

DISCLOSURE

 Jim is employed by Diversey. His expenses to present this webinar (salary) are paid by this company. Diversey has had no input into this presentation from a commercial interest.

2

OBJECTIVES

- ${\color{blue} \circ}$ Discuss the frequency of new organisms in the healthcare world
- ${\color{blue} \circ}$ Describe the difficulty (or ease) of killing new organisms with disinfectants
- Explain how to use the Chain of Transmission when answering questions

THE ENEMY?
www.usatoday.com

The main buckets of microorganisms					
Bacteria	Staphylococcus E. coli				
Spores	Resistant form of bacteria	Clostridioides difficile, Bacillus anthracis			
Viruses	Envelope or Non- envelope	Influenza, Rhinovirus, HIV, HBV, Norovirus			
Fungi	Multicellular	Trichophyton, Aspergillus			

WHO HAS BEEN THE ENEMY? • Bacteria • Staphylococcus aureus • MRSA • E. coli, Klebsiella pneumoniae • ESBL, CRE • Enterococcus • VRE • Clostridium/Clostridioides sp. • Gas gangrene, CDI

WHO HAS BEEN THE ENEMY?

- \circ Enveloped Viruses (Easy to Kill)
 - HIV, Hepatitis B&C, Influenza, Parainfluenza, RSV
- $\begin{tabular}{l} \bullet \ \underline{N} on \hbox{-}\underline{\underline{E}} n veloped \ Viruses \ \ (\underline{\underline{N}} ot \ \underline{\underline{E}} asy \ to \ Kill) \end{tabular}$
 - Norovirus, Rhinovirus, Hepatitis A
 - Large non-enveloped are easier
 - o Rotavirus, Adenovirus

WHO HAS BEEN THE ENEMY?

- Fungi
 - Candida
 - ${\color{red} \circ}\, albicans,\, glabrata$
 - Aspergillus, Tinea sp. (Athlete's Foot), Cladosporium

WHO WAS/IS THE NEW ENEMY?

- o SARS-CoV-1
- o Zika
- o pH1N1 Influenza A
- ${\color{red} \circ} \ {\it Elizabeth kingia\ anopheles}$
- MERS-CoV
- o Candida auris
- ${\color{red} \circ}$ Ebola
- ${\color{red} \circ} \ \ He patitis \, A$

SARS-CoV-2

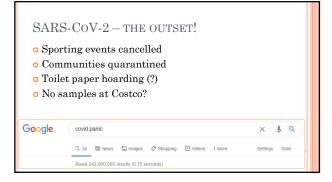
SARS-CoV-2

- o Causes <u>Co</u>rona<u>vi</u>rus <u>D</u>isease 20<u>19</u> (COVID-19)
- ${\color{red} \circ}$ Human to human spread
 - Appears Contact/Droplet
 - $\bullet~$ New terminology re: 'by the air'
- ${\color{red} \circ}$ Updates daily
 - ProMed (https://promedmail.org/)
 - $\bullet \ \underline{https://www.worldometers.info/coronavirus/}$

COVID 19

- o Global pandemic declared by WHO March 11, 2020
- o Basically in every country of the world
 - Varying success in controlling
 - Mar 25, 2021: 30.7 mil, ~559,000 deaths (1.82%)
 NM: 190,275 cases, 3,909 deaths (2.1%)
 - Apr 28, 2021: 32.9 mil, ~587,000 deaths (1.78%)
 NM: 196,997 cases, 4,039 deaths (2.05%)

PANIC [PAN-IK]


o noun

 a sudden overwhelming fear, with or without cause, that produces hysterical or irrational behavior, and that often spreads quickly through a group of persons or animals.
 www.dictionary.reference.com

HISTORY OF PANIC

- o "My heart is in anguish within me; the terrors of death have fallen on me. Fear and trembling have beset me; horror has overwhelmed me..."
 - Psalm 55:4-5

SARS-CoV-2 CHANGES

- o No Mask, Wear mask
 - Evidence of asymptomatic and pre-symptomatic carriers
- o Double mask...
- ${\color{red} \circ}$ Droplet vs Airborne spread
 - Stay tuned!

IS IT HYPE? FEAR-BOLA!

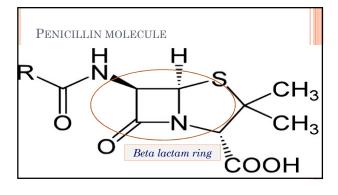
- It's a hyper-contagious disease that affects the brain, making sufferers fear a widespread Ebola outbreak in the United States.
- Fear-bola is an airborne disease that spreads through conversation, entering your brain through your ears.
- Fear-bola is so contagious that some victims have contracted it by simply seeing images and videos about Ebola.

 $Mel\ Robbins\ https://www.cnn.com/2014/10/15/opinion/robbins-ebola-fear$

NOT THAT LONG AGO - 2003

- Severe Acute Respiratory Syndrome (the original)
 - · Guangdong Province China
 - · Hong Kong
 - Toronto
- o ProMed

LET'S GO BACK...WAY BACK...



Grade 10 and Rocking It!

PENICILLIN RESISTANCE

- ${\color{red} \bullet}\ Staphylococcus\ aureus$
- ${\color{red} \circ}$ Mortality before 1940 for bacteremia >80%
- o Penicillin mass produced in 1938
- ${\color{red} \circ}$ Resistance seen in 1942
 - By late 1960's, >80% resistant to penicillin

(Lowy 2003)

METHICILLIN RESISTANCE

- o Semi-synthetic penicillin (along with Cloxacillin)
- ${\color{red}\circ}$ Developed in 1961
- ${\color{red} \circ}$ Resistance seen by 1962
- ${\color{red} \circ}$ Spread was rapid through Europe

METHICILLIN RESISTANCE

- First reported case in US was 1968 (NIAID)
- ${\color{red} \circ}$ First outbreak in Canada was reported in 1981

(Simor 1997)

MRSA BRITISH COLUMBIA
o First case – Canadian returning from India
 Clinical specimen
 Found two floors up, one floor down

o End of the world as 'they' knew it!

${\bf MRSA\ Nelson,\ BC}$

- o Probably mid 90's
- o Much the same!

HUMAN IMMUNODEFICIENCY VIRUS (HIV)

o 1981 reports of Karposi's sarcoma and *Pneumocystis carinii* in men who had sex with men (MSM)

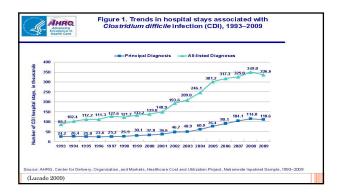
(MMWR 1981 June, July)

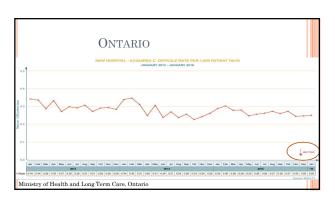
HIV PANIC

- o LGBTQ Community
- o Children at school (hemophiliacs)
- ${\color{blue} \bullet}$ Healthcare workers refusing to provide care
- First Responders wanting list of known HIV positive people

HIV OUTCOME

- Led to Universal Precautions, Body Substance Precautions and most recently:
 - Standard Precautions
 - Routine Practices and Additional Precautions (RPAP)
- ${\color{red}\circ}$ Safety needles


VRE


- o First seen in 1986, reported in 1988 (Uttley 1988)
 - Cluster, probably related to the use of Vancomycin and Ceftazidime as treatment of acute undiagnosed sepsis
- \circ Spread went worldwide
- Fear of transfer of resistance to Group A Streptococci

CLOSTRIDIODES DIFFICILE

- ${\color{red} \circ}$ First identified in culture in 1935
- ${\color{red} \bullet}$ First reported as cause of pseudomembra nous colitis in 1974
- Has toxin mediated issues
- Spore allows long environmental survival (Bartlett 1994)
- o Name Change 2016! (Lawson 2016)

Do you need a sporicide everywhere? – See Resources!

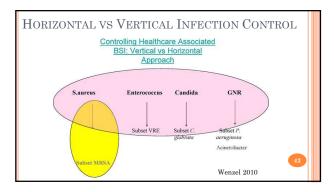
STANDARDIZED INFECTION RATIO (SIR)	UNITED STATES	0.58
(Sitt)		
	NEW MEXICO	0.75
YEAR	ALABAMA	0.49
2019 🔻	ALASKA	0.67
HAI TYPE	ARIZONA	0.58
CDI +	ARKANSAS	0.61
HOSPITAL TYPE	CALIFORNIA	0.60
ttt	COLORADO	0.62
General Acute Long Term Acute Care Hospitals Care Hospitals Facilities	CONNECTICUT	0.62
	DELAWARE	0.61
This graph displays CDI SIRs in general acute care hospitals for New Mexico	DISTRICT OF COLUMBIA	0.53
compared to other geographies in 2019.	FLORIDA	0.49
Bars will appear based on data available for	GEORGIA	0.52
each combination of state, HAI, and hospital	HAWAII	0.54
type choice.	IDAHO	0.63

GRAM NEGATIVE RESISTANCE

- o Extended spectrum beta lactamase (ESBL)
 - Breaks down the beta lactam ring
 - Emerges and changes as our antibiotics change (third and fourth generation Cephalosporins)
 (Bradford 2001)

GRAM NEGATIVE RESISTANCE

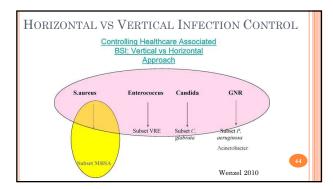
${\color{red} \circ} \ {\rm Carbapene mase}$


- $\bullet\;$ Enzyme attacks carbapenem antibiotics: meropenem, imipenem, ertapenem
- CRE: Carbapenem Resistant Enterobacteriaceae
 May not be an enzyme mechanism!
- $\bullet~$ CPE: Carbapenemase Producing Enterobacteriaceae
- o Plasmid spread possible
- CPO: Carbapenemase Producing Organism

CANDIDA AURIS (SCHWARTZ 2018)

- Has spread rapidly around the globe
- ${\color{blue} \circ}$ Can cause invasive disease with high mortality rates
- ${\color{blue} \circ}$ Frequently resistant to one or more classes of antifungals
- Difficult to identify in some clinical microbiology laboratories.
- Prolonged colonization of patients' skin and contamination of surrounding environments
- $\buildrel {}^{\circ}$ Nosocomial outbreaks in hospitals and long-term care facilities

(Schwartz 2018) (Prestel MMWR 2020)


So? • There are always going to be new organisms • Look at horizontal Infection Prevention and Control, not vertical

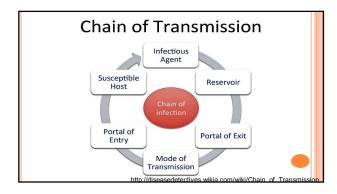
VERTICAL

- Focus on a single pathogen or anatomic site
- ${\color{red} \circ}$ Pathogen specific
 - MRSA
- CRE
- VRE
- AcinetobacterCandida
- ESBL

43

HORIZONTAL

- ${\color{red} \circ}$ Reduce rates of all infections for all pathogens
- o Hand hygiene program
- o Decolonization therapies (Chlorhexidine bathing)
- o Board to ward (Nat Audit Office 2009)
- o Antibiotic Stewardship Programs
- ${\color{blue} \bullet}$ Standardized cleaning and disinfection



VERTICAL ISSUES

- o Can cause confusion
 - Contact / Enhanced Contact / Contact Plus
 - Contact, Airborne with a mask
 - $\bullet \quad \textbf{Contact/Droplet/Airborne}$
 - · Alcohol based hand rub or soap and water?

How to Handle Questions ・ _(ツ)_/

RESERVOIR			
• The organism/area where the inf	ectious	agent	s reside
 Humans SARS-CoV-2 Respiratory Tract 			
. A . 1	hain o		smission
 Possible for cats to get, not spread 		Infectious Agent	
 Food Chain 	Susceptible Host		Reservoir
 Environment 	Portal of Entry	Chain of infection	Portal of Exit
		Mode of Transmission	

$Reservoir-Breaking\ the\ Link$

- Hand Hygiene remove the organism before it is placed near or on another person or surface, or infect ourselves
- ${\color{blue} \bullet}$ ${\bf Disinfection}$ kill the organism on the surface
- ${\color{blue} \circ}$ Pre-operative skin prep remove and kill organisms
- ${\color{red} \bullet} \ \mathbf{Engineering} \mathrm{Redesign} \ \mathrm{sinks} \\$

PORTAL OF EXIT – SARS-COV-2

- o Cough
- o Sneeze
- o Talk (loud) or singing
- ${\color{red} \bullet} \ Aerosol\text{-} generating \ procedures$
 - Can vary by jurisdiction/specialty

Breaking the Portal of Exit

- o Masks
 - Home made
 - Surgical
- o Covering coughs, sneezes

MODE OF TRANSMISSION

 ${\color{blue} \circ}$ Method by which the pathogen gets from the reservoir to the new host

Mode of Transmission - Contact

- o Direct
 - Contact between infectious agent and susceptible host
- o Indirect
 - Contact of a fomite (surface) then contact of susceptible host
- \circ Mode
 - Equipment
 - Hands
 - Sex (not COVID!)

${\bf MODE\ OF\ TRANSMISSION-PERCUTANEOUS}$

Needlestick

Mode of Transmission

- Droplet
 - Particle size
 - >5um • Cough
 - Sneeze
- Particle size <5um
- Cough
- Singing

 Size not important

Mode of Transmission

o Common Vehicle

- Food
- Water
- Medication vial

Vector-Borne

- Mosquitos
- Flies
- LiceTicks

Chain of Transmission

MOT– Breaking the Link

o Direct/Indirect

- · Hand Hygiene
- · Environmental disinfection
- Personal Protective Equipment (PPE)
- · Isolation of infected patients
- Not in contact with others when ill/contagious

$MOT-BREAKING\ THE\ LINK$

o Droplet/Airborne

- Face protection (mask, respirator(?), goggles, shield)
- · Airflow (Airborne Infection Isolation Room AIIR)
- · Air exchanges

Brown J, et al. A quantitative evaluation of aerosol generation during tracheal intubation and extubation. Anaesthesia 2020.

PORTAL OF ENTRY

• Eyes, nose, mouth (T-Zone)

Breaking the Portal of Entry

o Masks and eye protection

SUSCEPTIBLE HOST

- \circ SARS-CoV-2
 - Elderly
 - Obese
 - High blood pressure
 - Lung issues
 - Metabolic issues (diabetes)
 - Heart Issues
 - Multi-system Inflammatory Syndrome Children...

CHAIN OF TRANSMISSION

- ${\color{red} \circ}$ Helps explain the risk
- Helps calm some of the panic

What Broke the Chain?

- Disinfectants
 - Variety of kill ability
 - Low Level to High Level
 - Sporicidal
 - EPA Emerging Viral Pathogen Document

· Label Claim

- Surrogate/marker
- organisms
- · Can't have 'em all!

 $\frac{\text{https://www.epa.gov/sites/production/files/2016-}}{09/documents/emerging viral pathogen program guidance final 8 19 16 001 0.pdf}$

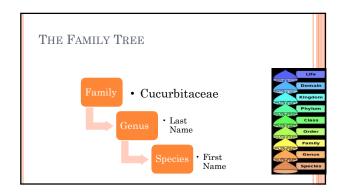
WHAT BROKE THE CHAIN?

- o Hand hygiene
- ${\color{red} \circ}$ Personal Protective Equipment

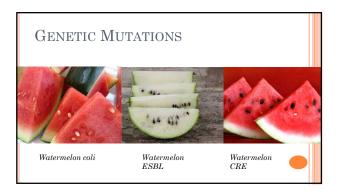
The main buckets of microorganisms						
Bacteria	Gram Positive Gram Negative	Staphylococcus E. coli				
Spores	Resistant form of bacteria	Clostridioides difficile, Bacillus anthracis				
Viruses	Envelope or Non- envelope	Influenza, Rhinovirus, HIV, HBV, Norovirus				
Fungi	Multicellular	Trichophyton, Aspergillus				

EFFECT OF DISINFECTANTS ON MICROORGANISM						
L		Organism	Type	Examples		
	R^	Bacterial Spores	Spore	Bacillus anthracis, Clostridioides difficile		
		Mycobacteria	Bacteria	M. tuberculosis		
		Small non-enveloped virus	Virus	Poliovirus, Norovirus, Rhinovirus, Hep A		
		Fungal spores	Fungus	Aspergillus, Penicillium, Trichophyton		
		Gram negative bacteria	Bacteria	E. coli, Klebsiella including CRE, Pseudomonas, Acinetobacter		
		Fungi (Vegetative)	Fungus	Candida		
		Large Virus (non-enveloped)	Virus	Adenovirus, Rotavirus		
	S*	Gram positive bacteria	Bacteria	Staphylococcus including MRSA Enterococcus including VRE		
١,,	Resistan	Virus (enveloped)	Virus	HIV, HBV, HCV, Influenza, Coronavirus		
	cesistan Sensitiv			Adapted from Rutala et al. ICHE 2014;35(7):862		

RESISTANT ORGANISMS


- Antibiotic resistance does NOT confer disinfectant resistance!
 - $E.\ coli$ is $E.\ coli$ whether it can produce a beta lactamase or a carbapenemase
- ${\color{red} \circ}$ Antibiotics are more "Lock and Key"
- o Disinfectants are more "Dynamite" or "Sledgehammer"

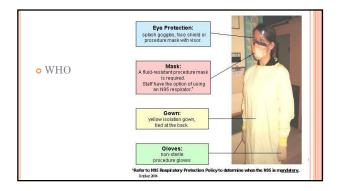
(Weber 2006, Rutala 1997)

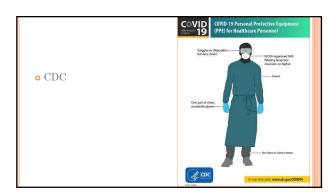


COMMUNICATION

- o Difficult during panic
 - · Facility Outbreaks
 - New Organisms
 - · Pandemic Problems

HOW TO COMMUNICATE


- o Get the facts
 - · Reliable sources
 - CDC, WHO, Public Health Agency of Canada (PHAC), APIC, ProMed
- ${\color{red} \circ}$ Aim for Grade 6-8 (new spaper) level of language
 - Avoid jargon unless necessary



PUBLIC HEALTH AGENCY OF CANADA (PHAC)

- ...<u>contact and droplet pre</u>cautions should be used:
 - Gloves and a gown should be worn upon entering the patient's room;
 - Facial protection (mask and eye protection, or face shield, or mask with visor attachment) should be used when within two metres of the patient;
 - A fit-tested N95 respirator (including eye protection) should be used by all HCWs in the patient's room when AGMPs are being performed on a person under investigation for COVID-19.

HOW TO COMMUNICATE

- o Get the facts out there
 - Newsletters
 - Bulletins
 - Huddles or Town Hall Meetings

LOOK AFTER OURSELVES!

- Very stressful times
 - So much mis-information
- ${\color{red} \circ}$ We all need to re-charge
 - $\bullet \ \ Mindfulness$
 - Family
 - Downtime

_	_
7	q
_	_

SUMMARY

- There are always going to be new problems DON'T PANIC
- Keep in mind Chain of Transmission and horizontal infection control
 - Doing activities that protect patients from all organisms
 Appropriate use of disinfectants including point of
 - o Patient hand hygiene

SUMMARY

- Infection Preventionists need to be more involved in analyzing the data from this pandemic
 - To have evidence based recommendations for all healthcare settings

REFERENCES

- Bartlett J. Clostridium difficile: History of its role as an enteric pathogen and the current state of knowledge about the organism. Clin Infect Dis 1994;18(Suppl 4):S265-72
- Bradford PA. Extended-spectrum—beta lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Micro Rev 2001;14(4):933-951
- o Lawson PA, et al. Reclassification of Clostridium difficile Lawson I A, et al. Rechassing and it Cost than tripicale as Clostridioides difficile (Hall and O'Toole 1935) Prévot 1938. Anaerobe 2016;40:95-9
- Lucado J, et al. Clostridium difficile infections (CDI) in hospital stays, 2009. HCUP Statistical Brief#124. January 2012. Agency for Healthcare Research and Quality, Rockville, MD. http://www.hcup-us.ahrq.gov/reports/statbriefs/sb124.pdf

References

- Lowy FD. Antimicrobial resistance: the example of Staphylococcus aureus. J Clin Invest 2003;111:1265-73
 Ministry of Health and Long Term Care (Ontario). http://www.hopotario.ca/public-reporting/patient-safety? ga=1.214855314.462030773.1452205540
 Accessed October 20, 2020
- MMWR Weekly Pneumocystis Pneumonia- Los Angeles. 1981; June 5, 30(21); 1-3
- MMWR Weekly. Kaposi's sarcoma and Pneumocystis pneumonia among homosexual men- New York City and California 1981;July 4,30 (4);305-308
- MMWR Weekly. Candida auris outbreak in a COVID-19 specialty $care\ unit-Florida,\ July-August\ 2020.\ 2021; Jan\ 9; 70:1-3$

	-								
ı	D.	TA:	1.3	EA.	n	TA	AT.	1	ES

- o Rutala WA, et al. Susceptibility of antibiotic-susceptible and antibiotic-resistant hospital bacteria to disinfectants. ICHE 1997;18(6):417-21
- Schwartz IS, et al. Something wicked this way comes: What health care
 providers need to know about Candida auris. Can Commun Dis Rep
 2018;44(11):271–6. https://doi.org/10.14745/ccdr.v44i11a01
- Simor A, et al. The Canadian Nosocomial Infection Surveillance Program: Results of the first 18 months of surveillance for methicillinresistant Staphylococcus aureus in Canadian hospitals. Can Comm Dis Rep. 1997;23:41–5
- Weber DJ, et al. Use of germicides in the home and the healthcare setting: is there a relationship between germicide use and antibiotic resistance? ICHE 2006;27(10):1107-19

REFERENCES

- ${\rm \circ}~$ Wenzel RP, et al. Infection control: the case for horizontal rather than vertical interventional programs. Int J Infect Dis 2010;14(supp 4);S3-S5
- www.gotquestions.org/Bible-panic-attacks.html#ixzz3TTAjrMQK
 Assessed February 29, 2020
- ${\color{blue} \bullet}$ Uttley A, et al. Vancomycin resistant enterococci. Lancet 1988;1(8575-6):57–8.

james.gauthier@diversey.con	1
david.barela@diversey.com	

http://www.diverseydigital.com/natools/videoHub/index.php