Additional information on Resistors and the Wheatstone Bridge

David Connor

Resistors in series

Resistors in series redistribute **voltage**

Total resistance of circuit (R_s):

 $R_{s} = R_{1} + R_{2}$

 $R_{s} = 2 + 3$

 $R_s = 5 \Omega$

Total current flowing in circuit (I):

Resistance (R) = $\frac{\text{Voltage (V)}}{\text{Current (I)}}$

$$5=\frac{10}{1}$$

I = 2 amperes

Resistors in series

To calculate voltage (V₁) across resistor R₁: $V_1 = I \times R_1$ $V_1 = 2 \times 2$ $V_1 = 4 \text{ volts}$ To calculate voltage (V₂) across resistor R₂:

 $V_2 = I \times R_2$ $V_2 = 2 \times 3$ $V_2 = 6 \text{ volts}$

In this way, the 10 V voltage of the battery is redistributed across the two resistors

Resistors in parallel

Resistors in parallel redistribute current

Total resistance of circuit (R_p):

$$\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2}$$

$$\frac{1}{R_{p}} = \frac{1}{2} + \frac{1}{3} = \frac{5}{6}$$

$$R_p = 1.2 \Omega$$

NHS

Resistors in parallel

Total current flowing in circuit (I_t) :

$$R_{p} = \frac{V}{I_{t}}$$
$$1.2 = \frac{10}{I_{t}}$$

 $I_t = 8.33$ amperes

Resistors in parallel

The voltage across both R_1 and R_2 is always 10 V in this circuit To calculate current (I_1) flowing to resistor R_1 : $V_1 = I_1 \times R_1$ $10 = I_1 \times 2$ $I_1 = 5$ amperes To calculate current (I_2) flowing to resistor R_2 : $V_2 = I_2 \times R_2$ $10 = 3 \times I_{2}$

10 V

 $I_2 = 3.33$ amperes

In this way, the 8.33A **current** produced by the battery is **redistributed** across the two branches of the circuit

Total resistance of circuit (R_t):

$$\frac{1}{R_{t}} = \frac{1}{R_{1} + R_{2}} + \frac{1}{R_{3} + R_{4}}$$

$$\frac{1}{R_t} = \frac{1}{5} + \frac{1}{10} = \frac{3}{10}$$

$$R_t = 3.33 \Omega$$

Total current flowing in circuit (I_t):

$$I_t = \frac{V}{R_t}$$

$$I_t = \frac{10}{3.33} = 3 \text{ amperes}$$

Branch 1:

Total resistance of Branch $1 = 2 + 3 = 5 \Omega$

Voltage across Branch 1 = 10 V

Current flowing in Branch 1(I_1) = $\frac{10}{5}$ = 2 amperes

A voltmeter measures the potential difference (in volts) between two points in an electrical circuit

NHS

Observe the readings of the voltmeter as it is connected to different parts of the circuit

Branch 1

In this circuit, the ratio of the resistances of branch 2 has been altered from 4Ω : 6Ω to 4Ω : 4Ω

A potential difference of 1 volt now occurs between the two branches

The ratio of the resistances of branch 2 has now been altered from 4Ω : 6Ω to 6Ω : 4Ω A larger potential difference of 2 volts now occurs between the two branches

This is known as a potential divider and forms part of the basis for the wheatstone bridge circuit

Here is another situation when the voltmeter reads zero

NHS

- Again the voltmeter reads zero
- It should become clear that the actual values of the resistors are not important
- It is their ratios within each branch that divide the voltage proportionally

What does R₄ equal in the following example?

Answer:

In order for the voltmeter to read zero, the ratio of the resistances in branch 1 must equal that in branch 2. The ratio in branch 1 is 1:1 & branch 2 is 10:R₄.

 R_4 must therefore equal 10 Ω

- This is a wheatstone bridge circuit
- A variant of it is present in most arterial pressure transducers

- \mathbf{R}_1 Known resistance
- R₂ Known resistance
- $\mathbf{R_3}$ Variable resistance which can be adjusted until V reads 0
- R_4 Unknown resistance which varies according to the tension of the resistance wire in the strain gauge

- In a wheatstone bridge, the ratio of the resistances in branch 1 ($R_1:R_2$) is fixed
- The ratio of resistances in branch 2 ($R_3:R_4$) is adjusted using a variable resistor (R_3) until the ratio equals that in branch 1
- At that point, the voltmeter reads 0 and the unknown resistance (R₄) can be calculated as described on the next few slides

 \mathbf{R}_1 – Known resistance

R₂ – Known resistance

 $\mathbf{R_3}$ – Variable resistance which can be adjusted until V reads 0

 R_4 – Unknown resistance which varies according to the tension of the resistance wire in the strain gauge

NHS

Wheatstone bridge 3

- In the early resistor examples, we first calculated the total resistance and used that to work out the voltages across each resistor
- In the Wheatstone bridge, this approach is not possible because R₄ is unknown
- Instead, the ratio of R₁:R₂ and R₃:R₄ is used

In the following wheatstone bridge circuit, the voltmeter initially reads 2 volts. In order to find out the unknown resistance of R_4 , the resistance of R_3 is adjusted until the voltmeter reads 0.

The voltmeter reads 0 when $R_3 = 3 \Omega$

Voltage
$$V_1 = \frac{4}{4+4} \times 10 = 5$$
 volts
Voltage $V_3 = \frac{3}{24} \times 10$
When the voltmeter Reads 0,

 $V_1 = V_3$

$$\frac{3}{3+R_4} \times 10 = 5$$

 $R_4 = 3\Omega$

Expressing this relationship in terms of symbols:

$$V_1 = \frac{R_1}{R_1 + R_2} \times 10$$

$$V_3 = \frac{R_3}{R_3 + R_4} \times 10$$

When voltmeter reads 0,

$$V_{1} = V_{3}$$

$$\frac{R_1}{R_1 + R_2} \times 10 = \frac{R_3}{R_3 + R_4} \times 10$$

$$R_1(R_3 + R_4) = R_3(R_1 + R_2)$$

 $R_1R_4 = R_3R_2$

$$\frac{R_1}{R_2} = \frac{R_3}{R_4}$$

Recognise this equation?!