Question		Answer	Marks	Guidance $\mathbf{1}$

Question			Answer	Marks	Guidance
1	(b)	(i)	1. Mark Line 1 first as below (right or wrong) 2. Mark Line 4 as below (right or wrong) 3. Mark difference in species on Line 1 and Line 2 MUST match one of the enthalpy changes in the table: atomisation of $\mathrm{Li}(\mathrm{s})$ atomisation of $1 / 2 \mathrm{~F}_{2}(\mathrm{~g})$ first ionisation energy of Li(g) 4. Repeat for differences on Line $\mathbf{2}$ and Line $\mathbf{3}$		ANNOTATIONS MUST BE USED ALLOW marks by ECF as follows: Follow order at top of Answer column
			$4 \mathrm{Li}^{+}(\mathrm{g})+\mathrm{F}(\mathrm{~g})+\mathrm{e}^{-}$		ALLOW atomisation of $1 / 2 \mathrm{~F}_{2}(\mathrm{~g})$ before atomisation of $\mathrm{Li}(\mathrm{s}):$ ALLOW ionisation of $\mathrm{Li}(\mathrm{g})$ before atomisation of $1 / 2 \mathrm{~F}_{2}(\mathrm{~g})$
			 Correct species and state symbols required for all marks IF an electron has formed, it MUST be shown as e^{-}OR e	4	
					Common errors Line 4: Missing e- and rest correct 3 marks Line 1: \quad IF $1 / 2 \mathrm{~F}_{2}(\mathrm{~g})$ is NOT shown 2 max [Line 4 and $\mathrm{Li}(\mathrm{s}) \rightarrow \mathrm{Li}(\mathrm{g})$] e.g., for $F(g), F(s), F(I), F(a q), F_{2}(g)$ DO NOT ALLOW Fl when first seen but credit subsequently

Question			Answer	Marks	Guidance
1	(b)	(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer $=-1046\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ award 2 marks $\begin{aligned} & (-616)=(+159)+(+79)+(+520)+(-328)+\Delta H_{\mathrm{LE}}(\mathrm{LiF}) \\ & \mathrm{OR} \\ & \Delta H_{\mathrm{LE}}(\mathrm{LiF})=(-616)-[(+159)+(+79)+(+520)+(-328)] \\ & \checkmark \\ & =-616-430 \\ & =-1046\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \checkmark \end{aligned}$	2	IF there is an alternative answer, check the list below for marking of answers from common errors ALLOW for 1 mark: $\begin{array}{lc} +1046 & \text { wrong sign } \\ -186 & +430 \text { instead of }-430 \\ +186 & +616 \text { instead of }-616 \\ -1006.5 & (+79) \Delta H_{\text {at }}(F) \text { halved to }+39.5 \\ -1702 & \text { wrong sign for } 328 \end{array}$ Any other number: CHECK for ECF from 1st marking point for expressions with ONE error only e.g. one transcription error: e.g. +195 instead of +159
	(c)		$\Delta H<T \Delta S$ OR $\Delta H-T \Delta S<0$ OR ΔH is more negative than $T \Delta S$ OR Negative value of ΔH is more significant than negative value of $T \Delta S \checkmark$ NOTE IGNORE comments about ΔG	1	ANNOTATIONS MUST BE USED ALLOW 'exothermic' for negative ALLOW a negative lattice energy value ALLOW ΔH is negative AND magnitude of $\Delta H>$ magnitude of $T \Delta S$ IGNORE ONLY magnitude of $\Delta H>$ magnitude of $T \Delta S$

Question		Answer	Marks	Guidance
1	(d)	For FIRST TWO marking points, assume that the following refer to 'ions', Mg^{2+}, etc. DO NOT ALLOW molecule For 'ions', ALLOW 'atoms' ALLOW Fl for F For $\mathrm{Mg}^{2+}, \mathrm{Na}^{+}, \mathrm{Cl}^{-}$and F^{-}, ALLOW symbols: $\mathrm{Mg}, \mathrm{Na}, \mathrm{Cl}$ and F ALLOW names: magnesium, sodium, chlorine, chloride, fluorine, fluoride i.e. ALLOW Mg has a smaller (atomic) radius For THIRD marking point, IONS must be used		
		Comparison of size of anions Chloride ion OR Cl ${ }^{-}$is larger (than F^{-}) OR Cl' has smaller charge density (than F^{-}) \checkmark Comparison of size AND charge of cations Mg^{2+} is smaller (than Na^{+}) AND Mg^{2+} has a greater charge (than $\left.\mathrm{Na}^{+}\right)^{\checkmark}$ Comparison of attraction between ions F^{-}has greater attraction for $\mathrm{Na}^{+} /+$ions AND Mg^{2+} has greater attraction for $\mathrm{F}^{-} /-$ions \checkmark Quality of Written Communication: Third mark needs to link ionic size and ionic charge with the attraction that results in lattice enthalpy	3	ANNOTATIONS MUST BE USED ORA F^{-}is smaller OR F^{-}has a larger charge density \checkmark IGNORE just Cl^{-}is large comparison required ORA: Na^{+}is larger AND Na^{+}has a smaller charge \checkmark IGNORE just Mg^{2+} is small comparison required ALLOW 'greater charge density' for 'greater charge' but NOT for smaller size + AND - IONS must be used for this mark IGNORE greater attraction between ions in NaF AND MgF_{2} + AND - ions OR oppositely charged ions are required ASSUME attraction to be electrostatic unless stated otherwise: e.g. DO NOT ALLOW nuclear attraction ALLOW pull for attraction ALLOW 'attracts with more force' for greater attraction IGNORE just 'greater force' (could be repulsion) IGNORE comparison of bond strength/energy to break bonds IGNORE comparisons of numbers of ions IGNORE responses in terms of packing
		Total	12	

Question		Answer	Marks	Guidance	
$\mathbf{2}$	(a)	(i)	$\left(K_{\mathrm{c}}=\right) \frac{\left[\mathrm{CO}_{2}\right]^{2}\left[\mathrm{~N}_{2}\right]}{[\mathrm{CO}]^{2}[\mathrm{NO}]^{2}} \checkmark$	1	Square brackets required for ALL four concentrations
		(ii)	$\mathrm{dm}^{3} \mathrm{~mol}^{-1} \checkmark$	1	ALLOW $\mathrm{mol}^{-1} \mathrm{dm}^{3}$

	uest		Answer	Marks	Guidance
2	(a)	(iii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer $=0.95$ award 4 marks Equilibrium amounts: $\begin{aligned} & n(\mathrm{CO})=0.46-0.20=0.26 \mathrm{~mol} \checkmark \\ & n\left(\mathrm{CO}_{2}\right)=0.2(0) \mathrm{mol} \checkmark \\ & n\left(\mathrm{~N}_{2}\right)=0.1(0) \mathrm{mol} \checkmark \end{aligned}$ $K_{\text {c }}$ calculation Must use calculated equilibrium amounts AND 0.25 $\left(K_{\mathrm{c}}=\right) \frac{0.20^{2} \times 0.10}{0.26^{2} \times 0.25^{2}}=0.95\left(\mathrm{dm}^{3} \mathrm{~mol}^{-1}\right) \checkmark$	4	ANNOTATIONS MUST BE USED IF there is an alternative answer, apply ECF by checking working for intermediate marks
					APPLY ECF from incorrect starting $n(C O)$ By ECF, $n\left(\mathrm{~N}_{2}\right)=n\left(\mathrm{CO}_{2}\right) / 2$
					For all parts, ALLOW numerical answers from 2 significant figures up to the calculator value
					Correct numerical answer with no working scores 4 marks ALLOW calculator value: 0.946745562 down to 0.95 (2SF), correctly rounded, e.g. 0.947 IGNORE units, even if incorrect
					Common errors 1.893 marks use of $n\left(\mathrm{~N}_{2}\right)=0.2(0) \mathrm{mol}$ $\left(K_{\mathrm{c}}=\right) \frac{0.20^{2} \times 0.20}{0.26^{2} \times 0.25^{2}}=1.893491124\left(\mathrm{dm}^{3} \mathrm{~mol}^{-1}\right)^{\checkmark}$
					$\begin{aligned} & n(\mathrm{CO})=0.45-0.21=0.24 \mathrm{~mol} \\ & n\left(\mathrm{CO}_{2}\right)=0.21 \mathrm{~mol} \checkmark \\ & n\left(\mathrm{~N}_{2}\right)=0.105 \mathrm{~mol} \checkmark \\ & \left(K_{\mathrm{c}}=\right) \frac{0.21^{2} \times 0.105}{0.24^{2} \times 0.25^{2}}=1.28625\left(\mathrm{dm}^{3} \mathrm{~mol}^{-1}\right) \checkmark \end{aligned}$
					1.0243 marks 0.45 used twice $\begin{aligned} & n(\mathrm{CO})=0.45-0.20=0.25 \mathrm{~mol} \checkmark \\ & n\left(\mathrm{CO}_{2}\right)=0.2(0) \mathrm{mol} \checkmark \\ & n\left(\mathrm{~N}_{2}\right)=0.1(0) \mathrm{mol} \checkmark \\ & \left(K_{\mathrm{c}}=\right) \frac{0.20^{2} \times 0.10}{0.25^{2} \times 0.25^{2}}=1.024\left(\mathrm{dm}^{3} \mathrm{~mol}^{-1}\right) \checkmark \end{aligned}$
					1.1853 marks 0.46 used twice $\begin{aligned} & n(\mathrm{CO})=0.46-0.21=0.25 \mathrm{~mol} \checkmark \\ & \left.n(\mathrm{CO})_{2}\right)=0.21 \mathrm{~mol} \checkmark \\ & n\left(\mathrm{~N}_{2}\right)=0.105 \mathrm{~mol} \checkmark \\ & \left(K_{\mathrm{c}}=\right) \frac{0.21^{2} \times 0.105}{0.25^{2} \times 0.25^{2}}=1.185408\left(\mathrm{dm}^{3} \mathrm{~mol}^{-1}\right) \checkmark \end{aligned}$

Question			Answer	Marks	Guidance
2	(a)	(iv)	Mark ECF from (iii) IF K_{c} from (iii) < 1 equilibrium to left/towards reactants OR IF K_{c} from (iii) > 1 equilibrium to right/towards products \checkmark	1	First look at K_{c} value for (iii) at bottom of cut \qquad ALLOW favours reverse reaction For correct K_{c} value in (iii) of 0.95, ALSO ALLOW equilibrium position near to centre \checkmark
	(b)	(i)	K_{c} has decreased AND ΔH is negative OR (forward) reaction is exothermic \checkmark	1	Statement AND reason required for mark ALLOW for reason: reverse reaction is endothermic
		(ii)	Effect of T and P on equilibrium (increased) temperature shifts equilibrium to left AND (increased) pressure shifts equilibrium to right AND fewer (gaseous) moles on right-hand side Overall effect on equilibrium Difficult to predict relative contributions of two opposing factors	2	Reason ONLY required for pressure Temperature and ΔH had been required in (i) ALLOW ratio of (gas) moles is $4: 3$ ALLOW opposing effects may not be the same size ALLOW effects could cancel each other out ALLOW effects oppose one another DO NOT ALLOW just 'it is difficult to predict equilibrium position' (in question) For the 2nd mark, we are assessing the idea that we don't know which factor is dominant
			Total	10	

Question			Answer	Marks	Guidance
3	(a)	(i)	$\left(K_{\mathrm{a}}=\right) \frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COOH}\right]}$	1	ALLOW CH $3_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH} \mathrm{OR} \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COOH}$ in expression DO NOT ALLOW use of HA and A^{-}in this part. DO NOT ALLOW: $\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COOH}\right]}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{\left[\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COOH}\right]}: \mathrm{CON}$
		(ii)	$\mathrm{p} K_{\mathrm{a}}=-\log K_{\mathrm{a}}=4.82 \checkmark$	1	ALLOW 4.82 up to calculator value of 4.821023053 DO NOT ALLOW 4.8
		(iii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 2.71 award 3 marks $\begin{aligned} & {\left[\mathrm{H}^{+}\right]=\sqrt{\left[\mathrm{K}_{\mathrm{a}}\right]\left[\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COOH}\right]} \text { OR } \sqrt{1.51 \times 10^{-5} \times 0.250}} \\ & \checkmark \\ & {\left[\mathrm{H}^{+}\right]=1.94 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)} \\ & \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=2.71 \end{aligned}$	3	IF alternative answer to more or fewer decimal places, check calculator value and working for 1st and 2nd marks ALLOW use of HA and A^{-}in this part Calculator: $1.942935923 \times 10^{-3}$ ALLOW use of calculated K_{a} value, either calculator value or rounded on script. pH must be to 2 decimal places ALLOW ECF from incorrectly calculated $\left[\mathrm{H}^{+}\right]$and pH ONLY when values for both K_{a} AND $\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}\right]$ have been used, i.e. 1.5×10^{-5} AND 0.250. e.g.: $\begin{array}{llrl} \mathrm{pH}=5.42 & 2 \text { marks } & -\log \left(1.51 \times 10^{-5} \times 0.250\right) & \text { No } \sqrt{ } \\ \mathrm{pH}=2.11 & 2 \text { marks } & -\log \left(\sqrt{\frac{1.51 \times 10^{-5}}{0.250}}\right) \\ \mathrm{pH}=4.22 & 1 \text { mark } & -\log \left(\frac{1.51 \times 10^{-5}}{0.250}\right) & \text { No } \sqrt{ } \end{array}$ DO NOT ALLOW just $-\log \left(1.51 \times 10^{-5}\right)=4.82$

Question		Answer	Marks	Guidance	
3	(b)	(i)	$\mathrm{Mg}+2 \mathrm{H}^{+} \longrightarrow \mathrm{Mg}^{2+}+\mathrm{H}_{2} \checkmark$		(ii)

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Question} \& \multirow[t]{2}{*}{} \& Marks \& Guidance \\
\hline 3 \& (c) \& (ii) \& \& 2
1

2 \& | ANNOTATIONS MUST BE USED |
| :--- |
| ALLOW HA and A^{-}throughout |
| Mark by ECF throughout |
| ONLY award final 2 marks via a correct pH calculation via $K_{\mathrm{a}} \times \frac{\left[\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COOH}\right]}{\left[\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COO}^{-}\right]}$using data derived from that in the question (i.e. not just made up values) | \\

\hline \& \& \& \multicolumn{3}{|l|}{ALLOW alternative approach based on Henderson-Hasselbalch equation for final 2 marks

$$
\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \frac{0.025}{0.100} \text { OR } \mathrm{p} K_{\mathrm{a}}-\log \frac{0.100}{0.025} \checkmark \quad \mathrm{pH}=4.82-0.60=4.22 \checkmark \quad \text { ALLOW }-\log K_{\mathrm{a}} \text { for } \mathrm{p} K_{\mathrm{a}}
$$} \\

\hline \& \& \& | TAKE CARE with awarding marks for $\mathrm{pH}=4.22$ |
| :--- |
| There is a mark for the concentration stage. |
| If this has been omitted, the ratio for the last 2 marks will be 0.0100 and 0.0025 . 4 marks max. |
| Common errors $\mathrm{pH}=5.42$ |
| As above for 4.22 but with acid/base ratio inverted. |
| Award 4 OR 3 marks |
| Award zero marks for: |
| 4.12 from no working or random values |
| pH value from K_{a} square root approach (weak acid pH) |
| pH value from $K_{\mathrm{w}} / 10^{-14}$ approach (strong base pH) | \& \& | Common errors |
| :--- |
| $\mathrm{pH}=4.12$ |
| use of initial concentrations: 0.250 and 0.050 given in question. |
| Award last 3 marks for: $\begin{aligned} & 0.250 / 2 \text { AND } 0.050 / 2=0.125 \text { AND } 0.025 \checkmark \\ & 1.51 \times 10^{-5} \times \frac{0.125}{0.025}=7.55 \times 10^{--5}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \checkmark \\ & \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=4.12 \end{aligned}$ |
| Award last 2 marks for: $\begin{aligned} & 1.51 \times 10^{-5} \times \frac{0.250}{0.050}=7.55 \times 10^{-5}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \\ & \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=4.12 \\ & \mathrm{pH}= \end{aligned}$ |
| As above for 4.12 but with acid/base ratio inverted. |
| Award 2 OR 1 marks as outlined for 4.12 above | \\

\hline
\end{tabular}

Question		Answer	Marks	Guidance
3	(d)	$\begin{array}{lll} \mathrm{HCOOH}+\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COOH} \rightleftharpoons \\ \checkmark & & \\ \\ & \\ & \\ & \text { acid 1 } & \text { base 2 } \\ & & \text { base 1 } \end{array}$ CARE: Both + and - charges are required for the products in the equilibrium DO NOT AWARD the 2nd mark from an equilibrium expression that omits either charge	2	State symbols NOT required ALLOW 1 and 2 labels the other way around. ALLOW 'just acid' and 'base' labels throughout if linked by lines so that it is clear what the acid-base pairs are For 1st mark, DO NOT ALLOW COOH^{-} (i.e. H at end rather than start) but within 2nd mark ALLOW COOH^{-}by ECF IF proton transfer is wrong way around then ALLOW 2nd mark for idea of acid-base pairs, i.e. $\begin{array}{cc} \mathrm{HCOOH}+\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COOH} \stackrel{\mathrm{HCOOH}}{2}+ \\ \text { base 2 } & \text { acid 1 } \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COO}^{-} \times \\ & \\ & \text {acid 2 } \\ \text { base } 1 \checkmark \end{array}$ For $\mathrm{H}_{2} \mathrm{COOH}^{+}$shown with wrong proton transfer, DO NOT ALLOW an ECF mark for acid-base pairs
		Total	16	

Question			Answer	Marks	Guidance
4	(a)	(i)			ANNOTATIONS MUST BE USED Quality of Written Communication:
			initial rates data: From Experiment 1 to Experiment 2		Changes MUST be linked to Experiment numbers in writing (Could be described unambiguously) IGNORE annotations in the table
			$\left[\mathrm{NO}_{2}\right] \times 1.5, \text { rate } \times 1.5 \checkmark$ 1st order with respect to $\mathrm{NO}_{2} \checkmark$		For 2nd condition, ALLOW 'when $\left[\mathrm{NO}_{2}\right]$ increases by half, rate increases by half NOTE: Orders may be identified within a rate equation
			From Experiment 2 to Experiment 3 AND $\left[\mathrm{O}_{3}\right]$ is doubled, rate $\times 2 \checkmark$		
			1st order with respect to $\mathrm{O}_{3} \checkmark$		
			rate equation and rate constant: $\begin{aligned} & \text { rate }=k\left[\mathrm{NO}_{2}\right]\left[\mathrm{O}_{3}\right] \\ & k=\frac{\text { rate }}{\left[\mathrm{NO}_{2}\right]\left[\mathrm{O}_{3}\right]} \text { OR } \frac{4.80 \times 10^{-8}}{0.00150 \times 0.00250} \\ & =0.0128 \checkmark \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1} \checkmark \end{aligned}$	8	ALLOW: working from any of the Experiments : All give the same calculated answer 0.0128 subsumes previous rearrangement mark ALLOW: $\mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~s}^{-1} \checkmark$ DO NOT ALLOW 0.013 over-rounding
					ALLOW ECF from inverted k expression: $k=\frac{\left[\mathrm{NO}_{2}\right]\left[\mathrm{O}_{3}\right]}{\text { rate }}$: $k=78.125 \checkmark$ ALLOW 3 SF or more NOTE units must be from rate equation \checkmark

Question			Answer	Marks	Guidance
4	(a)	(ii)	step 1: $\mathrm{NO}_{2}+\mathrm{O}_{3}$ LHS of step one \checkmark $\text { step 2: } \mathrm{NO}_{2}+\mathrm{NO}_{3} \quad \xrightarrow{\mathrm{NO}_{3}+\mathrm{O}_{2}}$ rest of equations for step 1 AND step $2 \checkmark$ CHECK that each equation is balanced CARE: Step 1 AND Step 2 must add up to give overall equation In Step 2, IGNORE extra species shown on both sides, e.g. $\mathrm{NO}_{2}+\mathrm{NO}_{3}+\mathrm{O}_{2} \longrightarrow \mathrm{~N}_{2} \mathrm{O}_{5}+\mathrm{O}_{2}$ Step 2 can only gain a mark when Step 1 is correct	2	State symbols NOT required For 'rest of equations', ALLOW other combinations that together give the overall equation, $\begin{array}{ll} \text { e.g.: } & \longrightarrow \xrightarrow{\mathrm{NO}_{5}} \mathrm{~N}_{2} \mathrm{O}_{5}+\mathrm{O}_{2} \\ & \\ & \\ & \\ & \mathrm{NO}+\mathrm{NO}_{2}+\mathrm{NO}_{2} \longrightarrow \mathrm{NO}+2 \mathrm{O}_{2} \\ \mathrm{~N}_{2} \mathrm{O}_{5} \end{array}$ DO NOT ALLOW use of algebraic species, e.g. X
	(b)	(i)	3 gaseous moles $\longrightarrow 2$ gaseous moles Less randomness OR becomes more ordered \checkmark	2	ALLOW products have fewer gaseous moles ORA ALLOW 'molecules' instead of 'moles' ALLOW fewer ways of distributing energy OR fewer degrees of freedom OR fewer ways to arrange
		(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = - 148 award 3 marks $\begin{aligned} & \Delta G=\Delta H-T \Delta S \\ = & -198-(298 \times-168 / 1000) \\ = & -148\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \checkmark \end{aligned}$	3	IF there is an alternative answer, check calculator value and working for intermediate marks by ECF 2nd mark subsumes 1st mark for $\Delta G=\Delta H-T \Delta S$ ALLOW -148 to calculator value of -147.936 ALLOW for 2 marks: 49866 ($\mathrm{kJ} \mathrm{mol}^{-1}$): not converting $\Delta \mathrm{S}$ from J to kJ (no $\div 1000$) $-193.8\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ use of 25 instead of 298

Question		Answer	Marks	Guidance
5	(a)	(A transition element) has (at least) one ion with a partially filled d sub-shell/ d orbital Fe AND $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{6} 4 s^{2} \checkmark$ $\mathrm{Fe}(\mathrm{II}) / \mathrm{Fe}^{2+}$ AND $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{6} \checkmark$ $\mathrm{Fe}($ III $) / \mathrm{Fe}^{3+}$ AND $1 \mathrm{~s}^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{5} \checkmark$	4	ALLOW incomplete for partially filled DO NOT ALLOW d shell ALLOW $4 s$ before $3 d$, i.e. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{6}$ IF candidate has used subscripts OR caps OR [Ar], DO NOT ALLOW when first seen but credit subsequently, i.e. $1 \mathrm{~s}_{2} 2 \mathrm{~s}_{2} 2 \mathrm{p}_{6} 3 \mathrm{~s}_{2} 3 \mathrm{p}_{6} 3 \mathrm{~d}_{6} 4 \mathrm{~s}_{2}$ $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 D^{6}$ $[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{6}$ For Fe^{2+} and Fe^{3+}, ALLOW $4 s^{0}$ in electron configuration IGNORE electron configurations of elements other than Fe
	(b)	EXAMPLES MUST REFER TO Cu ${ }^{2+}$ FOR ALL MARKS PRECIPITATION Reagent $\mathrm{NaOH}(\mathrm{aq})$ OR KOH(aq) \checkmark States not required Transition metal product AND observation $\mathrm{Cu}(\mathrm{OH})_{2}$ AND blue precipitate/solid \checkmark Correct balanced equation $\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \longrightarrow \mathrm{Cu}(\mathrm{OH})_{2}(\mathrm{~s}) \checkmark$ state symbols not required IF more than one example shown, mark example giving lower mark	3	ANNOTATIONS MUST BE USED ALLOW NaOH in equation if 'reagent' not given in description ALLOW a small amount of $\mathrm{NH}_{3} /$ ammonia DO NOT ALLOW concentrated NH_{3} DO NOT ALLOW just OH^{-} ALLOW Cu(OH) ${ }_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$ ALLOW any shade of blue ALLOW (s) as state symbol for ppt (may be in equation) ALLOW $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{OH}^{-} \rightarrow \mathrm{Cu}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}+2 \mathrm{H}_{2} \mathrm{O}$ For NH_{3}, also ALLOW: $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{NH}_{3} \rightarrow \mathrm{Cu}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}+2 \mathrm{NH}_{4}^{+}$ ALLOW full equation, $\begin{array}{ll} \text { e.g. } & \mathrm{CuSO}_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{Cu}(\mathrm{OH})_{2}+\mathrm{Na}_{2} \mathrm{SO}_{4} \\ & \mathrm{CuCl}_{2}+2 \mathrm{NaOH} \rightarrow \mathrm{Cu}(\mathrm{OH})_{2}+2 \mathrm{NaCl} \end{array}$

Question			Answer	Marks	Guidance
5	(b)		LIGAND SUBSTITUTION - 2 likely Reagent $\mathrm{NH}_{3}(\mathrm{aq}) /$ ammonia \checkmark State not required Transition metal product AND observation $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$ AND deeper/darker blue (solution) Correct balanced equation $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{NH}_{3} \longrightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}+4 \mathrm{H}_{2} \mathrm{O}$ OR \qquad Reagent Concentrated HCl OR (dilute) $\mathrm{HCl}(\mathrm{aq})$ OR $\mathrm{NaCl}(\mathrm{aq}) \checkmark$ State not required Transition metal product AND observation $\left[\mathrm{CuCl}_{4}\right]^{2-}$ AND yellow (solution) \checkmark Correct balanced equation $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{Cl}^{-} \longrightarrow\left[\mathrm{CuCl}_{4}\right]^{2-}+6 \mathrm{H}_{2} \mathrm{O} \checkmark$	3	IF more than one example shown, mark example giving lower mark ALLOW NH_{3} in equation if 'reagent' not given in description DO NOT ALLOW precipitate ALLOW royal blue, ultramarine blue or any blue colour that is clearly darker than for $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \checkmark$ ALLOW CuCl ${ }_{4}{ }^{2-}$ i.e. no brackets ALLOW any shades of yellow, e.g. yellow-green DO NOT ALLOW precipitate ALLOW other correct ligand substitutions using same principles for marking as in two examples given
	(c)	(i)	Pt oxidised from $0+4 \checkmark$ N reduced from +5 to $+4 \checkmark$	2	ALLOW 1 mark for Pt from 0 to +4 AND N from +5 to +4 i.e. oxidation and reduction not identified or wrong way round DO NOT ALLOW Pt is oxidised and N reduced with no evidence DO NOT ALLOW responses using other incorrect oxidation numbers (CON)

Question			Answer	Marks	Guidance
5	(c)	(ii)	$\mathrm{Pt}+6 \mathrm{HCl}+4 \mathrm{HNO}_{3} \longrightarrow \mathrm{H}_{2} \mathrm{PtCl}_{6}+4 \mathrm{NO}_{2}+4 \mathrm{H}_{2} \mathrm{O} \checkmark \checkmark$	2	1st mark for ALL species correct and no extras: i.e: $\mathrm{Pt}+\mathrm{HCl}+\mathrm{HNO}_{3} \longrightarrow \mathrm{H}_{2} \mathrm{PtCl}_{6}+\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$ DO NOT ALLOW charge on Pt , e.g. Pt^{2+} 2nd mark for correct balancing ALLOW correct multiples
	(d)		3-D Shape 1 mark Correct 3-D diagram of Pt surrounded by 6 Cl ONLY \checkmark Bond angle 1 mark bond angle of 90° on diagram or stated \checkmark Charge 1 mark 2- charge shown outside of brackets \checkmark	3	Must contain 2 'out wedges', 2 'in wedges' and 2 lines in plane of paper OR 4 lines, 1 'out wedge' and 1 'in wedge' For bond into paper, ALLOW: IGNORE charges on Pt and Cl for this mark The 2 marks for charge AND bond angle are ONLY available from a diagram showing Pt bonded to 6 Cl ONLY ALLOW ONLY if diagram has Pt surrounded by 6CI ONLY BUT 3-D shape may not be correct DO NOT ALLOW if ANY charges shown on Pt or Cl within brackets

Question			Answer	Marks	Guidance
5	(e)	(i)	Donates two electron pairs to a metal (ion) \checkmark forms two coordinate bonds	2	ALLOW lone pairs for electron pairs ALLOW dative (covalent) bond for coordinate bond ALLOW 1 mark for a full definition of a ligand (without reference to 2 : i.e. Donates an electron pair to a metal (ion) forming a coordinate bond
		(ii)		2	ALLOW displayed formulae '- charges' essential in $\left(\mathrm{COO}^{-}\right)_{2}$ structure DO NOT ALLOW - $\mathrm{H}_{2} \mathrm{~N}$
			Total	21	

Question			Answer	Marks	Guidance
6	(a)	(i)	complete circuit with voltmeter and salt bridge linking two half-cells Pt electrode in $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ half-cell with same concentrations Cr electrode in $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{Cr}^{3+}$ half-cell \checkmark	3	Salt bridge MUST be labelled ALLOW Fe^{2+} and Fe^{3+} with concentrations of $1 \mathrm{~mol} \mathrm{dm}^{-3}$ ALLOW 1 M but DO NOT ALLOW 1 mol
		(ii)	$\mathrm{Cr}+3 \mathrm{Fe}^{3+} \longrightarrow \mathrm{Cr}^{3+}+3 \mathrm{Fe}^{2+} \checkmark$	1	ALLOW \rightleftharpoons sign DO NOT ALLOW if e^{-}shown uncancelled on both sides, $\text { e.g. } \mathrm{Cr}+3 \mathrm{Fe}^{3+}+3 \mathrm{e}^{-} \longrightarrow \mathrm{Cr}^{3+}+3 \mathrm{Fe}^{2+}+3 \mathrm{e}^{-}$
		(iii)	$1.51 \mathrm{~V} \checkmark$	1	IGNORE sign
	(b)		$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ AND H ${ }^{+} \checkmark$	1	ALLOW acidified dichromate
	(c)		$\begin{aligned} & \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(\mathrm{aq})+8 \mathrm{H}^{+}(\mathrm{aq})+3 \mathrm{HCOOH}(\mathrm{aq}) \longrightarrow \\ & \checkmark \checkmark \quad 2 \mathrm{Cr}^{3+}(\mathrm{aq})+7 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+3 \mathrm{CO}_{2}(\mathrm{l}) \\ & \text { State symbols not required } \end{aligned}$	2	1st mark for ALL species correct and no extras: $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}, \mathrm{H}^{+}, \mathrm{HCOOH}, \mathrm{Cr}^{3+}, \mathrm{H}_{2} \mathrm{O}$ AND CO_{2} NOTE: H^{+}may be shown on both sides ALLOW \rightleftharpoons sign 2nd mark for correct balancing with H^{+}cancelled down
	(d)	(i)	E^{-}for chromium (redox system) is more negative/lower/less (than copper redox system) ORA \checkmark chromium system shifts to the left / $\mathrm{Cr}(\mathrm{~s}) \longrightarrow \mathrm{Cr}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-}$ AND copper system shifts to the right / $\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \longrightarrow \mathrm{Cu}(\mathrm{~s}) \checkmark$	2	ALLOW $E_{\text {cell }}$ is +1.08 V (sign required) ALLOW Cr loses electrons more readily/more easily oxidised OR Cr is a stronger reducing agent OR Cu loses electrons less readily OR Cu is a weaker reducing agent

Question		Answer	Marks	Guidance	
$\mathbf{6}$	(d)	(ii)	Cr reacts with H^{+}ions/acid to form H_{2} gas \checkmark (e) (i)	(ii)	2 marks, $\checkmark \checkmark$, for two points from the following list: 1. Methanoic acid is a liquid AND easier to store/transport OR hydrogen is a gas AND harder to store/transport OR hydrogen as a liquid is stored under pressure 2. Hydrogen is explosive/more flammable 3. HCOOH gives a greater cell potential/voltage 4. HCOOH has more public/political acceptance than hydrogen as a fuel

