(Quest	ion	Answer	Marks	Guidance
1	(a)	(i)		1	ALLOW 'circle' to include the two adjacent C atoms
		(ii)	permanent (dipole) – permanent dipole (bond/forces) ✓ instantaneous (dipole) – induced dipole (bond/forces) ✓	2	NOT just 'permanent dipole bond/forces' DO NOT ALLOW pd etc ALLOW van der waals IGNORE permanent (dipole) – induced dipole (bond/forces) Each mention of any other type of bond in addition to both of these is a CON
		(iii)	H = 0 $H = 0$ $H =$	2	ALLOW –COC/ for –COOH ALLOW –OH, HOCH ₂ CH ₂ OH

(Quest	ion	Answer	Marks	Guidance	
1	(a)	(iv)	condensation / esterification AND water / $H_2O \checkmark$	1	If $-COCl$ in (a) (iii) MUST have HCl NOT H ₂ O	
	(b)	(i)	vapours are condensed / turned into liquid AW ✓ mixture needed to be heated for a long time (to break down polymers / for reaction to occur) OR no reactants or products / vapours are lost OR high temperature required for reaction ✓	2	IGNORE any reference to 'fire' / toxic NOT just 'vapours' fall back down etc. i.e. 'vapours' need state change NOT solution	
		(ii)	 <i>choice of solvent:</i> dissolves salt well at higher temp but very little / none at room temp AW ✓ <i>method:</i> 1. use hot solvent ✓ 2. dissolve in minimum amount of solvent ✓ 3. leave to crystallise/cool ✓ 4. filter off crystals, (soluble) impurities are left in filtrate / solution AW ✓ 5. wash with (cold) <u>solvent</u> and dry ✓ <i>MP4 is QWC – i.e. for linking removal of impurities to filtration</i> 	6	ALLOW boiling point of solvent is lower than the melting point of the salt IGNORE any reference to INSOLUBLE impurities	
	(c)	(i)	bonds (in a molecule) <u>absorb</u> \checkmark specific/different/certain (IR) frequencies/wavelengths \checkmark alternative for 1st & 2nd marking points: <u>absorbing</u> <i>different frequencies</i> \checkmark causes different bonds to vibrate \checkmark	2	IGNORE references to energy NOT 'electrons in bonds'	

	Quest	ion	Answer	Marks	Guidance
1	(c)	(ii)	structure of A +Na 'OOC COO' Na ⁺	5	REMEMBER marking points are independent ALLOW any correct structural formulae ALLOW without Na ⁺
			No OH bond since no <u>broad</u> absorption peak above about (2500- 3200) / 3000 (cm ⁻¹) \checkmark C=O absorption peak at about 1720-1740 (cm ⁻¹) (so must be carboxylate AW) \checkmark structure of B HOCH ₂ CH ₂ OH \checkmark		IR data may be drawn on the spectra, please check reference to any functional group other than a carboxylic acid / carboxylate is a CON ALLOW frequency within stated range
			OH bond since (broad) absorption peak about 3200-3600 (cm ⁻¹) \checkmark		ALLOW any correct structural formula
	(d)	(i)	temperature <u>below</u> which the polymer turns glassy/brittle ✓	1	<u>'below</u>' may be expressed by reducing temperature/ cooling / shown in a diagram
		(ii)	it would soften / melt / turn into liquid/fluid \checkmark	1	
	(e)	(i)	chains are further apart / less close together in PBT \checkmark so has <u>weaker</u> intermolecular bonding/forces than PET \checkmark so chains in PBT can move over one another more easily \checkmark	3	ORA IGNORE references to ordered chains etc. IGNORE fewer/less imb/fs
		(ii)	butane-1,4-diol butane / butan / but AND diol = \checkmark 1,4- = \checkmark	2	IGNORE commas & dashes '1,4-' must be between 'butane' & 'diol'
			Total	28	

Q	uesti	on	Answer	Marks	Guidance
2	(a)	(i)	• • • • • • • • • • • • • • • • • • •	3	
			lone pairs as shown ie must link to bond (any type of drawn line) \checkmark two bonds shown as arrows from O ⁻ pointing to a single <u>Fe³⁺</u> \checkmark dative (covalent)/coordinate bond labelled (anywhere on diagram) \checkmark		 ECF allow this marking point if the C=O are used instead of the O⁻ (so max mark of 2 if incorrect Os used) CON if any other bond is specifically labelled
		(ii)	$[Fe(C_2O_4)_3]^{3-} \checkmark$ <u>octahedral</u> \checkmark	2	ALLOW without square brackets IGNORE separate correct charges for both Fe & C ₂ O ₄ as long as overall charge 3- is shown ALLOW structural formula
	(b)	(i)	the E° of $CO_2/(COOH)_2$ half-cell is more negative/less positive than that of the Fe^{3+}/Fe^{2+} half-cell OR $E_{cell} = +1.26$ V, so reaction is feasible \checkmark (COOH) ₂ will release electrons / reduce Fe^{3+} OR Fe^{3+} will gain electrons / oxidise (COOH) ₂ \checkmark	2	ALLOW (in this question only) <i>E</i> ° of the Fe ³⁺ half-cell etc. (there are only 2 half-cells given)
		(ii)	2Fe ³⁺ (aq) + (COOH) ₂ (aq) → 2Fe ²⁺ (aq) + 2CO ₂ (g) + 2H ⁺ (aq) correct formulae AND balanced ✓	2	ACCEPT CO ₂ (aq) If balanced with electrons on either side max mark = 1
			state symbols correct ✓		State symbol mark may be awarded if species are correct even if equation is reversed

C	Question		Answer	Marks	Guidance
2	(b)	(iii)	3d 4s Fe ²⁺ Image: Arrow of the state of the stateo	2	
		(iv)	half-filled <u>d</u> shell (is more stable) AW ✓	1	AW eg only 1 electron in each of the d orbitals
	(c)	(i)	 manganate(VII) solution in <u>burette</u> ✓ <u>pipette</u> known/stated volume of ethanedioate solution OR graduated/volumetric <u>pipette</u> for ethanedioate solution ✓ 	6	If pipette & burette used wrong way round then 1 mark only for points 1 and 2 AND mark 5 is only available if purple changes to colourless IGNORE 'bulb'
			 add acid ✓ warm / heat solution / 60°C ✓ titrate (AW) until <u>pink</u> colour persists/remains AW ✓ <i>no indicator needed because</i> only MnO₄⁻(aq) is coloured OR 		ALLOW acid / 'acidified' in either solution NOT purple alone here MUST HAVE pink
			a colour change takes place during the reaction AW ✓ QWC to gain the 1 st mark the spelling of burette has to be correct at least once in the answer		ALLOW purple–colourless NOT colourless–purple INCORRECT colour change is a CON eg orange–green, purple–pink etc.

Q	uesti	on		Answer	Marks	Guidance
2	(c)	(ii)			6	The marks are awarded for the working out given in bold
			1.	moles of KMnO₄ used in titration = 18.40/1000 x 0.0500 ✓ = 0.0009200		ALLOW ecf between each step
			2.	moles potassium ethanedioate used in titration = $5/2$ x answer from $1 \checkmark = 0.002300$		
			3.	moles potassium ethanedioate in 100 cm ³ = 4 x answer from 2 \checkmark = 0.009200		3. may be done in 2 steps via moles dm ⁻³ and still scores only 1 mark
			4.	$M_{\rm r}$ of K ₂ C ₂ O ₄ •H ₂ O = 184 / 184.2 \checkmark		
			5.	mass potassium ethanedioate in 100 cm ³ = 184.2 x (answer from 3) \checkmark = 1.6946		
			6.	Answer = 1.695 or 1.69 g ✓ to 4 or 3 sig figs		Note: 1 error means only 1 mark is lost eg incorrect M_r eg these are probably 5 marks but place ticks appropriately: 0.200 ($/M_r$ instead of x M_r) 3.39 ($/2$ missing) 5010 (<i>in step 1: x(1000/18.40) rather than /</i>) the following is probably 4 marks 0.42 (missing x4 and incorrect sf)

Q	uesti	on	Answer	Marks	Guidance
2	(d)	(i)	X to Y: increases \checkmark rate speeds up as (catalyst) Mn ²⁺ is formed \checkmark Y to Z: decreases \checkmark rate slows as reactants / C ₂ O ₄ ²⁻ / MnO ₄ ⁻ are/is used up / as concentrations of reactants fall \checkmark	4	
		(ii)	colorimetry / use a colorimeter / visible spectroscopy / visible spectrophotometry ✓	1	ALLOW conductivity / gas volume IGNORE pH
		(iii)	EITHER (colourless) effervescence/fizzing/bubbling AW ✓ OR (purple/pink) colour fades AW ✓	1	IF MORE THAN ONE ANSWER MARK FIRST IN LIST ONLY NOT gas forms NOT colour change IGNORE references to absorbance incorrect colour is a CON
			Total	30	

C	Questi	ion	Answer	Marks	Guidance
3	(a)	(i)	phenol / hydroxyl ✓ carboxyl / carboxylic acid ✓ amino / amine ✓	3	NOT hydroxide, alcohol IGNORE 'primary' but 'secondary' is a CON
		(ii)	(neutral) FeCl ₃ / iron(III) chloride ✓ turns purple / violet (phenol present) ✓	2	NOT blue or pink If initial colour is given, it must be yellow, orange or colourless otherwise CON
	(b)	(i)	contains a positive charge and a negative charge ✓ HO O O O O O O O O O O O O O O O O O O	2	IGNORE dipolar MUST indicate that there are only 1+ and 1- charge present this may be indicated by the structure drawn
		(ii)	acidic ✓ (because it has a) phenol group ✓	2	ALLOW structural formula for phenol IGNORE references to –COOH & -NH ₂ groups
		(iii)	The second seco	2	IGNORE any Na ⁺ ions

Question	Answer	Marks	Guidance
3 (c) (i)	they have different <u>shapes</u> / only one with correct <u>shape</u> AW ✓ only one will fit/bind in active site /binding site / receptor ✓	2	IGNORE complementary IGNORE enzyme NOT 'react with'
(ii)	it is better / less adverse effects / more effective than other drugs ✓	1	ALLOW 'benefits outweigh side effects' IGNORE reference to 'disease'
(d)	optical isomers: \bigvee_{NH_2} chiral Cs shown on the diagram \checkmark 4 different groups around (each) C OR not superimposable on their mirror image \checkmark cis-trans isomers: C-C between the chiral (AW) atoms is prevented from rotating by the ring structure \checkmark H \bigvee_{NH_2} \bigvee_{H_2} H_2 \bigvee_{H_2} \bigvee_{H_2} H_2 \bigvee_{H_2} H_2	4	NOT 'functional groups' IGNORE references to 'ring rotation' H's may not necessarily be shown as in MS ACCEPT if NH ₂ groups only are shown with lines/wedges/dotted lines etc.
	H H H H H H H H H H		MUST CONVINCE that we have cis & trans isomers
	Total	18	

G	luesti	ion	Answer	Marks	Guidance
4	(a)	(i)	order for $[CH_3CI] = 1 \checkmark$ order for $[H_2O] = 2 \checkmark$	2	
		(ii)	rate = k [CH ₃ Cl] [H ₂ O] ² \checkmark overall order = 3 \checkmark	2	ALLOW with 'x's in rate equation ECF from (i) ECF from rate equation
		(iii)	slow step/rate determining step involves one CH_3Cl (molecule) so it is 1 st order AW \checkmark one OH ⁻ formed from the two H ₂ O (molecules) so 2 nd order with respect to H ₂ O AW \checkmark	2	IGNORE 'rds'
	(b)		hydrochloric acid ✓ methanoic acid ✓	2	ALLOW hydrogen chloride, formic acid IGNORE formulae
	(c)		acidified \checkmark (potassium) dichromate / (sodium) dichromate / $\text{Cr}_2\text{O}_7^{2-}\checkmark$ (add reagent to alcohol and) distil off aldehyde as it is formed \checkmark	3	any concentration of sulfuric acid / H ₂ SO ₄ DO NOT ALLOW hydrochloric OR nitric acids use of 'reflux' is a CON
	(d)		$1.56 \times 10^{-4} = k \times 1.82 \times 10^{-3} \checkmark$ k = 0.0857 / 0.086 \sqcsts s^{-1} \sqcsts	3	ALLOW any correct rearrangement of equation CORRECT ANSWER gets both marks ALLOW two or more sig figs
			Tota	al 14	