Question	Answer	Marks	Guidance
	Answer (The enthalpy change that accompanies) the formation of one mole of a(n ionic) compound ✓ from its gaseous ions ✓ (under standard conditions)	2 2	IGNORE 'Energy needed' OR 'energy required' ALLOW as alternative for compound: lattice, crystal, substance, solid, product Note: 1st mark requires gaseous ions IF candidate response has '1 mole of gaseous ions', award 2nd mark but NOT 1st mark IGNORE reference to 'constituent elements' IGNORE: Li ⁺ (g) + F ⁻ (g) \longrightarrow LiF(s) Question asks for a definition, not an equation

Question	Answer	Marks	Guidance	
1 (b) (i	 Mark Line 1 first as below (right or wrong) Mark Line 4 as below (right or wrong) Mark difference in species on Line 1 and Line 2 MUST match one of the enthalpy changes in the table: atomisation of Li(s) atomisation of ½F₂(g) first ionisation energy of Li(g) Repeat for differences on Line 2 and Line 3 		ANNOTATIONS MUST BE U 	lows:
	4 $Li^+(g) + F(g) + e^-$ 3 $Li(g) + F(g)$ 2 $Li(g) + 1/2F_2(g)$ 1 $Li(s) + 1/2F_2(g)$ Correct species and state symbols required for all marks IF an electron has formed, it MUST be shown as e^- OR e	4	Line 1: IF ½F₂(g) is NOT e.g., for F(g), F(s), F(l), F(aq),	Line 4 and Li(s) \rightarrow Li(g)]

Que	estio	n	Answer	Marks	Guidance
1	(b)	(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = -1046 (kJ mol ⁻¹) award 2 marks (-616) = (+159) + (+79) + (+520) + (-328) + ΔH_{LE} (LiF) OR ΔH_{LE} (LiF) = (-616) -[(+159) + (+79) + (+520) + (-328)] \checkmark = -616 - 430 = -1046 (kJ mol ⁻¹) \checkmark	2	IF there is an alternative answer, check the list below for marking of answers from common errors ALLOW for 1 mark: +1046 wrong sign -186 +430 instead of -430 +186 +616 instead of -616 -1006.5 (+79) $\Delta H_{at}(F)$ halved to +39.5 -1702 wrong sign for 328 Any other number: CHECK for ECF from 1st marking point for expressions with ONE error only e.g. one transcription error: e.g. +195 instead of +159
	(c)		$\Delta H < T\Delta S OR \Delta H - T\Delta S < 0$ OR $\Delta H \text{ is more negative than } T\Delta S$ OR Negative value of ΔH is more significant than negative value of $T\Delta S \checkmark$	1	ANNOTATIONS MUST BE USED ALLOW 'exothermic' for negative ALLOW a negative lattice energy value ALLOW ΔH is negative AND magnitude of ΔH > magnitude of $T\Delta S$ IGNORE ONLY magnitude of ΔH > magnitude of $T\Delta S$

Question	Answer	Marks	Guidance
1 (d)	 For FIRST TWO marking points, assume that the following etc. For 'ions', ALLOW 'atoms' For Mg²⁺, Na⁺, Cl⁻ and F⁻, ALLOW symbols: Mg, N ALLOW names: magnesium, sodium, chlorine, chlo <i>i.e.</i> ALLOW Mg has a smaller (atomic) radius For THIRD marking point, IONS must be used Comparison of size of anions Chloride ion OR Cl⁻ is larger (than F⁻) 	refer to	'ions', Mg ²⁺ , DO NOT ALLOW molecules ALLOW F <i>l</i> for F I F
	 OR CI⁻ has smaller charge density (than F⁻) ✓ Comparison of size AND charge of cations Mg²⁺ is smaller (than Na⁺) AND Mg²⁺ has a greater charge (than Na⁺) ✓ Comparison of attraction between ions F⁻ has greater attraction for Na⁺ / + ions AND Mg²⁺ has greater attraction for F⁻ / – ions ✓ Quality of Written Communication: 	3	OR F ⁻ has a larger charge density ✓ IGNORE just Cl ⁻ is large comparison required ORA: Na ⁺ is larger AND Na ⁺ has a smaller charge ✓ IGNORE just Mg ²⁺ is small comparison required ALLOW 'greater charge density' for 'greater charge' but NOT for smaller size + AND – IONS must be used for this mark IGNORE greater attraction between ions in NaF AND MgF ₂ + AND – ions OR oppositely charged ions are required ASSUME attraction to be electrostatic unless stated otherwise: e.g. DO NOT ALLOW nuclear attraction ALLOW pull for attraction
	Third mark needs to link ionic size and ionic charge with the attraction that results in lattice enthalpy		ALLOW 'attracts with more force' for greater attraction IGNORE just 'greater force' (<i>could be repulsion</i>) IGNORE comparison of bond strength/energy to break bonds IGNORE comparisons of numbers of ions IGNORE responses in terms of packing
	Total	12	

	Ques	tion	Answer	Marks	Guidance
2		(i)	$(K_{c} =) \frac{[CO_{2}]^{2} [N_{2}]}{[CO]^{2} [NO]^{2}} \checkmark$	1	Square brackets required for ALL four concentrations
		(ii)	dm ³ mol ^{−1} ✓	1	ALLOW mol ⁻¹ dm ³

(Quest	ion	Answer	Marks	Guidance
2	Quest	ion (iii)	Answer FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 0.95 award 4 marks 	Marks	GuidanceANNOTATIONS MUST BE USEDIF there is an alternative answer, apply ECF by checkingworking for intermediate marksAPPLY ECF from incorrect starting $n(CO)$ By ECF, $n(N_2) = n(CO_2)/2$ For all parts, ALLOW numerical answers from 2 significantfigures up to the calculator value
			Must use calculated equilibrium amounts AND 0.25 $(K_c =) \frac{0.20^2 \times 0.10}{0.26^2 \times 0.25^2} = 0.95 \text{ (dm}^3 \text{ mol}^{-1}) \checkmark$	4	Correct numerical answer with no working scores 4 marks ALLOW calculator value: 0.946745562 down to 0.95 (2SF), correctly rounded, e.g. 0.947 IGNORE units, even if incorrect
					$ \begin{array}{l} \hline \textbf{Common errors} \\ 1.89 3 marks use of n(N_2) = 0.2(0) \text{ mol} \\ & \frac{(K_c =) \frac{0.20^2 \times 0.20}{0.26^2 \times 0.25^2} = 1.893491124 \ (dm^3 \text{ mol}^{-1}) \checkmark \\ 1.29 3 \text{ marks } 0.45 \text{ and } 0.46 \text{ swapped over} \\ & n(CO) = 0.45 - 0.21 = 0.24 \ \text{mol} \checkmark \\ & n(N_2) = 0.105 \ \text{mol} \checkmark \\ & n(N_2) = 0.105 \ \text{mol} \checkmark \\ & \frac{(K_c =) \frac{0.21^2 \times 0.105}{0.24^2 \times 0.25^2} = 1.28625 \ (dm^3 \text{ mol}^{-1}) \checkmark \\ 1.0243 \ \text{marks } 0.45 \ \text{used twice} \\ & n(CO) = 0.45 - 0.20 = 0.25 \ \text{mol} \checkmark \\ & n(N_2) = 0.1(0) \ \text{mol} \checkmark \\ & \frac{(K_c =) \frac{0.20^2 \times 0.10}{0.25^2 \times 0.25^2} = 1.024 \ (dm^3 \ \text{mol}^{-1}) \checkmark \\ 1.1853 \ \text{marks } 0.46 \ \text{used twice} \\ & n(CO) = 0.46 - 0.21 = 0.25 \ \text{mol} \checkmark \\ & n(N_2) = 0.105 \ \text{mol} \checkmark \\ & \frac{(K_c =) \frac{0.20^2 \times 0.10}{0.25^2 \times 0.25^2} = 1.024 \ (dm^3 \ \text{mol}^{-1}) \checkmark \\ & \frac{(K_c =) \frac{0.21^2 \times 0.105}{0.25^2 \times 0.25^2} = 1.185408 \ (dm^3 \ \text{mol}^{-1}) \checkmark \\ \end{array} $

C	Questi	on	Answer	Marks	Guidance
2	(a)	(iv)	Mark ECF from (iii)		First look at K_c value for (iii) at bottom of cut
			IF K_c from (iii) < 1 equilibrium to left/towards reactants OR IF K_c from (iii) > 1 equilibrium to right/towards products \checkmark	1	ALLOW favours reverse reaction For correct K_c value in (iii) of 0.95, ALSO ALLOW equilibrium position near to centre \checkmark
	(b)	(i)	K_c has decreasedAND ΔH is negative OR (forward) reaction is exothermic \checkmark	1	Statement AND reason required for mark ALLOW for reason: reverse reaction is endothermic
		(ii)	 Effect of <i>T</i> and <i>P</i> on equilibrium (increased) temperature shifts equilibrium to left AND (increased) pressure shifts equilibrium to right AND fewer (gaseous) moles on right-hand side ✓ Overall effect on equilibrium Difficult to predict relative contributions of two opposing factors ✓ 	2	 Reason ONLY required for pressure Temperature and ∆<i>H</i> had been <i>required in (i)</i> ALLOW ratio of (gas) moles is 4:3 ALLOW opposing effects may not be the same size ALLOW effects could cancel each other out ALLOW effects oppose one another DO NOT ALLOW just 'it is difficult to predict equilibrium position' (<i>in question</i>) For the 2nd mark, we are assessing the idea that we don't know which factor is dominant
			Total	10	

Question	Answer	Marks	Guidance
3 (a) (i)	$(\mathcal{K}_{a} =) \frac{[H^{+}][CH_{3}(CH_{2})_{2}COO^{-}]}{[CH_{3}(CH_{2})_{2}COOH]} \checkmark$	1	ALLOW $CH_3CH_2CH_2COOH$ OR C_3H_7COOH in expression DO NOT ALLOW use of HA and A ⁻ in this part. DO NOT ALLOW: $\frac{[H^+][CH_3(CH_2)_2COO^-]}{[CH_3(CH_2)_2COOH]} = \frac{[H^+]^2}{[CH_3(CH_2)_2COOH]}$: CON
(ii)	$pK_a = -\log K_a = 4.82 \checkmark$	1	ALLOW 4.82 up to calculator value of 4.821023053 DO NOT ALLOW 4.8
	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 2.71 award 3 marks $[H^+] = \sqrt{[K_a][CH_3(CH_2)_2COOH]} \text{ OR } \sqrt{1.51 \times 10^{-5} \times 0.250}$ \checkmark $[H^+] = 1.94 \times 10^{-3} \text{ (mol dm}^{-3}) \checkmark$ $pH = -\log[H^+] = 2.71 \checkmark$	3	IF alternative answer to more or fewer decimal places, check calculator value and working for 1st and 2nd marks ALLOW use of HA and A [−] in this part Calculator: 1.942935923 x 10 ^{−3} ALLOW use of calculated K_a value, either calculator value or rounded on script. pH must be to 2 decimal places ALLOW ECF from incorrectly calculated [H ⁺] and pH ONLY when values for both K_a AND [CH ₃ CH ₂ CH ₂ COOH] have been used, i.e. 1.5 x 10 ^{−5} AND 0.250. e.g.: pH = 5.42 2 marks $-\log(1.51 \times 10^{-5} \times 0.250)$ No $$ pH = 2.11 2 marks $-\log(\sqrt{\frac{1.51 \times 10^{-5}}{0.250}})$ pH = 4.22 1 mark $-\log(\frac{1.51 \times 10^{-5}}{0.250})$ No $$ DO NOT ALLOW just $-\log(1.51 \times 10^{-5}) = 4.82$ NO MARKS

C	Questi	ion	Answer	Marks	Guidance
3	(b)	(i)	$Mg + 2H^{+} \longrightarrow Mg^{2+} + H_2 \checkmark$	1	IGNORE state symbols ALLOW Mg + 2 CH ₃ (CH ₂) ₂ COOH \longrightarrow 2CH ₃ (CH ₂) ₂ COO ⁻ + Mg ²⁺ + H ₂ DO NOT ALLOW on RHS: (CH ₃ (CH ₂) ₂ COO ⁻) ₂ Mg ²⁺ Ions must be shown separately
		(ii)	$CO_3^{2-} + 2H^+ \longrightarrow H_2O + CO_2 \checkmark$	1	IGNORE state symbols ALLOW $CO_3^{2^-}$ + 2 $CH_3(CH_2)_2COOH \longrightarrow$ 2 $CH_3(CH_2)_2COO^-$ + H_2O + CO_2 ALLOW as product H_2CO_3
	(c)	(i)	CH ₃ (CH ₂) ₂ COONa OR CH ₃ (CH ₂) ₂ COO ⁻ forms OR CH ₃ (CH ₂) ₂ COOH + OH ⁻ \rightarrow CH ₃ (CH ₂) ₂ COO ⁻ + H ₂ O \checkmark CH ₃ (CH ₂) ₂ COOH is in excess OR acid is in excess OR some acid remains \checkmark	2	ALLOW names throughout ALLOW 'sodium salt of butanoic acid' ALLOW $CH_3(CH_2)_2COOH + NaOH \rightarrow CH_3(CH_2)_2COONa + H_2O$ DO NOT ALLOW just 'forms a salt/conjugate base' i.e. identity of product is required

(Questi	on	Answer	Marks	Guidance
3	(c)	(ii)	Moles (2 marks) amount $CH_3(CH_2)_2COOH = 0.0100 \text{ (mol)} \checkmark$		ANNOTATIONS MUST BE USED
			amount $CH_3(CH_2)_2COO^- = 0.0025 \text{ (mol)} \checkmark$	2	ALLOW HA and A [−] throughout Mark by ECF throughout
			Concentration (1 mark) $[CH_3(CH_2)_2COOH] = 0.100 \text{ mol } dm^{-3}$ AND		
			$[CH_3(CH_2)_2COO^-] = 0.025 \text{ mol } dm^{-3} \checkmark$	1	
			[H ⁺] and pH (2 marks) [H ⁺] = $1.51 \times 10^{-5} \times \frac{0.100}{0.025}$ = 6.04 x 10 ⁵ (mol dm ⁻³) ✓ pH = -log 6.04 x 10 ⁵ = 4.22 ✓ pH to 2 DP	2	ONLY award final 2 marks via a correct pH calculation via $K_a \times \frac{[CH_3(CH_2)_2COOH]}{[CH_3(CH_2)_2COO^-]}$ using data derived from that in the question (i.e. not just made up values)
			ALLOW alternative approach based on Henderson–Has $pH = pK_a + \log \frac{0.025}{0.100}$ OR $pK_a - \log \frac{0.100}{0.025}$ \checkmark pH =		
			TAKE CARE with awarding marks for pH = 4.22There is a mark for the concentration stage.If this has been omitted, the ratio for the last 2 markswill be 0.0100 and 0.0025.4 marks max.		Common errors pH = 4.12 use of initial concentrations: 0.250 and 0.050 given in question. Award last 3 marks for: 0.250/2 AND 0.050/2 = 0.125 AND 0.025 ✓
			Common errors pH = 5.42 As above for 4.22 but with acid/base ratio inverted.		$1.51 \times 10^{-5} \times \frac{0.125}{0.025} = 7.55 \times 10^{-5} \text{ (mol dm}^{-3}) \checkmark$ pH = -log[H ⁺] = 4.12 \checkmark
			Award 4 OR 3 marks		Award last 2 marks for:
			Award zero marks for: 4.12 from no working or random values pH value from K_a square root approach (weak acid pH) pH value from K_w /10 ⁻¹⁴ approach (strong base pH)		1.51×10 ⁻⁵ × $\frac{0.250}{0.050}$ = 7.55 x 10 ⁻⁵ (mol dm ⁻³) ✓ pH = -log[H ⁺] = 4.12 ✓ pH = 5.52 As above for 4.12 but with acid/base ratio inverted. Award 2 OR 1 marks as outlined for 4.12 above

Question	Answer	Marks	Guidance
3 (d)	HCOOH + CH ₃ (CH ₂) ₂ COOH \Rightarrow HCOO ⁻ + CH ₃ (CH ₂) ₂ COOH ₂ ⁺ \checkmark acid 1 base 2 base 1 acid 2 \checkmark CARE: Both + and – charges are required for the products in the equilibrium DO NOT AWARD the 2nd mark from an equilibrium expression that omits either charge	2	State symbols NOT required ALLOW 1 and 2 labels the other way around. ALLOW 'just acid' and 'base' labels throughout if linked by lines so that it is clear what the acid-base pairs are For 1st mark, DO NOT ALLOW COOH ⁻ (i.e. H at end rather than start) but within 2nd mark ALLOW COOH ⁻ by ECF IF proton transfer is wrong way around then ALLOW 2nd mark for idea of acid–base pairs, i.e. HCOOH + CH ₃ (CH ₂) ₂ COOH \Rightarrow HCOOH ₂ ⁺ + CH ₃ (CH ₂) ₂ COO ⁻ × base 2 acid 1 For H ₂ COOH ⁺ shown with wrong proton transfer, DO NOT ALLOW an ECF mark for acid–base pairs
	Total	16	

Question	Answer	Marks	Guidance
4 (a) (i)		ANNOTATIONS MUST BE USED Quality of Written Communication:
	<i>initial rates data:</i> From Experiment 1 to Experiment 2		Changes MUST be linked to Experiment numbers in writing (<i>Could be described unambiguously</i>) IGNORE annotations in the table
	AND [NO ₂] x 1.5, rate x 1.5 ✓		For 2nd condition, ALLOW 'when [NO ₂] increases by half, rate increases by half
	1st order with respect to NO ₂ \checkmark		NOTE: Orders may be identified within a rate equation
	From Experiment 2 to Experiment 3 AND $[O_3]$ is doubled, rate $x \ge $ 1st order with respect to $O_3 \checkmark$ rate equation and rate constant: rate = $k[NO_2] [O_3] \checkmark$ $k = \frac{rate}{[NO_2][O_3]} \text{ OR } \frac{4.80 \times 10^{-8}}{0.00150 \times 0.00250} \checkmark$ $= 0.0128 \checkmark \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1} \checkmark$	8	ALLOW: working from any of the Experiments : All give the same calculated answer 0.0128 subsumes previous rearrangement mark ALLOW: mol ⁻¹ dm ³ s ⁻¹ \checkmark DO NOT ALLOW 0.013 over-rounding

CHERRY HILL TUITION OCR A CHEMISTRY A2 PAPER 29 MARK SCHEME

(Questic	on	Answer	Marks	Guidance
4	(a)	(ii)	step 1: NO ₂ + O ₃ LHS of step one ✓ → NO ₃ + O ₂ step 2: NO ₂ + NO ₃ → N ₂ O ₅ rest of equations for step 1 AND step 2 ✓ CHECK that each equation is balanced CARE: Step 1 AND Step 2 must add up to give overall equation In Step 2, IGNORE extra species shown on both sides, e.g. NO ₂ + NO ₃ + O ₂ → N ₂ O ₅ + O ₂ Step 2 can only gain a mark when Step 1 is correct	2	State symbols NOT required For 'rest of equations', ALLOW other combinations that together give the overall equation, e.g.: $\longrightarrow NO_5$ $NO_2 + NO_5 \longrightarrow N_2O_5 + O_2$ e.g.: $\longrightarrow NO + 2O_2$ $NO + NO_2 + O_2 \longrightarrow N_2O_5$ DO NOT ALLOW use of algebraic species, e.g. X
	(b)	(i)	3 gaseous moles → 2 gaseous moles ✓ Less randomness OR becomes more ordered ✓	2	ALLOW products have fewer gaseous moles ORA ALLOW 'molecules' instead of 'moles' ALLOW fewer ways of distributing energy OR fewer degrees of freedom OR fewer ways to arrange
		(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = -148 award 3 marks $\Delta G = \Delta H - T\Delta S \checkmark$ = $-198 - (298 \times -168/1000) \checkmark$ = $-148 \text{ (kJ mol}^{-1}) \checkmark$	3	IF there is an alternative answer, check calculator value and working for intermediate marks by ECF

Question	Answer	Marks	Guidance
4 (b) (iii)	CARE: responses involve changes of negative values		ANNOTATIONS MUST BE USED
	Feasibility with increasing temperature Reaction becomes less feasible/not feasible AND ΔG increases OR ΔG becomes less negative OR $\Delta G = 0$ OR $\Delta G > 0$ OR ΔG is positive OR ΔG approaches zero \checkmark ****IF a candidate makes a correct statement about the link between ΔG and feasibility, IGNORE an incorrect ΔH and $T\Delta S$ relationship IF there is no ΔG statement, then mark any ΔH and $T\Delta S$ relationship in line with the mark scheme		As alternative for 'not feasible' ALLOW 'not spontaneous' OR a comment that implies 'reaction does not take place' ALLOW for ΔG increases $\Delta H = T\Delta S \text{ OR } \Delta H > T\Delta S \text{ OR } \Delta H - T\Delta S$ is positive OR $T\Delta S$ becomes more significant than ΔH OR $T\Delta S$ becomes the same as ΔH OR $T\Delta S$ becomes more negative than ΔH NOTE Last statement will also score 2nd mark
	Effect on $T\Delta S$ $T\Delta S$ becomes more negative OR $T\Delta S$ decreases OR $-T\Delta S$ increases OR magnitude of $T\Delta S$ increases \checkmark	2	DO NOT ALLOW <i>T</i> ∆ <i>S</i> increases
			$\begin{array}{c} \hline \label{eq:APPROACH BASED ON TOTAL ENTROPY:} \\ \hline \mbox{Feasibility with increasing temperature} \\ \hline \mbox{Reaction becomes less feasible/not feasible} \\ \hline \mbox{AND} \\ \hline \Delta S - \Delta H/T \mbox{ OR } \Delta S_{total} \mbox{ decreases/ less positive} \\ \hline \mbox{ OR } \Delta S \mbox{ outweighs/ is less significant than } \Delta H/T \end{tabular} \\ \hline \mbox{Effect on } \Delta H/T \\ \hline \Delta H/T \mbox{ is less negative } \mbox{OR } \Delta H/T \mbox{ increases} \\ \hline \mbox{ OR } -\Delta H/T \mbox{ decreases} \\ \hline \mbox{ OR } -\Delta H/T \mbox{ decreases} \\ \hline \mbox{ OR magnitude of } \Delta H/T \mbox{ decreases} \end{tabular} \end{array}$
	Total	17	

Question	Answer	Marks	Guidance
5 (a)	 (A transition element) has (at least) one ion with a partially filled d sub-shell/ d orbital ✓ Fe AND 1s²2s²2p⁶3s²3p⁶3d⁶4s² ✓ Fe(II) / Fe²⁺ AND 1s²2s²2p⁶3s²3p⁶3d⁶ ✓ Fe(III) / Fe³⁺ AND 1s²2s²2p⁶3s²3p⁶3d⁵ ✓ 	4	ALLOW incomplete for partially filled DO NOT ALLOW d shell ALLOW 4s before 3d, i.e. 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ⁶ IF candidate has used subscripts OR caps OR [Ar], DO NOT ALLOW when first seen but credit subsequently, i.e. 1s ₂ 2s ₂ 2p ₆ 3s ₂ 3p ₆ 3d ₆ 4s ₂ 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3D ⁶ [Ar]4s ² 3d ⁶ For Fe ²⁺ and Fe ³⁺ , ALLOW 4s ⁰ in electron configuration IGNORE electron configurations of elements other than Fe
(b)	EXAMPLES MUST REFER TO Cu^{2+} FOR ALL MARKSPRECIPITATION Reagent NaOH(aq) OR KOH(aq) ✓ States not requiredTransition metal product AND observation $Cu(OH)_2$ AND blue precipitate/solid ✓Correct balanced equation $Cu^{2+}(aq) + 2OH^{-}(aq) \longrightarrow Cu(OH)_2(s) ✓$ state symbols not requiredIF more than one example shown, mark example giving lower mark		ANNOTATIONS MUST BE USED ALLOW NaOH in equation if 'reagent' not given in description ALLOW a small amount of NH ₃ /ammonia DO NOT ALLOW concentrated NH ₃ DO NOT ALLOW just OH ⁻ ALLOW Cu(OH) ₂ (H ₂ O) ₄ ALLOW as state symbol for ppt (may be in equation) ALLOW [Cu(H ₂ O) ₆] ²⁺ + 2OH ⁻ → Cu(OH) ₂ (H ₂ O) ₄ + 2H ₂ O For NH ₃ , also ALLOW: [Cu(H ₂ O) ₆] ²⁺ + 2NH ₃ → Cu(OH) ₂ (H ₂ O) ₄ + 2NH ₄ ⁺ ALLOW full equation, e.g. CuSO ₄ + 2NaOH → Cu(OH) ₂ + Na ₂ SO ₄ CuCl ₂ + 2NaOH → Cu(OH) ₂ + 2NaCl

C	Questic	on	Answer	Marks	Guidance
5	(b)		LIGAND SUBSTITUTION – 2 likely Reagent NH ₃ (aq)/ammonia ✓ State not required		IF more than one example shown, mark example giving lower mark ALLOW NH ₃ in equation if 'reagent' not given in description
			Transition metal product AND observation $[Cu(NH_3)_4(H_2O)_2]^{2+}$ AND deeper/darker blue (solution) \checkmark		DO NOT ALLOW precipitate ALLOW royal blue, ultramarine blue or any blue colour that is clearly darker than for $[Cu(H_2O)_6]^{2+1} \checkmark$
			Correct balanced equation $[Cu(H_2O)_6]^{2+} + 4NH_3 \longrightarrow [Cu(NH_3)_4(H_2O)_2]^{2+} + 4H_2O$	3	
			OR Reagent Concentrated HCI OR (dilute) HCI(aq) OR NaCI(aq) ✓ State not required Transition metal product AND observation [CuCl₄] ²⁻ AND yellow (solution) ✓		ALLOW CuCl ₄ ²⁻ i.e. no brackets ALLOW any shades of yellow, e.g. yellow–green DO NOT ALLOW precipitate
			Correct balanced equation $[Cu(H_2O)_6]^{2+} + 4Cl^- \longrightarrow [CuCl_4]^{2-} + 6H_2O \checkmark$		ALLOW other correct ligand substitutions using same principles for marking as in two examples given
	(c)	(i)	Pt oxidised from 0 +4 ✓ N reduced from +5 to +4 ✓	2	ALLOW 1 mark for Pt from 0 to +4 AND N from +5 to +4 i.e. oxidation and reduction not identified or wrong way round
					DO NOT ALLOW Pt is oxidised and N reduced with no evidence
					DO NOT ALLOW responses using other incorrect oxidation numbers (CON)

	Questio	on	Answer	Marks	Guidance
5	(c)	(ii)	$Pt + 6HCI + 4HNO_3 \longrightarrow H_2PtCI_6 + 4NO_2 + 4H_2O \checkmark \checkmark$	2	1st mark for ALL species correct and no extras: i.e: $Pt + HCl + HNO_3 \longrightarrow H_2PtCl_6 + NO_2 + H_2O$ DO NOT ALLOW charge on Pt, e.g. Pt^{2+} 2nd mark for correct balancing ALLOW correct multiples
	(d)		$\begin{bmatrix} C_{I} & C_{I} \\ C_{I} & C_{I} \end{bmatrix}^{2} - OR$ $\begin{bmatrix} C_{I} & C_{I} \\ C_{I} & C_{I} \\ C_{I} & C_{I} \end{bmatrix}^{2} - OR$ $3-D Shape 1 mark Correct 3-D diagram of Pt surrounded by 6CI ONLY$ $Bond angle 1 mark Dond angle of 90° on diagram or stated \checkmark$ $Bond angle 0 f 90° on diagram or stated \checkmark$ $Charge 1 mark 2- charge shown outside of brackets \checkmark$	3	Must contain 2 'out wedges', 2 'in wedges' and 2 lines in plane of paper OR 4 lines, 1 'out wedge' and 1 'in wedge' For bond into paper, ALLOW: """"""""""""""""""""""""""""""""""""

C	Question		Answer	Marks	Guidance
5	(e)	(i)	Donates two electron pairs to a metal (ion) \checkmark		ALLOW lone pairs for electron pairs
			forms two coordinate bonds ✓	2	ALLOW dative (covalent) bond for coordinate bond
					 ALLOW 1 mark for a full definition of a ligand (without reference to 2: i.e. Donates an electron pair to a metal (ion) forming a coordinate bond ✓
		(ii)			ALLOW displayed formulae
				2	'– charges' essential in $(COO^{-})_2$ structure DO NOT ALLOW –H ₂ N
			·····2 • 0 0 •	2	
			Total	21	

(Questio	on	Answer	Marks	Guidance
6	(a)	(i) (ii)	complete circuit with voltmeter and salt bridge linking two half-cells \checkmark Pt electrode in Fe ³⁺ /Fe ²⁺ half-cell with same concentrations \checkmark Cr electrode in 1 mol dm ⁻³ Cr ³⁺ half-cell \checkmark Cr + 3Fe ³⁺ \longrightarrow Cr ³⁺ + 3Fe ²⁺ \checkmark	3	Salt bridge MUST be labelled ALLOW Fe ²⁺ and Fe ³⁺ with concentrations of 1 mol dm ⁻³ ALLOW 1 M but DO NOT ALLOW 1 mol ALLOW \rightleftharpoons sign DO NOT ALLOW if e ⁻ shown uncancelled on both sides, e.g. Cr + 3Fe ³⁺ + 3e ⁻ \longrightarrow Cr ³⁺ + 3Fe ²⁺ + 3e ⁻
		(iii)	1.51 V ✓	1	IGNORE sign
	(b)		$Cr_2O_7^{2-}$ AND H ⁺ \checkmark	1	ALLOW acidified dichromate
	(c)		$Cr_2O_7^{2-}(aq) + 8H^+(aq) + 3HCOOH(aq) \longrightarrow$ $2Cr^{3+}(aq) + 7H_2O(I) + 3CO_2(I)$ $\checkmark\checkmark$ State symbols not required	2	1st mark for ALL species correct and no extras: Cr ₂ O ₇ ²⁻ , H ⁺ , HCOOH, Cr ³⁺ , H ₂ O AND CO ₂ NOTE: H ⁺ may be shown on both sides ALLOW ➡ sign
					2nd mark for correct balancing with H ⁺ cancelled down
	(d)	(i)	E^{\bullet} for chromium (redox system) is more negative/lower/less (than copper redox system) ORA \checkmark		ALLOW <i>E</i> _{cell} is +1.08 V (sign required)
			chromium system shifts to the left / $Cr(s) \longrightarrow Cr^{3+}(aq) + 3e^{-}$ AND copper system shifts to the right / $Cu^{2+}(aq) + 2e^{-} \longrightarrow Cu(s) \checkmark$	2	ALLOW Cr loses electrons more readily/more easily oxidised OR Cr is a stronger reducing agent OR Cu loses electrons less readily OR Cu is a weaker reducing agent

(Questio	on	Answer	Marks	Guidance
6	(d) (e)	(ii) (i)	Cr reacts with H ⁺ ions/acid to form H ₂ gas ✓ 1.45 V ✓	1	ALLOW equation: $2Cr + 6H^+ \longrightarrow 2Cr^{3+} + 3H_2$ (ALLOW multiples) DO NOT ALLOW just 'hydrogen forms', i.e. Cr, H ⁺ /acid AND H ₂ must all be included for the mark IGNORE sign
		(i)	 2 marks, ✓ ✓, for two points from the following list: Methanoic acid is a liquid AND easier to store/transport OR hydrogen is a gas AND harder to store/transport OR hydrogen as a liquid is stored under pressure Hydrogen is explosive/more flammable HCOOH gives a greater cell potential/voltage HCOOH has more public/political acceptance than hydrogen as a fuel 	2	ASSUME 'it' refers to HCOOH DO NOT ALLOW 'produces no CO ₂ ' IGNORE comments about biomass and renewable HCOOH and H ₂ are both manufactured from natural gas
			Total	14	

Question	Answer	Marks	Guidance
7 (a)	$\begin{array}{rcrcrcrc} MnO_2 & + & 4OH^- \longrightarrow & MnO_4^{2-} + & 2H_2O + & 2e^-\checkmark \\ 3H_2O & + & CIO_3^- + & 6e^-\checkmark & \longrightarrow & 6OH^- + & CI^- \end{array}$	2	ALLOW 'e': i.e. – sign not required
(b)	Role of CO2 CO2 reacts with H2O forming an acid OR carbonic acid/H2CO3 forms OR CO2 is acidic ✓ Equation involving OH ⁻ H2CO3 + OH ⁻ → H2O + HCO3 ⁻ OR H2CO3 + 2OH ⁻ → 2H2O + CO3 ²⁻ OR CO2 + OH ⁻ → CO3 ²⁻ + H ⁺ OR CO2 + OH ⁻ → HCO3 ⁻ OR CO2 + 2OH ⁻ → HCO3 ⁻ OR CO2 + 2OH ⁻ → CO3 ²⁻ + H2O OR H ⁺ + OH ⁻ → H2O ✓ Effect on equilibrium with reason equilibrium shifts to right AND to restore OH ⁻ ✓	3	ALLOW for 'restores OH ⁻⁺ the following: 'makes more OH ⁻⁺ , 'OH ⁻⁺ has been used up' DO NOT ALLOW just 'equilibrium shifts to right'

C	Question	Answer	Marks	Guidance
7	(c)	FOLLOW through stages to mark Moles in titration $n(KMnO_4) = 0.0200 \times \frac{26.2}{1000} = 5.24 \times 10^{-4} \text{ mol } \checkmark$		ANNOTATIONS MUST BE USED AT LEAST 3 SF for each step
		$n(SO_3^{2-}) = 1.31 \times 10^{-3} \text{ mol } \checkmark$		ECF 2.5 x answer above
		Scaling $n(SO_3^{2-})$ in original 100 cm ³ = 4 x 1.31 x 10 ⁻³ = 5.24 x 10 ⁻³ mol \checkmark		ECF 4 x answer above
		Mass Mass of Na ₂ SO ₃ in sample = 126.1 x 5.24 x 10 ⁻³ g = 0.660764 g ✓		ECF 126.1 x answer above ALLOW 0.661 g up to calculator value
		Percentage % Na₂SO₃ = $\frac{0.660764}{0.720}$ × 100 = 91.8% ✓	5	ECF $\frac{\text{calculated mass above}}{0.720} \times 100$ ALLOW 91.8% (1 DP) up to calculator value of 91.77277778 i.e. DO NOT ALLOW 92%
		ALLOW alternative approach based on theoretical content of Na_2SO_3 for last 2 marks		COMMON ERRORS:36.8(1)%4 marksno 2.5 factor22.9(4)%4 marksno scaling by 49.18%3 marksno 2.5 and no x 4
		Theoretical amount, in moles, of Na ₂ SO ₃ in sample $n(Na_2SO_3) = \frac{0.720}{126.1} = 5.71 \times 10^{-3} \text{ mol } \checkmark$ Percentage		Watch for random ECF %s for % from incorrect $M(Na_2SO_3)$, e.g. use of $M(SO_3^{2-}) = 80.1$ giving 58.3%
		% Na ₂ SO ₃ = $\frac{5.24 \times 10^{-3}}{5.71 \times 10^{-3}} \times 100 = 91.8\%$ \checkmark Total	10	