Additional information on Resistors and the Wheatstone Bridge

David Connor

Resistors in series

Resistors in series redistribute voltage

10 V

Total resistance of circuit $\left(\mathrm{R}_{\mathrm{s}}\right)$:

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{s}}=\mathrm{R}_{1}+\mathrm{R}_{2} \\
& \mathrm{R}_{\mathrm{s}}=2+3 \\
& \mathrm{R}_{\mathrm{s}}=5 \Omega
\end{aligned}
$$

Total current flowing in circuit (I):

$$
\begin{aligned}
& \text { Resistance }(\mathrm{R})=\frac{\text { Voltage }(\mathrm{V})}{\text { Current }(\mathrm{I})} \\
& 5=\frac{10}{\mathrm{I}} \\
& \mathrm{I}=2 \text { amperes }
\end{aligned}
$$

Resistors in series

10 V

To calculate voltage $\left(\mathrm{V}_{1}\right)$ across resistor R_{1} :

$$
\begin{aligned}
& \mathrm{V}_{1}=1 \times \mathrm{R}_{1} \\
& \mathrm{~V}_{1}=2 \times 2 \\
& \mathrm{~V}_{1}=4 \text { volts }
\end{aligned}
$$

To calculate voltage $\left(\mathrm{V}_{2}\right)$ across resistor R_{2} :

$$
\begin{aligned}
& V_{2}=1 \times R_{2} \\
& V_{2}=2 \times 3 \\
& V_{2}=6 \text { volts }
\end{aligned}
$$

In this way, the 10 V voltage of the battery is redistributed across the two resistors

Resistors in parallel

Resistors in parallel redistribute current

Total resistance of circuit $\left(R_{p}\right)$:

$$
\begin{aligned}
& \frac{1}{R_{p}}=\frac{1}{R_{1}}+\frac{1}{R_{2}} \\
& \frac{1}{R_{p}}=\frac{1}{2}+\frac{1}{3}=\frac{5}{6} \\
& R_{p}=1.2 \Omega
\end{aligned}
$$

Resistors in parallel

Total current flowing in circuit $\left(\mathrm{l}_{\mathrm{t}}\right)$:

$$
\begin{aligned}
& R_{p}=\frac{V}{I_{t}} \\
& 1.2=\frac{10}{I_{t}} \\
& I_{t}=8.33 \text { amperes }
\end{aligned}
$$

Resistors in parallel

The voltage across both R_{1} and R_{2} is always 10 V in this circuit
To calculate current $\left(I_{1}\right)$ flowing to resistor R_{1} :

$$
\begin{aligned}
& V_{1}=I_{1} \times R_{1} \\
& 10=I_{1} \times 2 \\
& I_{1}=5 \text { amperes }
\end{aligned}
$$

To calculate current $\left(\mathrm{I}_{2}\right)$ flowing to resistor R_{2} :

$$
\begin{aligned}
& V_{2}=I_{2} \times R_{2} \\
& 10=3 \times I_{2} \\
& I_{2}=3.33 \text { amperes }
\end{aligned}
$$

In this way, the 8.33A current produced by the battery is redistributed across the two branches of the circuit

Resistors combined in series and parallel

Total resistance of circuit $\left(\mathrm{R}_{\mathrm{t}}\right)$:

$$
\begin{aligned}
& \frac{1}{\mathrm{R}_{\mathrm{t}}}=\frac{1}{\mathrm{R}_{1}+\mathrm{R}_{2}}+\frac{1}{\mathrm{R}_{3}+\mathrm{R}_{4}} \\
& \frac{1}{\mathrm{R}_{\mathrm{t}}}=\frac{1}{5}+\frac{1}{10}=\frac{3}{10} \\
& \mathrm{R}_{\mathrm{t}}=3.33 \Omega
\end{aligned}
$$

Resistors combined in series and parallel

Total current flowing in circuit $\left(\mathrm{l}_{\mathrm{t}}\right)$:

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{t}}=\frac{\mathrm{V}}{\mathrm{R}_{\mathrm{t}}} \\
& \mathrm{I}_{\mathrm{t}}=\frac{10}{3.33}=3 \text { amperes }
\end{aligned}
$$

Resistors combined in series and parallel

Resistors combined in series and parallel

Resistors combined in series and parallel

A voltmeter measures the potential difference (in volts) between two points in an electrical circuit

Observe the readings of the voltmeter as it is connected to different parts of the circuit

10 V

Resistors combined in series and parallel

 Branch 1

In this circuit, the ratio of the resistances of branch 2 has been altered from $4 \Omega: 6 \Omega$ to $4 \Omega: 4 \Omega$

A potential difference of 1 volt now occurs between the two branches

Resistors combined in series and parallel

 Branch 1

The ratio of the resistances of branch 2 has now been altered from $4 \Omega: 6 \Omega$ to $6 \Omega: 4 \Omega$
A larger potential difference of 2 volts now occurs between the two branches

This is known as a potential divider and forms part of the basis for the wheatstone bridge circuit

Resistors combined in series and parallel

 Branch 1

Here is another situation when the voltmeter reads zero

Resistors combined in series and parallel

 Branch 1

- Again the voltmeter reads zero
- It should become clear that the actual values of the resistors are not important
- It is their ratios within each branch that divide the voltage proportionally

Resistors combined in series and parallel

What does R_{4} equal in the following example?

Answer:

In order for the voltmeter to read zero, the ratio of the resistances in branch 1 must equal that in branch 2.
The ratio in branch 1 is $1: 1$ \& branch 2 is $10: R_{4}$.
R_{4} must therefore equal 10Ω

Wheatstone bridge 1

- This is a wheatstone bridge circuit
- A variant of it is present in most arterial pressure transducers

10 V
\mathbf{R}_{1} - Known resistance
$\mathbf{R}_{\mathbf{2}}$ - Known resistance
\mathbf{R}_{3} - Variable resistance which can be adjusted until V reads 0
\mathbf{R}_{4} - Unknown resistance which varies according to the tension of the resistance wire in the strain gauge

Wheatstone bridge 2

- In a wheatstone bridge, the ratio of the resistances in branch $1\left(R_{1}: R_{2}\right)$ is fixed
- The ratio of resistances in branch $2\left(R_{3}: R_{4}\right)$ is adjusted using a variable resistor $\left(R_{3}\right)$ until the ratio equals that in branch 1
- At that point, the voltmeter reads 0 and the unknown resistance $\left(\mathrm{R}_{4}\right)$ can be calculated as described on the next few slides

\mathbf{R}_{1} - Known resistance
$\mathbf{R}_{\mathbf{2}}$ - Known resistance
\mathbf{R}_{3} - Variable resistance which can be adjusted until V reads 0
\mathbf{R}_{4} - Unknown resistance which varies according to the tension of the resistance wire in the strain gauge

Wheatstone bridge 3

10 V

- In the early resistor examples, we first calculated the total resistance and used that to work out the voltages across each resistor
- In the Wheatstone bridge, this approach is not possible because R_{4} is unknown
- Instead, the ratio of $\mathrm{R}_{1}: \mathrm{R}_{2}$ and $R_{3}: R_{4}$ is used

Wheatstone bridge 4

In the following wheatstone bridge circuit, the voltmeter initially reads 2 volts.
In order to find out the unknown resistance of R_{4}, the resistance of R_{3} is adjusted until the voltmeter reads 0 .

10 V

Wheatstone bridge 5

10 V

The voltmeter reads 0 when $\mathrm{R}_{3}=3 \Omega$

$$
\begin{aligned}
& \text { Voltage } V_{1}=\frac{4}{4+4} \times 10=5 \text { volts } \\
& \begin{array}{l}
\text { Voltage } V_{3}=\frac{3}{\text { When the voltm3ter Reqqu }} \times 0, \\
V_{1}=V_{3} \\
\frac{3}{3+R_{4}} \times 10=5 \\
R_{4}=3 \Omega
\end{array}
\end{aligned}
$$

Wheatstone bridge 6

10 V

Expressing this relationship in terms of symbols:

$$
\begin{aligned}
& V_{1}=\frac{R_{1}}{R_{1}+R_{2}} \times 10 \\
& V_{3}=\frac{R_{3}}{R_{3}+R_{4}} \times 10
\end{aligned}
$$

Wheatstone bridge 7

10 V

When voltmeter reads 0 ,
$V_{1}=V_{3}$
$\frac{\mathrm{R}_{1}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \times 10=\frac{\mathrm{R}_{3}}{\mathrm{R}_{3}+\mathrm{R}_{4}} \times 10$
$R_{1}\left(R_{3}+R_{4}\right)=R_{3}\left(R_{1}+R_{2}\right)$
$R_{1} R_{4}=R_{3} R_{2}$
$\frac{R_{1}}{R_{2}}=\frac{R_{3}}{R_{4}}$
Recognise this equation?!

