Oxford Cambridge and RSA

GCE

Chemistry B

Unit H433/01: Fundamentals of chemistry
Advanced GCE

Mark Scheme for June 2018

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.
© OCR 2018

Annotations available in RM Assessor

Annotation	Meaning
	Correct response
+	Incorrect response
\pm	Omission mark
E5C]	Benefit of doubt given
Es)	Contradiction
[FE	Rounding error
5	Error in number of significant figures
[EFE	Error carried forward
\square	Level 1
\square	Level 2
\square	Level 3
Friri	Benefit of doubt not given
ELCH	Noted but no credit given
E	Ignore

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Olternative wording
ORA	

Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.
You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet Instructions for Examiners. If you are examining for the first time, please read carefully Appendix 5 Introduction to Script Marking: Notes for New Examiners.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader

Section A

Question			Answer	Marks	Guidance
31	(a)		FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer = 63(\%) or rounds to $\mathbf{6 3 . 0}(\%)$ award 3 marks Moles of $\mathrm{C}_{12} \mathrm{H}_{26}=1.5 \times 10^{6} / 170\left(=8.824 \times 10^{3}\right) \checkmark$ Expected yield of $\mathrm{C}_{6} \mathrm{H}_{12}=8.824 \times 10^{3} \times 86\left(=7.589 \times 10^{5} \mathrm{~g}\right.$ or 758.9 $\mathrm{kg})^{\checkmark}$ $\%$ yield $=478 \times 100 / 758.9=63.0(\%)(2$ or more sf $) \checkmark$	3	ALLOW alternative method: Moles of hexane $=478000 / 86=\left(5.558 \times 10^{3}\right) \checkmark$ $\%$ yield $=5.558 \times 10^{3} \times 100 / 8.824 \times 10^{3}=63.0 \checkmark$ A correctly rounded answer to 1 sf scores 1 If units incorrectly converted ALLOW ECF for second mark
	(b)	(i)	Set up: burning fuel under a container of water OR measure the temperature increase of water \checkmark	1	
		(ii)	Find energy transferred to water using $\mathrm{Q}=\mathrm{mc} \Delta \mathrm{T}$. AND Find energy that would be transferred per mole of fuel.	1	Must make a comment about how the moles are obtained (i.e. using the mass of fuel burnt)
		(iii)	Any two from: Have a lid on the container of water to reduce heat loss/stop water evaporating \checkmark Use draught excluders OR insulate sides of calorimeter \checkmark Allow enough air/oxygen to reach flame to minimise incomplete combustion OR Move burner closer to calorimeter \checkmark Cover the wick of the burner when it is not in use to reduce evaporation of the fuel \checkmark Use a bomb calorimeter \checkmark Use copper calorimeter instead of beaker \checkmark Make sure thermometer is not in contact with bottom of beaker \checkmark Stir to improve heat distribution \checkmark	2	ALLOW well ventilated
	(c)		FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer = -4161 (kJ mol ${ }^{-1}$) award 2 marks	2	ALLOW ECF from incorrect cycle as long as some working is shown

Quest	Answer	Marks	Guidance
	$\Delta_{\mathrm{c}} H^{\ominus}$ hexane $=(6 \times-393)+(7 \times-286)-(-199)$ (expression must be correct) OR shown on an appropriate cycle $-4161\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)^{\checkmark}$		ALLOW -4160 (3sf based on question data) $2358+2002--199=-4161$ -480 and a cycle scores 1 (+) 4161 scores 1
(d)	 ${ }^{13} \mathrm{C}$ spectrum has only 2 peaks so only 2 carbon environments \checkmark	2	ALLOW OH
(e)	Acidified potassium/sodium dichromate AND heat/high temperature	1	IGNORE reflux or distil IGNORE dichromate or $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ alone
(f)	Dipole \checkmark, both curly arrows \checkmark intermediate and curly arrow and product \checkmark Nucleophilic addition \checkmark	4	Curly arrow on carbonyl must start at double bond and end on oxygen atom. Other curly arrows must start either at lone pair or negative charge and point either to atom attacked or bond between atoms. ALLOW dipole and movement of electrons to O for 1 mark, then C+ intermediate and attack by CN^{-}for the second mark Intermediate and final product must have correct bonds (i.e. not through the N atom)
(g)	Please refer to the marking instructions on page 5 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) Deduces correct structure with detailed evidence referring to all	6	Indicative scientific points may include: Infrared spectrum: $\mathrm{C}=\mathrm{O}$ as strong absorbance at approx $1750 \mathrm{~cm}^{-1}$ No O-H from carboxylic acid or alcohol

Question	Answer	Marks	Guidance
	three spectra. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Deduces correct structure using some evidence. OR Deduces compound A is an ester with evidence from at least two spectra. OR Gives detailed analysis of three spectra while failing to determine the structure of compound A. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1-2 marks) Gives some evidence from two spectra. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit		C-H at approx. $2950 \mathrm{~cm}^{-1}$ possibly ester NMR: 5 proton environments as 5 peaks $\begin{aligned} & \delta=0.9,1.1,1.6 \mathrm{H}-\mathrm{CR} . \\ & \delta=2.3 \mathrm{HC}-\mathrm{C}=\mathrm{O} \\ & \delta=4.0 \mathrm{HC}-\mathrm{O} \end{aligned}$ Splitting: $0.9,1.1$ and 4.0 triplets so 2 protons attached to adjacent $\mathrm{C} / \mathrm{CH}_{3}-\mathrm{CH}_{2}$ 2.3 quartet so 3 protons attached to adjacent $\mathrm{C} / \mathrm{CH}_{2}{ }^{-}$ CH_{3} 1.6 multiplet, several protons attached to adjacent C , possibly $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}$ Mass Spectrum: Mol mass is 116 Extra detail Sensible discussion of at least 1 fragment e.g. peak at 87 loss of $\mathrm{CH}_{3} \mathrm{CH}_{2}$ or peak at 73 loss of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}$ or peak at 57 due to $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}^{+}$ OR $116-6 \mathrm{C}=44$ (2O) possibly ester Structure is
	Total	22	

Question			Answer	Marks	Guidance
32	(a)		The 3D shape OR the shape produced by the folding of the protein molecule	1	
	(b)		Any two from: Instantaneous dipole-induced dipole hydrogen bonds ionic bonds covalent bonds	1	IGNORE specific groups mentioned after bond types.
	(c)	(i)		1	ALLOW C or CH ringed Extra carbons ringed are CON
		(ii)	 $+\mathrm{H}_{3} \mathrm{~N}-\mathrm{CH}_{2}-\stackrel{\mathrm{O}}{\mathrm{O}} \mathrm{C}-\mathrm{OH}$ $\checkmark \checkmark \checkmark \checkmark$ one for each	4	ALLOW ECF if all the $\mathrm{NH}_{3}{ }^{+}$groups are not protonated IGNORE CI-ions. IGNORE number of moles of aminoethanoic acid. Structures with deprotonated carboxylate groups score 0 (no ECF) Extra incorrect structures CON a correct one

Quest	Answer	Marks	Guidance
(d)	Please refer to the marking instructions on page 5 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) Gives a clear and detailed account of all three parts, including most of the points listed. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Gives an outline account of all three parts OR gives a detailed account of two parts. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1-2 marks) Makes some relevant points There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit	6	Indicative scientific points may include: Developing - spray with ninhydrin ALLOW UV light - dry (in an oven/ fume cupboard) Chromatogram - Start line - Starting dot of hydrolysate OR Dots of suspected hydrolysis products for reference - (four spots above) - Spots level with suspected hydrolysis products - Mark position of solvent front - Lid - Stop when solvent gets near the top of the paper Analysis - Measure Rf values of spots - $\mathrm{Rf}=$ distance moved by spot/distance moved by solvent front - Look up Rf values for the three amino acids - Compare with measured values OR Compare R_{f} values with reference amino acids IGNORE use of tlc plate instead of paper
	Total	13	

Question			Answer	Marks	Guidance
34	(a)		Diagram AND unpaired electron \checkmark	1	Incorrect structure scores 0
	(b)	(i)	A radical is used and produced (to continue the reaction) \checkmark	1	ALLOW there is a radical on both sides of the equation (AW)
		(ii)	$\mathrm{CO}+2 \mathrm{O}_{2} \rightarrow \mathrm{O}_{3}+\mathrm{CO}_{2} \checkmark$	1	IGNORE hv Non reacting species shown on both sides are CON
	(c)		Frequency to break $\mathrm{C}-\mathrm{C} l$ is $346000 /\left(6.02 \times 10^{23} \times 6.63 \times 10^{-34}\right)=8.67 \times$ $10^{14} \mathrm{~Hz}$ Frequency to break C-F is $467000 /\left(6.02 \times 10^{23} \times 6.63 \times 10^{-34}\right)=11.7 \times$ $10^{14} \mathrm{~Hz} \checkmark$ C-CI is broken, but UV absorbed is not of a harmful frequency AND C-F is broken and harmful UV absorbed. (AW) \checkmark OR CFC-12 absorbs at both ends of the harmful range of radiation but not in the middle (AW) \checkmark	3	ALLOW ECF if kJ not turned into J or if Avogadro's constant is omitted. ALLOW a correct calculation of the bond energy needed to absorb $14.0 \times 10^{14}=$ $559 \mathrm{kJmol}^{-1}$ and $10.1 \times 10^{14}=403 \mathrm{kJmol}^{-1}$ for marks 1 or 2 ALLOW a correct calculation of energy (hv) of UV light and then comparison with energy per bond $\left(\mathrm{J} / \mathrm{N}_{\mathrm{A}}\right)$ for $\mathrm{C}-\mathrm{Cl}$ and C-F for marks 1 and 2. $\begin{aligned} & \mathrm{E}\left(10.1 \times 10^{14}\right)=6.70 \times 10^{-19}, \mathrm{E}(14.0 \times \\ & \left.10^{14}\right)=9.28 \times 10^{-19} \mathrm{E}(\mathrm{C}-\mathrm{Cl})=5.75 \times 10^{-19} \\ & \mathrm{E}(\mathrm{C}-\mathrm{F})=7.76 \times 10^{-19} \end{aligned}$ ALLOW 1 mark for a correctly calculated frequency based on the sum of the bond enthalpies ALLOW correct comment based on incorrectly calculated frequencies ALLOW CFC-12 breaks down (AW) or both bonds break if incorrect calculation supports the statement.
			Total	6	

Question		Answer	Marks	Guidance	
		Moles of $\mathrm{Ni}^{2+}=0.025 \times 0.25=6.25 \times 10^{-3}$ AND Moles EDTA $=0.0417 \times 0.15=6.26 \times 10^{-3} \checkmark$ Ratio is $1: 1$ so formula is $[\mathrm{Ni}(E D T A)]^{2-} \checkmark$			
			Total	15	

Question			Answer	Marks	Guidance
36	(a)		Triple bond between N atoms requires a lot of energy to break (AW) /has a high bond enthalpy \checkmark	1	IGNORE very strong
	(b)	(i)	$\Delta S=(3 \times 130.6)+197.6-(186.2+189.0)$ Correct Expression evaluated with sign $=+214.2 \checkmark$	1	Sign must be included
		(ii)	Increase in entropy/positive as there are more molecules of products/gas	1	NOT comments inconsistent with sign of ΔS calculated
	(c)		FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer = $962(\mathrm{~K})$ award 2 marks $\mathrm{T}=206000 / 214.2 \checkmark$ Evaluated to $3 \mathrm{sf}=962(\mathrm{~K}) \checkmark$	2	ALLOW ECF from (b)(i) ALLOW 963 (early rounding of 214.2) for 1 mark
	(d)		CO_{2} is used in 36.2 so it removes a greenhouse gas from the atmosphere, (this is greener) Plus 2 from: - Both reactions need high T as both are endothermic but become more feasible at higher T as both have $+\Delta S$, so no difference - Both reactions give a higher yield at lower T - Both need low pressure as 2 moles $\rightarrow 4$, so no difference - 36.2 produces less hydrogen per mole of methane, so less green/ Atom economy is lower in 36.2. (ORA)	3	ALLOW 36.2 requires more energy than 36.1 , so less green Comments about 36.2 producing more toxic CO must be qualified (burn off $\rightarrow \mathrm{CO}_{2}$ or use as fuel) to score. Toxicity alone does not score.

Question		Answer	Marks	Guidance
(e)		FIRST CHECK ANSWER ON ANSWER LINE If answer= 0.13 units $\mathrm{dm}^{6} \mathrm{~mol}^{-2}$ award 3 marks (0.1 moles of N_{2} react so 0.3 moles of H_{2} used and) 0.2 moles NH_{3} form, 0.7 moles H_{2} left \checkmark $\left(\left[\mathrm{NH}_{3}\right]^{2} /\left[\mathrm{N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3} \mathrm{~K}_{\mathrm{c}}=0.2^{2} / 0.9 \times 0.7^{3}\right)$ evaluated $=(0.13) \checkmark$ units $\mathrm{dm}^{6} \mathrm{~mol}^{-2} \checkmark$	3	ALLOW ECF from incorrect concentrations but not from incorrect K_{c} expression ALLOW 2 or more sf ALLOW $\mathrm{mol}^{-2} \mathrm{dm}^{6}$
(f)	(i)	$4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O} \checkmark$	1	ALLOW multiples, halves
	(ii)	FIRST CHECK ANSWER ON ANSWER LINE If answer = $\mathbf{1 2}$ (tonnes) award $\mathbf{4}$ marks Moles of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ needed $=25 \times 10^{6} / 80\left(=3.125 \times 10^{5}\right)$ Moles of NH_{3} needed to make nitric acid $=\left(100 \times 3.125 \times 10^{5}\right) / 77 \checkmark$ Total moles of ammonia $=3.125 \times 10^{5}+\left(100 \times 3.125 \times 10^{5}\right) / 77=7.18 \times 10^{5}$ moles \checkmark Mass $=7.18 \times 10^{5} \times 17=1.22 \times 10^{7} \mathrm{~g}, 12$ (tonnes) \checkmark	4	ALLOW 2 or more sf ALLOW ECF between stages MP1 convert to tonnes and then divide by 80 MP2 x100/77 MP3 Total moles ammonia (to make nitric acid + ammonia needed for salt) MP4 X 17 and evaluation and conversion to tonnes
	(iii)	Add NaOH and Devarda's alloy or Al powder and warm \checkmark Test gas with indicator paper/ red litmus/ rod dipped in HCI turns blue/ dense white fumes (due to ammonia)	2	Reagents and heat needed Test and positive result for ammonia needed ALLOW Brown Ring Test (add $\mathrm{Fe}_{2} \mathrm{SO}_{4}$ solution followed by conc $\mathrm{H}_{2} \mathrm{SO}_{4}$) - a brown ring forms at the layer interface
		Total	18	

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored is a Company Limited by Guarantee
Registered in England
Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

