# Proceedings of The Institute of Acoustics - Acoustic'84 Conf.

RADIATION EFFICIENCES OF MUSICAL INSTRUMENTS

C. E. GOUGH

DEPARTMENT OF PHYSICS, UNIVERSITY OF BIRMINGHAM.

In this paper we describe two quite different methods for determining the radiation efficiency of the various vibrational modes responsible for determining the tonal quality of a musical instrument. The two methods are those of Acoustic Resonant Scattering and the comparison of Q-values for an instrument in freespace and in a rigid-walled enclosure. Preliminary measurements on Helmholtz resonators and a violin are presented.

When a wind or stringed instrument is played in the normal way, a large number of vibrational modes of an instrument will in general be excited at the various harmonics of the fundamental note sounded. The intensity and quality of the resulting sound will depend on the position of these harmonics relative to the natural vibrational modes of the instrument and on their effectiveness in radiating sound. We shall define the radiation efficiency, E, of a particular vibrational mode as the energy lost by radiation as a fraction of the total losses.

#### Acoustic Resonant Scattering

The first method for determining acoustic radiation efficiencies that we related to the optical and Mossbauer Scattering. This technique is closely proved to be very powerful in atomic and nuclear spectroscopy, but we are not familiar with any previous application to acoustical problems of the kind we by a musical instrument when it is exentially that of measuring the sound radiated phenomenon to anyone who has played an instrument close to a piano with the dampers lifted.

The theory for the absorption and re-radiation of sound by an acoustically resonator as a monopole source of sound and is small in comparison with the acoustic wavelength,  $\lambda$ , the energy absorbed and re-radiated at resonance is equal to the energy flux of the incident, uniform sound wave crossing an area  $R_{\lambda}/\pi$ . At a distance d from the resonator the pressure of the scattered wave,  $\lambda/2\pi$ .

This simple, yet remarkable, result shows that, at a given distance, the and depends only on the acoustic wavelength. It is also independent of the nature of the resonantly excited mechanical system - it could be the oscillating air column of a wind instrument or the cavity, string or structural resonance. Tesonating system is by acoustic radiation alone. If there are additional viscous or internal friction losses the mechanical resonances will not be so by the radiation efficiency, £, defined above, so that

#### oceedings of The Institute of Acoustics

RADIATION EFFICIENCIES OF MUSICAL INSTRUMENTS

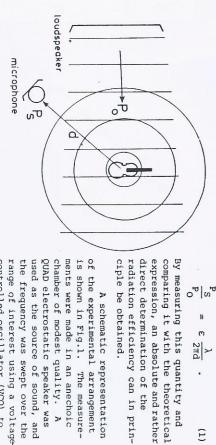



Fig.1 Experiment to measure re-radiated sound.

The resonator or musical instru-

drive the loudspeaker amplifier.

controlled oscillator (VCO) to

used as the source of sound, and

is shown in Fig.1.

The measure-

A schematic representation

comparing it with the theoretical

 $\Xi$ 

of measurements made with the

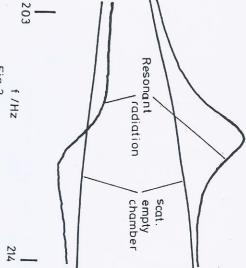
Figure 4 shows an example

should be less than 50%.

a central distance of about 2 m from the loudspeaker with the microphone at a ment to be studied was placed at

distance of typically between 0.25 mand 1 m from the source of re-radiated sound.

with the familiar absorption and dispersion curves of a simple resonator. phase and in phase-quadrature with the output of the VCO both before and after the sound re-radiated by the scattering object. To distinguish between the direct and, therefore, relative phases have been adjusted to give difference signals "standard musical instrument" scattering object is placed in position. A typical set of measurements for our and re-radiated sound we have to measure the components of the sound pressure in-The microphone receives sound direct from the loudspeaker in addition to a milk bottle - is shown in Fig. 2. The distance

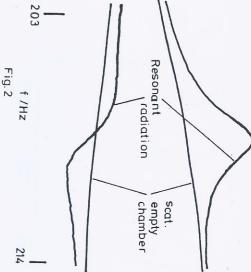

normalised measurements for the scattering amplitude as a function of scattering distance, d, plotted in such a way to allow comparison with eq.(1). The predicted radiated sound pressure to the incident sound pressure. before the resonator is placed in position so that we can normalise the reiency of order 20% is obtained for the milk bottle. inverse dependence on distance is confirmed and a value for the radiation effic-We measure the sound pressure at the position of the scattering object In Fig. 3 we show some

resonator of volume V is given by  $Q_R = \frac{1}{2\pi^2} \frac{\lambda}{V}$  (Rayleigh (1) ). Helmholtz resonators. radiation efficiencies, we undertook a series of measurements on a collection of As an independent check on the validity of this method for determining For radiation damping alone, the Q-value,  $Q_R$ , of a Helmholtz is given by  $Q_D = \frac{1}{L} \frac{\lambda}{\lambda}$  (Rayleigh (1)). The measured

thermal losses are included the acoustic efficiency of a Helmholtz resonator value,  $\epsilon = \varrho_M/\varrho_R$ . Weinreich (2) has argued that for an optimally designed Helmholtz resonator viscous losses will equal those from radiation, so that when resonator simply by comparing the measured Q-value with the radiation limited fore make an independent determination of the radiation efficiency of a Helmholtz Q-value,  $\varrho_{M^\prime}$  is reduced by additional viscous and thermal damping. We can there-

## Proceedings of The Institute of Acoustics

RADIATION EFFICIENCIES OF MUSICAL INSTRUMENTS




| € Q-val. | E scatt. | Frequency |
|----------|----------|-----------|
| .40      | .39      | 192       |
| .25      | .30      | 256       |
| .19      | .27      | 320       |
| .33      | . 39     | 440       |
| .38      | . 39     | 512       |
| .41      | 35       | 576       |
| .39      | .48      | 640       |
| .39      | .37      | 704       |
| .55      | .48      | 768       |
|          |          |           |

vibration of the violin. systems fo indeed pro efficienci level of (radiation of ation in

and for determining their radiation efficiencies. reason than to test the limitations of this technique for locating resonances contributions from dipole and higher-order components, which will complicate the Moreover, the sound radiated by the violin will also include non-negligible investigate the resonantly scattered radiation from a violin, if for no other interpretation of any measurements. Nevertheless, it seemed worthwhile to incident sound giving a background signal that will vary slowly with frequency. absence of excited resonances, the violin will scatter a significant amount of the wavelengths involved in exciting structural resonances. Consequently, even in the approximation to assume that the size of the violin is much less than the acoustic In the acoustically important range of the violin it is never a very good

modified in some way to remove the resonant modes of interest. The difference in scattered radiation with the violin first in its natural state and then radiation arising from the finite size of the violin, we measured the difference In an attempt to overcome the background problem of non-resonantly scattered



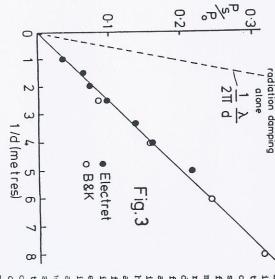
· In the following table we

derive values for the radiation values, which can be used to straightforward to derive Q-From such measurements it is

sound as a function of frequency the amplitude of the scattered necessary algebra to display A/D converter and performs the which records data via an 8-bit aid of a small microcomputer,

one exception, these values sound and from Q-values. With of resonantly re-radiated measurements of the amplitude efficiencies obtained from compare values of radiation efficiency, as described above

are consistent with Weinreich's


(2) prediction that the acoustic

efficiency of a Helmholtz resonator will always be less than 50%. The general

| ε Q-val.                                                              | .40 .25 .19 .33 .38 .41 .39 .39 .55 | . 25  | .19    | 33          | .38             | .41  | .39    | .39   | .55       |     |
|-----------------------------------------------------------------------|-------------------------------------|-------|--------|-------------|-----------------|------|--------|-------|-----------|-----|
| agreement between these two quite independent determinations of radia | these                               | two   | qui te | ind         | epende          | nt d | etermi | natio | ons of ra | dia |
| ovide reliable val                                                    | ues fo                              | or th | e aco  | aco<br>usti | ustic<br>c effi | reso | nant s | resor | ering co  | ulc |
| or which no independent theoretical estimate of the natural line wid  | ndent                               | thec  | retic  | al e        | stimat          | e of | the r  | atura | al line   | Wic |
| n limited) can be obtained - as, for example, the structural modes of | obtair                              | ed -  | as,    | for e       | exampl          | e, t | he str | uctur | cal mode  | S   |
| 0 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6                               |                                     |       |        |             |                 |      |        |       |           |     |

#### ceedings of The Institute of Acoustics

#### RADIATION EFFICIENCIES OF MUSICAL INSTRUMENTS



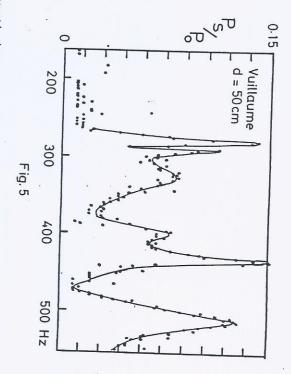
matically subtracted from the measurements. In future we of the strings, air and structure tracted. ence should therefore provide from unchanged resonances autocontributions from non-resonantly information on the resonant modes between such measurements gives can be identified from these scattering automatically subwith any non-resonant background acoustic resonances of the violin information on the principal from the frequency range of and main mechanical resonances heavily loaded to remove the air its f-holes covered and its table and after its strings were damped, from a Vuillaume violin before difference in scattered sound scattered radiation and radiation Figure 5 shows the A number of resonances The measured differ-

modification of the instrument being studied. playing state and a solid violin with no internal resonances to avoid artificial anticipate measuring the difference in scattering between violins in their natural

be attached to the violin which might otherwise change its properties. Moreover useful for comparing instruments in different laboratories, since nothing has to If this technique can be shown to give reproducible results, it could be

Ow d = 25cmResonator Helmholtz

our initial surprise simply placing the instrument in the enclosure (a thickto remove radiation damping by placing a violin in an evacuated enclosure. 520 Hz experiment in which we planned determining radiation efficiencies arose out of an The second method for


Q-values in an enclosure

ation problems.

it is free from any calibris potentially valuable since higher frequencies, the method interpret, especially at the turn out to be difficult to "the radiation efficiency" to give absolute values for the method relies only on a

### Proceedings of The Institute of Acoustics

#### RADIATION EFFICIENCIES OF MUSICAL INSTRUMENTS



enclosure. but with very little frequency dependence unless the vibrational modes of the depression of the frequencies of the lowest vibrational modes of an instrument instrument accidentally coincide with the frequency of a standing wave of the reactive loading of the vibrational modes of an instrument leading to a general there are no radiative accustic modes to which the vibrational modes of the instrument can couple. The increase in Q-value arises because, when placed in the rigid-walled enclosure, in a dramatic increase in the Q-value of the main-body resonance at around 460 Hz. The standing waves within the enclosure cause a largely

only necessary to measure the Q-value of the mode in free space,  $Q_{\rm free}$ , and in an enclosure,  $Q_{\rm encl}$ , with dimensions chosen to remove accidental coincidences of efficiency is given by  $(Q_{encl.} - Q_{free})/Q_{encl.}$ . Therefore to determine the radiation efficiency of a particular mode it is From these measurements it is easy to show that the radiation

Even if such measurements

comparison of sound amplitudes

instruments from our current measurements. some more recent examples to illustrate this technique for both wind and stringed reducing the risk of exciting a wolf-note (Schelleng (3) ). since efficient acoustic radiation will tend to decrease the Q-value thus instrument, half the energy associated with the main-body resonance is radiated has on the string resonances, when these are strongly coupled to the main-body Figure 6 illustrates the large effect that placing a violin in an enclosure This has important consequences in relation to the wolf-note problem, From such measurements, we can deduce that, for this particular

walled stainless steel cylinder closed at both ends) without evacuation resulted

#### roceedings of The Institute of Acoustics

RADIATION EFFICIENCIES OF MUSICAL INSTRUMENTS

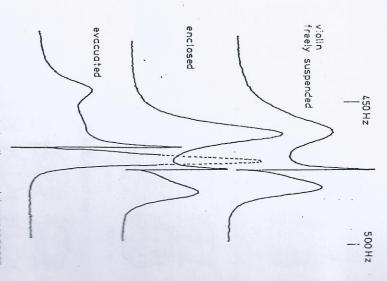



Fig. 6 Influence of air loading on stringresonances and main body resonance.

#### References

- Rayleigh, J. W. S., The theory of sound, Vol.1 (1894, reprinted by Dover, New York, 1945).
- Weinreich, G., private communication.
- ω . Schelleng, J. The violin as a circuit, Journal Acoust. Hog. Amer. 15 (1963), 326-336.