:

Forces in Equilibrium

Given:

V_{1}
V_{2}
V_{3}
$V_{1}: 33^{\circ}, 3.1 \mathrm{~N}$
$\mathrm{V}_{2}: 103^{\circ}, 2.0 \mathrm{~N}$
$V_{3}: 338^{\circ}, 1.6 \mathrm{~N}$

Calculations:

A_{1}	O_{1}
A_{2}	O_{2}
A_{3}	O_{3}
A_{t}	O_{t}

Resultant calculations:
$\operatorname{Tan} \theta$
Tan-1 \qquad $=$ \qquad

$$
H=\frac{O}{\sin \theta}=\square=
$$

Calculate the vector that will cancel the resultant Equilibrium Vector ($\mathrm{V}_{\text {eq }}$) calculations

MOTION

1. Velocity:
a. \qquad measurement
b. \qquad and \qquad
c. \qquad over \qquad ()
d. Measured in:
2. \qquad per___ \square (British)
3. \qquad per \qquad (___ \qquad) (Metric)
4. Average Velocity ($\mathrm{V}_{\text {avg }}$)

Averages \qquad in velocity over a given period of time.
Example: Driving from Portland to Boston

3. Uniform Velocity:

Velocity that does not \qquad
(Example: " \qquad - ___
4. Acceleration:
a. \qquad measurement
b. A \qquad in \qquad * over \qquad * (" V_{Δ} " or " $\quad \mathrm{V}$ ") (" $\Delta^{\prime \prime}=$ " " $)$
c. Measured in:

1. \qquad per \qquad per___ \qquad (British)
2. \qquad per \qquad per___((_____) (Metric)
Explanation of units of Acceleration: ($" \mathrm{ft} / \mathrm{sec}^{2}=$ feet per second per second") ("m/sec ${ }^{2}$ = meters per second per second")

Acceleration (continued):

1. The acceleration of gravity (ag_{g})

On Earth:
a. \qquad $\mathrm{ft} / \mathrm{sec}^{2}$ (British)
b. \qquad $\mathrm{m} / \mathrm{sec}^{2}$ (Metric)

CAUTION:

Gravity is acceleration,
BUT
Not all acceleration is gravity!
c. Thus, one " g " = \qquad or \qquad
2. Key words:
a. "Boost":
b. "Retro-burn"

c. Negative g's
3. Acceleration due to a change in direction:

Since acceleration is defined as
a \qquad in \qquad ,
and velocity is defined as
\qquad and \qquad
then a \qquad in \qquad results in \qquad .

Example 1: Beach Bucket

Example 2: The "Gravitron"

Critical Factors in Acceleration Calculations:

1. V_{i} :
2. V_{f} :
3. $a:$
4. $\mathrm{s}:$
5. t :

" Three outa five ain't bad!"

Given any \qquad of the above factors, the remaining \qquad factors may be calculated

Basic Formulas Used in Acceleration Problems:

V_{i}	V_{f}	a	s	t	basic formula:

Acceleration Formula Cheat Sheet

Points to ponder

Given this formula: $s=V_{i} t+\frac{1}{2} a t^{2}$
Solve for t
(1) $s=V_{i} t+.5 a t^{2}$
(2) $V_{i} t+.5 a t^{2}=s$
(3) $+(-s)+(-s)$
(4) $V_{i} t+.5 a t^{2}+(-s)=0$
(5) $.5 a t^{2}+V_{i} t+(-s)=0$
(6)

Change symbol	
from	to

Informal Lab: Working through acceleration problems

Example 1:

How long will it take an object to drop 4 feet?
(1)
(2)
(3)

Step 1: Does this question involve gravity and /or acceleration? If so, then go to:
Step 2: Inventory
(2) V_{i}
V_{f}
(2) a
(3) S
(1) t

Step 3: What is the question?
Step 4: Look for the "odd man out" (\otimes)
Step 5: Look for \otimes on the Cheat Sheet

Step 6: Select formula corresponding to "?"
Step 7: Insert correct values in formula and solve

- Be sure to use correct standard units! Convert if necessary.

Example 2:

(Part 1)
A rock is dropped from a bridge. It takes 1.35 seconds for the rock to strike the water below. How high (in ft) is the bridge above the water?
V_{i}
V_{f}
a

S
t

(Part 2)

How fast is the rock travelling at impact?
V_{i}
V_{f}
a
S
t

Example 3.

A ball is thrown straight down from a cliff. The velocity of the ball as it leaves the thrower's hand is $60 \mathrm{ft} / \mathrm{sec}$. How far will the ball have travelled after 2 sec.?
V_{i}
V_{f}
a

S
t

Example 4.

A rocket boosts from the launch pad at $48 \mathrm{ft} / \mathrm{sec}^{2}$. How high is the rocket after 5 sec .?

Example 5.

A car goes from 55 MPH to 70 MPH in 10 sec . What is its rate of acceleration?
(Hint: convert to standard units first)

Example 6.

An aircraft with a landing speed of 180 MPH lands on an aircraft carrier by catching the arresting wire and coming to a complete stop in 2 sec . How many G's does the pilot experience? (Be sure to convert to correct units first!)

like everybody's got a rock collection."

Q1: What is the initial velocity $\left(\mathrm{V}_{\mathrm{i}}\right)$ of the rock going up? V_{i} V_{f} a s t	Q2: How long does it take the rock to reach max height? V_{i} V_{f} a s t
$\mathrm{V}_{\mathrm{i}}=$	$\mathrm{t}=$
Q 3: How long does it take the rock to come back down? V_{i} V_{f} a s t	Q4: What is the final velocity of the rock at the return point? V_{i} V_{f} a s t
$\mathrm{t}=$	$\mathrm{V}_{\mathrm{f}}=$

Informal Lab Problems:

1. A bullet is fired vertically with an initial velocity $0 f 250 \mathrm{~m} / \mathrm{sec}$.

Discounting air resistance,
a. How high does it go?
b. How long does it take to reach max height?

2. A bullet is fire vertically and reaches a max height of 700 ft Discounting air resistance,
a. What is its initial velocity?
b. How long does it take to reach max height?

Kinematics: Motion in Two Dimensions

Example 1:

Example 2:

Using a level shot to determine Muzzle Velocity ($\mathrm{V}_{\text {muzzle }}$)
Theory:

1. Definition of velocity: $(-)$
2. V_{x} is stipulated as \qquad ("idealization")
3. $V_{\text {muzzle }}$ is set at 0° elevation and is therefore \qquad to V_{x}
4. " S " is measured as \qquad
5. " t " is calculated using \qquad

Calculations/measurements:

1. S_{x} \qquad
2. S_{y} \qquad
3. $t=$
4. $\mathrm{V}_{\text {muzzle }}=$

Determining Muzzle Velocity

$S_{y}=$ \qquad (as measured)
$S_{x}=$ \qquad (as measured)

$$
t=\sqrt{\frac{S_{y}}{.5 a}}=\sqrt{\frac{.5 a}{.5 a}}=\sqrt{ }=
$$

$$
V_{x}=\frac{S_{x}}{t}=\square=\square V_{m u z z l e}
$$

(only when elevation is set at 0°)

Predicting range of angled shot based on known V_{m}

OBJECTIVE: Predict S_{x} given known $V_{\text {muzzle }}$

1. Proposition: $\quad S_{x}=\frac{V_{x}}{\downarrow} \times \mathrm{t}_{\text {total }} \longrightarrow\left(\mathrm{t}_{\text {total }}=\frac{\left[\left(\mathrm{t}_{1}\right)+\left(\mathrm{t}_{2}\right)\right]}{\swarrow}\right.$

$$
=(\quad) \times[(\quad)+(\quad)]=
$$

\qquad
3. $V_{x}=$
4. $\mathrm{V}_{\mathrm{y}}=$
5. $\mathrm{t}_{1}=$
6. $S_{y 1}=$
6. $\mathrm{T}_{2}=$

Sound:

Frequency, wavelength, velocity:

The role of the medium in a mechanical wave
The medium determines \qquad of a wave

The Doppler Effect:

Where:

$\mathrm{v}_{\mathrm{s}}=$ Velocity of the Source
$\mathrm{v}=$ Velocity of wave
$\mathrm{f}=$ Real frequency
$f^{\prime}=$ Apparent frequency

Equation to determine velocity of source:

$$
V_{s}=\frac{V\left(f^{\prime}-f\right)}{f^{\prime}}
$$

Doppler Effect Real World Example:

A sonar analyst detects an underwater sound at a frequency of 319.63 HZ .
He knows from prior intelligence that sound is actually propagated at 318.00 hz .

1. Is the sound source approaching or receding?
2. What is the speed of the source in Knots (nautical miles per hour)?

Data:

1. Speed of sound in water $\sim 4900 \mathrm{ft} / \mathrm{sec}$
2. 1 Nautical mile $\sim 6000 \mathrm{ft}$.

U.S. P-3 Orion and Soviet submarine

Structure of the atom and the nature of light

Recall:

De Broglie Wavelength

Wile E. Coyote's Last Hurrah!

Hubble Law

Hubble's law or Hubble—Lemaître's law is the name for the observation that:

1. All objects observed in deep space (extragalactic space, $\sim 10 \mathrm{Mpc}$ or more) have a doppler shiftmeasured velocity relative to Earth, and to each other;
2. The doppler-shift-measured velocity of galaxies moving away from Earth, is proportional to their distance from the Earth and all other interstellar bodies.

In effect, the space-time volume of the observable universe is expanding and Hubble's law is the direct physical observation of this. It is the basis for believing in the expansion of the universe and is evidence often cited in support of the Big Bang model.

Although widely attributed to Edwin Hubble, the law was first derived from the General Relativity equations by Georges Lemaître in a 1927 article. There he proposed that the Universe is expanding, and suggested a value for the rate of expansion, now called the Hubble constant. Two years later Edwin Hubble confirmed the existence of that law and determined a more accurate value for the constant that now bears his name. The recession velocity of the objects was inferred from their redshifts, many measured earlier by Vesto Slipher in 1917 and related to velocity by him.

The law is often expressed by the equation $v=H_{0} D$, with H_{0} the constant of proportionality (the Hubble constant) between the "proper distance" D to a galaxy and its velocity v (see Uses of the proper distance). H_{0} is usually quoted in $(\mathrm{km} / \mathrm{s}) / \mathrm{Mpc}$, which gives the speed in km / s of a galaxy 1 megaparsec $\left(3.09 \times 10^{19} \mathrm{~km}\right)$ away. The reciprocal of H_{0} is the Hubble time.

Hubble law: $V=H_{0} D$
Where:
$V=$ velocity in Km/sec
Ho = Hubble Constant $=\frac{71 \mathrm{Km} / \mathrm{sec}}{\mathrm{Mpc}}$
$\mathrm{D}=$ distance in parsecs (pc)
1 parsec (pc) = 3.26 LY

Einstein and LeMaitre

Example:

Astronomers observe a galaxy 7 billion light years away.

1. How fast is the galaxy moving away from us?
2. How long has it been travelling?
"The most beautiful thing we can experience is the mysterious. It is the source of all true art and science."
-Albert Einstein

Michelson - Morley Experiment

Albert Michelson

1. \qquad
2. \qquad

Luminiferous Ether (Aether) (the "Ether")

1. \qquad
2. \qquad

Michelson-Morley Experiment

- As the earth moves through the ether, the "wind" will act like the river current, affecting the motion of the light waves.
- Rotating the experiment will cause interference fringes to change, proving the existence of the ether.

George Fitzgerald \qquad

Hendrik Lorentz : \qquad

Lorentz Factor: $\sqrt{1-\frac{V^{2}}{c^{2}}}$ or γ ("Gamma")
Where

Time: $T_{\Delta}=\frac{\mathrm{T}}{\sqrt{1-\frac{\mathrm{V}^{2}}{\mathrm{c}^{2}}}} \quad$ Length: $\mathrm{L}=\mathrm{L}_{\Delta} \times \sqrt{1-\frac{\mathrm{V}^{2}}{\mathrm{c}^{2}}}$

Relativity Toolbox

Where:
$\mathrm{T}_{\Delta}=$ \qquad
$\mathrm{T}=$ \qquad
$\mathrm{C}=$ \qquad
$\mathrm{V}=$ \qquad
$\mathrm{L}_{\Delta}=$ \qquad
$\mathrm{L}=$ \qquad

Relativistic Velocities (\qquad)

Non-Relativistic Velocities \qquad
"Gamma" (γ) is the factor that allows us to compute \qquad in both
\qquad and \qquad given a specific velocity; these effects are most evident at \qquad
\qquad , but occur at any and all velocities.

Einstein's Two Postulates of Special Relativity:

1. The laws of physics \qquad
2. The speed of light \qquad
\qquad

Quotes by Albert Einstein:

On Relativity:

"When you are courting a nice girl, an hour seems like a second. When you sit on a red - hot cinder, a second seems like an hour. That's relativity."

On virtue:
"As far as I'm concerned, I prefer silent vice to ostentatious virtue."

On traffic safety:

"Any man who can drive safely while kissing a pretty girl is simply not giving the kiss the attention it deserves."

On nationalism:

"Nationalism is an infantile disease. It is the measles of mankind."

To understand why Relativity is necessary we have to look at the practical problems resulting from a Cosmic Speed Limit (The speed of light: " c ")

$$
\text { (} C=186,000 \mathrm{mi} / \mathrm{sec}, 300,000 \mathrm{~km} / \mathrm{sec} \text {, and } / \text { or } 3.0 \times 10^{8} \mathrm{~m} / \mathrm{sec} \text {) }
$$

We'll start with a ridiculous imaginary clock:

After 1.0 sec of travel :

Relativity Example 1.

A spacecraft passes NASA Ground Control at .9c.
A video camera monitors the clock inside the cabin and transmits the image to an observer in Ground Control. The observer has his own clock adjacent to the console video screen displaying the shipboard clock.
fig. 1

fig 2. Ground Control observer's console

(camera image)
Ship's clock

Ground Control clock

Question 1: The Ground Controller observes the image of the Ship's clock second hand as it completes 1 rotation (60 sec). How much time has elapsed on the Ground Control clock?

Step 1: Calculate "Gamma" (γ)
$\gamma=\sqrt{1-\frac{V^{2}}{c^{2}}}$

Step 2: Solve for T_{Δ}
$\mathrm{T}_{\Delta}=\frac{\mathrm{T}}{\gamma}$

Question 2: What is the length of the spacecraft from the perspective of the observer?

$$
\mathrm{L}=\mathrm{L}_{\Delta} \times \gamma
$$

Relativity and the Muon

Evidence supporting Einstein's theory of Special Relativity is found in the analysis of the behavior of muons.

Muons are subatomic particles that are created in Earth's upper atmosphere when cosmic rays (typically protons) collide with the nuclei of air molecules; muons have a velocity of .998 c and a "life span" of $\mathbf{2 . 2 \times 1 0 ^ { - 6 }}$ seconds (at rest), after which they disintegrate into other particles.

Scientists conducted an experiment in which they detected the presence of muons at the top of Mount Washington, New Hampshire.

After recording their results, they then moved their detection equipment to a New England beach ("sea level").

Given the altitude of Mt. Washington (approximately 2000 meters), and the velocity (V) and "life span" (T) of muons, (and discounting the effects of Relativity) there should have been no muons detected at sea level, since :

In other words, according to classical Newtonian principles the muons should have disintegrated a little over a third of the distance down from the top of the mountain.

Yet, when the detection equipment was activated at sea level, muons were clearly and abundantly present! How come?

Solution:

1. Calculate "Gamma" for .998c
2. Calculate T_{Δ}
3. Calculate L_{Δ} from the perspective of the muon:

Famous quotes by baseball legend and American philosopher Yogi Berra:

On the Scientific Method:

"You can observe a lot just by watching."
On Relativistic Time:
"This is the earliest l've ever been late!"
On the Uncertainty Principle of Quantum Physics:
"When you come to a fork in the road, take it."

The Twins Paradox

One of pair of identical twins is selected to be a crew member of a deep-space expedition to a star eleven light-years distant.
The other twin will remain on Earth.
The vessel will travel at .998c
Discounting the time spent exploring the star system, determine the ages of each twin upon the vessel's return to Earth

Gamma Chart For Relativistic Velocities

v	v^{2}	$1-v^{2}$	$\begin{aligned} & \sqrt{\left(1-v^{2}\right)} \\ & \left(" \mathbf{Y}^{\prime \prime}\right) \\ & \hline \end{aligned}$
(. 1 or one-tenth under " c ")	. 81	. 19	. 44
(. 01 or one-hundredth under " c ")	. 980	. 02	. 14
.999c (. 001 or one-thousandth under "c")	. 998	. 002	. 045
$\begin{array}{r} .9999 \mathrm{c} \\ \begin{array}{r} \text { (.0001 or one-ten thousandth } \\ \text { under "c") } \end{array} \\ \hline \end{array}$. 9998	. 0002	. 014
	. 99998	. 00002	. 0045
	. 999998	. 000002	. 0014
.9999999c (. 0000001 or one-ten millionth under " c ")	. 9999998	. 0000002	. 00045
.99999999c (. 00000001 or one-hundred millionth under " c ")	. 99999998	. 00000002	. 00014
	. 999999998	. 000000002	. 000045
$\begin{array}{r} .9999999999 \text { c } \\ \text { (.0000000001 or one-ten billionth } \\ \text { under " } c \text { ") } \end{array}$. 9999999998	. 0000000002	. 000014

Further Problems with Relativistic Travel

Example 1:

A crew of astronauts leaves Earth to explore deep space.
Given:

1. From the crew's perspective, they will experience one year of shipboard time travelling within a billionth of " c ".
2. "Gamma" for their velocity is 0.00001 (See "Gamma Chart", previous page)

Determine how much time will have elapsed on Earth when they return.

Example 2:

Given: A space vessel traveling at .9c collides with an small object with a mass of grain of salt, approximately $5.86 \times 10^{-8} \mathrm{Kg}$

Formula for Kinetic Energy

$$
\begin{gathered}
K E=\frac{1}{2} m v^{2} \\
\text { or } \\
K E=.5 m v^{2}
\end{gathered}
$$

Example 3:

Given: A space vessel traveling at .9c collides with an small object with a mass of 2.5 grams (roughly the mass of a penny)

How much kinetic energy (KE) is released at impact?

Comparison: The energy released by atomic bomb detonated over Hiroshima was approximately 6.5×10^{13} Joules, or $65,000,000,000,000$ or 65 thousand billion Joules

The effects of acceleration on the path of a photon

An Einstein "Thought Experiment"

If the Sun was to suddenly vanish, would the Earth break from its orbit at the instance of the Sun's disappearance?

Newton's View \qquad

Einstein's view: \qquad

Proof of gravity affecting light during solar eclipse:

Another Thought Experiment:

Escape Velocity: \qquad

Data:
$V_{e S C}=\sqrt{\frac{2 G M}{r}}$
$\mathrm{G}=60672 \times 10^{-11}$
$M=6.0 \times 10^{24} \mathrm{Kg}$
$r_{\text {earth }} 6.37 \times 10^{6} \mathrm{~m}$

Now let's super- shrink the Earth and reduce the radius to $7.8 \mathrm{~mm}\left(7.8 \times 10^{-3} \mathrm{~m}\right)$ and calculate the new escape velocity.

The Most Famous Equation in the World:

$$
E=m c^{2}
$$

To get a handle on this, let's first take a look at a lesser known version:

$$
\mathrm{E}=\Delta \mathrm{mc}^{2}
$$

Where:
$\mathrm{E}=$ "Binding Energy"
$\Delta \mathrm{m}=$ "mass defect"
$C^{2}=$ speed of light squared $\left(3.0 \times 10^{8}\right)^{2}$

Data:

Mass of a proton $=1.67262 \times 10^{-27} \mathrm{Kg}$ Mass of a neutron $=1.67493 \times 10^{-27} \mathrm{Kg}$
Mass of an electron $=9.1094 \times 10^{-31} \mathrm{Kg}$

We'll start by constructing a Helium atom and predicting its mass based on the known masses of its constituent parts.
Remember, a Helium atom contains
2 protons, 2 neutrons, and 2 electrons
${ }_{2}^{4} \mathrm{H}$ compared to ${ }_{92}^{235} \mathrm{U}$

Top \# = \qquad

Bottom \# = \qquad

2 protons = \qquad Kg

Predicted total $=$
 Kg
Actual total $=6.6463 \times 10^{-27} \mathrm{~kg}$
Difference: \qquad Kg
(Missing mass or " ")

$$
\begin{aligned}
& \mathrm{E}=\Delta \mathrm{mc}^{2} \\
& \text { = } \\
& \text { X } \\
& \text { = } \\
& \text { X } \\
& \text { = } \\
& \text { Joules }
\end{aligned}
$$

Now compare the mass - energy conversion factor:

Note the exponential difference

Finally:

$$
E=m c^{2}
$$

Alternate way of reading the formula:
"

Question:

How much TOTAL energy is contained in 1 Kilogram of material (like the Laboratory Rock)?

Epilogue: Where do we go from here?

The Four Fundamental Forces:
B.B.

0 sec 10^{-43} sec
Described by:

Conflict: The existence of \qquad
\qquad
\qquad
String Theory - possible solution?
All "matter" is \qquad
Original model called for the existence of \qquad
\qquad
Problems developed because of mathematical \qquad

Anomalies resolved by \qquad
Strength of String Theory: \qquad
Weakness of String Theory: \qquad

