

VCO Design Tips

Chuck Clark AF8Z July 25, 2009

Lesson's Phase Noise Mode

$L(f) = FkT/2P_o[1+(f_o/2Q_Lf)^2]$

- F=Active Device Noise Factor
- k=Boltzmans Constant
- T=Temperature
- P_o=Output Power
- Fo=Oscillator Center Frequency
- Q_L=loaded resonator quality factor
- f=frequency offset from carrier

VCO Tips

Optimum Loaded to Unloaded Q 2/3 QI/Qo 6 dB of resonator loss

This comes from solving Lessons eqn for the minimum of phase noise.

One Approach to Higher

Q is purchased by the **CUBIC FOOT**!

Amplifier

- Run a large DC current.
- Servo the DC current
- Small device capacitances
- High FT Oscillator Transistor
- NEC 85633 is excellent below 1200 MHz
- NEC 68133 above
- Infineon and NXP also make good parts

Active Bias Circuit

- PNP Transistor BC847
- Beta =800
- Low Noise
- Suppresses gain of the RF transistor up to ~100 MHz.
- Works the same as the feedback in a PLL
- Can extend the noise improvement above the corner frequency of the PLL which is dictated by the reference frequency.

Phase Noise of PLL

© Copyright by Charles F. Clark, Bluestem Consulting, Inc. 2009

Its all about Loop Gain

Loop Transfer Function

B(s)=(K_d*F(s)*K_o)/(N*s)

Kd=Phase Detector gain constant

- Ko/s= VCO gain, MHz/Volt
- F(s)=loop filter response
- N= loop divider ratio
- s=Heaviside operator, 2*pi*f

Passive Filter

Low Frequency Gain~1
Other Passive filters possible.

Loop Filter Gain

•Low Frequency Gain~∞

Other Sources of Phase Noise

CENTRAL STATES

1 MHz Reference

Does the Reference Matter?

If other components limit the total noise....no. If its noisy. Heck yes.

The application also matters.

Clean vs Poor Reference Osc

CENTRAL STATES

VHF SOCIETY

Some Reference Oscillators

CENTRAL STATES

Summary

Get all the Q you can.

Use a good oscillator transistor

- Servo the current to reduce noise in the VCO below 100 MHz
- Select the loop filter based on your application.

Select as high a reference frequency as possible Find a clean reference.

References

Fundamentals of RF Circuit Design with Low Noise Oscillators. Jeremy Everard

Copyright © 2001 John Wiley & Sons Ltd

ISBNs: 0-471-49793-2 (Hardback); 0-470-84175-3 (Electronic)

- Noise in High-Frequency Circuits and Oscillators, Schiek, Rolfes, Siweris, 2006 Joohn Wiley & Sons. ISBN 0-471-70607-6
- The Design of Modern Microwave Oscillators for Wireless Applications, Rohde , Podar and Bock, 2005 John Wiley and Sons. ISBN 0-471-72342-8

ADS for simulation, by Agilent.

`

ADIsimPLL free from Analog Devices, <u>www.ADI.com</u>

http://www.analog.com/en/rfif-components/pll-synthesizersvcos/products/index.html

VCO data from Synergy Microwave, <u>www.synergy.com</u> DCMO80210-10