$\frac{\text { WJEC }}{\text { CBAC }}$

GCE MARKING SCHEME

INTRODUCTION

The marking schemes which follow were those used by WJEC for the January 2013 examination in GCE BIOLOGY/HUMAN BIOLOGY. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.
Unit Page
BY1 1
BY2 11
BY4 19
HB2 21
HB4 37

GCE BIOLOGY - BY1

Mark Scheme - January 2013
Question Marking details

1. (a) (i) Stage A - telophase;2Stage C - metaphase;
(ii) Centromeres split/ divide; 2Chromatids/ chromosomes are being pulled to (opposite)poles;(due to) contraction/ shortening of the spindle (fibres);
(b) (i) Interphase; 1
(ii) The (quantity of) DNA has doubled / (quantity of) DNA changes 1 from 6 to 12; NOT increase
(iii)
Meiosis; (correct spelling) 2
(At the end of the cell cycle) the (quantity) of DNA has been
halved (and halved again) / can describe with numbers
/involves 2 (consecutive) divisions;
Ignore reference to chromosomes
Question 1 total[8]
2. (a)

DNA	RNA
Double stranded	Single stranded
helical	Not helical
Deoxyribose/ $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{4} /$ one less oxygen atom in pentose NOT deoxyribonucleic acid	Ribose/ $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{5} /$ one more oxygen atom in pentose NOT ribonucleic acid
Contains thymine Not letters Can list all bases present	Contains uracil Not letters Can list all bases present
Only one type	 rRNA)
(Relatively) long/ larger molecule	(relatively) short/ smaller molecule

(b) 23% guanine therefore 23% cytosine;
(54% made up of adenine and thymine)
Adenine = 27(\%);
Correct answer $=2$ marks

Question 2 total

Max 3
Question Marking details
3. (a) (i) Phagocytosis/endocytosis; the (cell) membrane \{invaginates/infolds/ surrounds/ wraps around/ engulfs\} (to form a vesicle (allow vacuole))around the \{food particle/ algae\};2
(ii) Golgi \{Body/apparatus\}; 1
(iii) Exocytosis; 1
(b) (i) (Site of aerobic) respiration / production of ATP; 1NOT production of energy alone
(ii) Carry out \{endo/exo/ phago\}cytosis / synthesis of digestive 1 enzymes/ movement/ form lysosomes; Reject active transport unqualified NOT digestion/ feeding
(c) 1.No nucleus/nuclear membrane/ DNA free in cytoplasm; Max 32. No membrane bound organelles / named example/ possessmesosome;3. A loop of DNA / circular DNA/ ORA DNA \{linear/ onchromosome/ associated with histone\};
4. Smaller/70S ribosomes;
5. Cell wall; Reject reference to cellulose
6. Capsule/ flagellum/ plasmid;
NOT reference to size (can be neutral)
Question 3 Total [9]

Question Marking details

4. (a) Quaternary/ 4°;
(b) (i) (Labelled) arrow in correct position;
(ii) $\mathrm{COOH} /$ carboxyl/ carboxylic acid;
(iii) Disulphide \{bond/ bridges\} / ionic bonds / hydrogen /
hydrophobic interactions / Van der Waals; (Any 2)
NOT peptide / S-S (covalent - neutral)
(c) Mark points must be comparative

phospholipid	triglyceride
2 fatty acids	3 fatty acids;
phosphate (head)	do not contain a phosphate (head)
polar/hydrophilic head and non-polar/hydrophobic tails	non-polar/hydrophobic;

Max 2
(d) (i) $\{$ Heads/ phosphates $\}$ are $\{$ hydrophilic/ polar\} and are \{attracted to/ in\} the water;
\{Tails/ fatty acids\} are \{hydrophobic/ non polar\} and are
\{repelled by/ above/ avoid\} water;
NOT react/ dissolve with water
(ii) $6.1\left(\mathrm{~m}^{2}\right)$;

The phospholipids are \{arranged in/ formed\} a \{bilayer/ double layer\} in the membrane;
Ref to phospholipid bilayer alone- insufficient

Question 4 Total
Question Marking details
Available
5. (a)
(i) Oxygen
by (simple) diffusion;
through the phospholipid (bilayer);
$\left.\begin{array}{lll}\text { (ii) } & \text { Phosphate ions } & \text { Max } 2 \\ \text { by }\{\text { facilitated diffusion/active transport }\} ; \\ \text { through }\{\text { carrier /channel }\} \text { proteins/ protein pumps (active }\end{array}\right]$
(b) (i) Active transport;
(Between 0-30au) the concentration of phosphate ions is lower outside (the root)/higher inside (the root)/ lons are being taken up against a concentration gradient;

With oxygen present (aerobic) respiration can occur;
Providing \{ATP/ energy\} (for active transport)/ active transport needs \{energy/ ATP\};

(ii) There are a \{limited/fixed\} number of \{carriers/ proteins/
channels\} (for phosphate ions) in the membrane;
(The curve levels off/the rate of uptake becomes constant)
when all of the \{carriers/ channels/ proteins\} are in use;
(iii) (lons are being taken up by) facilitated diffusion;

Uptake \{only begins/ occurs\} when the external concentration is higher than the concentration inside the root hair cells/ down a concentration gradient;
(c) They are a \{component of/required to synthesise\} \{DNA/ RNA/ ATP/ NAD/ FAD/ NADP/ nucleotides/ nucleic acids\};

Question 5 Total
Question Marking details
6. (a) (i) Molecule of water (drawn with arrow towards the O atom of the glycosidic bond); NOT water going out Monosaccharides drawn with -OH groups in correct position on C1 and C4 (involved in bond);
(ii) Hydrolysis; NOT hydrolysation (ignore reference to acid)
(iii) Glycosidic;(iv) Glucose and galactose; ignore alpha/ beta1
(b) (i) An enzyme that has been fixed to an inert \{matrix/support/ 1
substance\};
(ii) The enzyme can easily be recovered/reused;
The product is free from contamination;
Enzyme is \{stable at / tolerates/ withstand\} higher temperatures/denatures at a higher temperature/ functions over a wide range of pH ;
NOT wider range of temperature alone
Several enzymes with differing optima can be used at the same time;
More control over the reaction/enzymes easily added or removed/ can be used in a continuous process;
(c) (i) Heat with Benedict's solution/reagent;

NOT warm/ water bath/ ref to acid
Blue to\{red/ orange/ green/ yellow/ brown\};
(ii) Instrument/equipment that can detect a specific

1
molecule/metabolite (in a mixture of molecules/bodily fluid).
(iii) Any one from:

The biosensor would give quantitative data/
it would detect \{a particular product/glucose/galactose\}/
Can detect even at \{very low concentrations/ small volumes\};
(d)

1. (The concentration of reducing sugars) would decrease; Max 4
2. \{Lactose/ substrate\} concentration is lower (in the sour milk);
3. Lactic acid lowers the pH ;
4. Enzyme would be inactivated/denatured;
5. Hydrogen/ ionic bonds (maintaining the 3D shape) would break;
6. This will change the shape/charge of the active site (of lactase);
7. Fewer enzyme-substrate complexes would be formed/fewer successful collisions;
8. Benedicts would remain \{blue/ change to \{orange/ yellow/ green/ brown\}/ negative\}

Question 6 Total
7. (a) Describe and explain the effect of inhibitors on enzyme action.

	(A	Enzymes are globular proteins/biological catalysts;
	B	Active site (of the enzyme) has a specific 3D/ tertiary shape;
	C	lower activation energy of a reaction;
	D	Inhibitors reduce the rate of (an enzyme catalysed) reaction;
	(E	Competitive inhibitors;
	F	Have a shape similar to the substrate/complementary to the active site; NOT same shape
$\begin{aligned} & \text { D } \\ & \stackrel{D}{\bar{D}} \\ & \stackrel{0}{E} \\ & 0 \end{aligned}$	$\left\{\begin{array}{l}G \\ H\end{array}\right.$	Fit/ bind into the active site;
		Prevent the substrate molecule entering the active site/block the active site;
	,	Max. rate of reaction can be achieved at higher substrate concentrations/ Increasing the concentration of the substrate reduces the effect of the inhibitor; allow correctly labelled graph
	$\int J$	Non-competitive inhibitors;
	K	Bind to the allosteric site/site other than the active site;
	L	Causes a change in the shape of the active site;
	M	Substrate can no longer fit into the active site/ active site is no longer complementary;
	N	Fewer/ no enzyme-substrate complexes form/ fewer successful collisions;
	0	Max. rate of reaction cannot be achieved/increasing the concentration of the substrate has no effect on inhibition; allow correctly labelled graph

(b) Describe the effects of placing animal and plant cells in

 solutions of differing solute concentration.A Osmosis is the (net) movement of water molecules down a water potential gradient/from a higher water potential to a lower water potential;

B through a partially/selectively permeable membrane;
C Hypotonic solutions have a higher water potential than the (cytoplasm of the) cells;

D Water moves into the cells (by osmosis);
E Animal cells swell /burst/ref osmotic lysis; reject turgid
F Plant cells the cytoplasm swells up/cell contents/plasma membrane pushes against the cell wall;

G (plant cells) becomes turgid $/ \psi_{p}>0 /$ cell wall prevents osmotic lysis;
H Hypertonic solutions have a lower water potential than the (cytoplasm of the) cells;

I Water moves out of the cells (by osmosis);
J Animal cells shrink/crenated; reject flaccid
K In plant cells the cytoplasm shrinks / the (plasma) membrane is pulled away from the cell wall;

L Plant cell becomes plasmolysed/ $\Psi_{\mathrm{p}}=0$;

M Isotonic solutions have the same water potential as the cytoplasm of the cell;

N (In isotonic solutions) there is no net movement of water molecules;

O At incipient plasmolysis 50% of the cells in a plant tissue will be turgid and 50% will be plasmolysed;

GCE BIOLOGY - BY2
 Mark Scheme - January 2013

Question Marking details Marks
Available1 (a) A species is a group of organisms that \{can interbreed/2
reproduce ;(under natural conditions) produce fertile offspring;
(b) (i) birds; 1
(ii) Borneo \{1.61/ 1.62/1.6\}; 1
(iii) (Least at poles to) \{greatest/ increasing\} at equator; 1
(c) (i) X at second split from left or anywhere along that line; 1
(ii) Same genus(but different species)/ tells us the genus; 1
(d) (i) homologous; 1
(ii) analogous; 1
Question 1 total [9]

Question
 Marking details

Marks
Available

2
(a) Thin - small diffusion distance; 3 max
Accept small diffusion distance/ pathway
Large surface area- (large contact with air) for diffusion/ gas exchange/ OWTTE;Moist- allow gases to dissolve/ gases go into solution (to crossmembrane); Not diffuse into
Permeable-to allow gases to pass through (the respiratorysurface);NOT blood supply
(b) (i) Through \{(general) body surface/skin\}; NOT gills
(ii) Fast flowing;maintains \{concentration/ diffusion\} gradient/absorbs moreoxygen at surface/ OWTTE;
(iii) They dry out/ unable to remain moist/ lose water; 2
They clump together (because of surface tension.)/ collapse/ lie on top of each other;
(c) Blood flows (across gill) in opposite direction to water; NOT different direction \{Concentration/ diffusion\} gradient is maintained across whole surface/ \{concentration/ diffusion\} gradient is maintained constantly/ blood always meets water with a higher oxygen concentration/ equilibrium is never reached ;
NOT concentration gradient maintained for longer/ maintains a high concentration gradient A greater concentration of oxygen in the blood is achieved/ allows more oxygen to diffuse in/ higher \% saturated blood/ allows more \{diffusion/ exchange\} of gases/ more take up of oxygen/ ORA;
NOT makes it more efficient alone
Question Marking details

(a) \quad	A - Cortex/ parenchyma
$\mathrm{B}-$ Endodermis;	
$\mathrm{C}-$ Xylem;	
$\mathrm{D}-$ Phloem.	
2 marks for all 4, 1 mark for 2 or 3	

$\left.\begin{array}{l}\text { (b) (i) Xylem } \\ \text { (ii) Phloem; }\end{array}\right\}$ Both correct for 1 markNOT letters only
(c) (i) \{Translocation/ movement/ transport/ carry NOT flow\} of \{products of photosynthesis/ sucrose/organic compounds/ sugars/ amino acids\}/ description of source to sink/ 1 translocation;
(NOT nutrients/ other named sugar/ named ions)
(ii) Carry out \{metabolism/respiration\} /to supply (sieve cells) with 1 \{energy/ATP\}/ contain mitochondria for \{ATP/ active transport\}; NOT contain organelles that the sieve cells do not have/ not loading sieve cell
(d) (i) Apoplast; - via cell walls; NOT plasmodesmata 2
Symplast; - via \{cytoplasm/ plasmodesmata\}; 2[1 mark for name, 1 mark for correct route, for each]
(ii) Makes the water pass through \{symplast/living part of cell/ 1 cytoplasm\}/ prevents it going through \{apoplast/ cell walls\};
NOT impermeable alone/ makes water take another route Question 3 Total [10]
Question Marking details4 (a) (i) A-incomplete metamorphosis1
B-complete metamorphosis BOTH;
(ii) X- \{nymph/ larva/ instar\}Y- pupa (accept chrysalis/ cocoon/ pupal stage) BOTH;1
(b) (Exoskeleton is) \{rigid/ hard/ non- living/ does not grow/ owtte\}; 3
They shed (the exoskeleton)/ ecdysis/ moult;
Then grow (a new one)/ allows growth/ vulnerable whilsthardening ;
(c) Fluid filled cavity (surrounded by a membrane);\{Protective/ hard/ leathery\} \{shell/ outer covering/ coat\};(embryo within) yolk sac/ food store/ yolk for nutrition/ own2internal nutrient supply; [any 2]
(d) (the young are retained) for a \{considerable/ longer\} time in the mother's womb or uterus;
(The embryo is) nourished there from \{the mother's blood supply /the placenta\}/ \{unlimited nutrients/ OWTTE\};3
Protection - qualified;The young are \{born in a relatively advanced state ofdevelopment/ well developed/ more advanced growth inwomb\}; [Any 3]NOT parental care/ ref to number of offspring
Question 4 Total [10]
Question Marking details
(ii) similar shaped curve drawn to left of given curve; (must start/ end at same points)
(iii) \{Foetal haemoglobin/ it\} has \{higher greater\} affinity for oxygen (than adult)/ picks up oxygen easier/ more readily forms oxyhaemoglobin/ reaches saturation at lower partial pressures;
NOT more quickly
(this ensures) oxygen moves from mother('s blood) to foetus (in the placenta);
(b) (i) Move to right; 1
(ii) Bohr;
(iii) (Muscles/ cells give off) more carbon dioxide/ higher partial pressure of carbon dioxide;
carbon dioxide dissolves to make carbonic acid/lowering pH ; which reduces affinity of Haemoglobin for oxygen/reference to Hydrogen displacing Oxygen from Haemoglobin/ oxygen dissociates more readily; (more) oxygen is released added demand when muscles need it (for aerobic respiration)/
OWTTE;
Question 5 Total

Question

Marking details

6 (a) Parasites are organisms that (live on or in another organism called the host and) \{obtain nourishment / feed on it\};
at the expense of /causing harm to the host;
NOT negative effect unqualified
(b) (i) Hooks+ suckers both;
(ii) Any 2

Attach the worm (to the wall of the gut)/ for attachment;
2
the worm does not get moved along/ resisting peristalsis;
passed out with undigested food remains/ prevents it being egested;
(c) (It lives surrounded by) food that has been digested/ broken down by the \{host/ human's digestive system/ OWTTE\};
(It is very long -) gives a large surface area (to absorb digested food);
(It is flat/ thin -) short distance for diffusion; NOT thin membrane
(d) Any 2

It lays large numbers of \{eggs/ larva/ embryos/ offspring\};
2
eggs can resist adverse conditions/ OWTTE;
correct reference to hermaphroditism; Not asexual
reproduction

Question 6 Total

Question

Marking details

(a) A In buccal cavity/ mouth;

B teeth (and tongue) \{mechanically/ physically\} break down food /to provide large surface area;
C (Saliva added from) salivary glands;
D (saliva) contains mucus to lubricate;
E Amylase substrate is starch, product is maltose/ disaccharides;
F Stomach adapted for protein digestion/ protein digestion \{starts/ begins\} in stomach/ proteins are partially digested in the stomach;
G Produces hydrochloric acid/ low pH in stomach;
H Peptidase/Pepsin's substrate is \{protein/ polypeptides\}, products are \{polypeptides/peptides\}; reject ref to other enzymes

I Small intestine (is adapted to) completes (protein /carbohydrate) digestion/ Description of \{disaccharide/ polpeptide\} digestion in small intestine;

J Named enzyme produced by small intestine;

K Two named enzymes produced by pancreas;

L correct reference to endo- exo- peptidases;

M Absorption takes place in the ileum/small intestine;

N Villi / microvilli increase surface area;

O Glucose/ monosaccharides/ products are absorbed by diffusion and active transport;
Question Marking details
MarksAvailable
7 (b) A Heart (muscle) is myogenic;B It can contract without any nerve stimulation;C The stimulus to contract originates in the sinoatrial node (SAN);D Which controls the rate of beating / acts as pacemaker;E It is situated in the wall of right atrium/auricle. (on diagram);F Electrical impulse from the SAN causes the two atria/auricles tocontract;
G Thin layer of connective tissue prevents the stimulus spreading to the ventricles;
H At the bottom of the wall separating the two atria /auricles is the atriventricular node AVN. (on diagram);
I This delays the impulse (about 0.1 sec) before passing it to the ventricles;
J The impulse is sent to the apex /tip of the ventricles;
K Along bundle branches / Bundle of His;
L And is conveyed upwards along Purkinje/ Purkyne fibres;
M Causing (a wave of) ventricular contraction starting from the lowermost part of the ventricles;
N The SAN may be stimulated by various factors to change its pacing;
0 One example - hormones (adrenalin), exercise, body temperature, etc. (allow ref. autonomic nervous system;
Question 7 Total[10]

GCE Biology BY4
 Mark Scheme - January 2013

Question Marking details
1 (a) (i) Photoperiod(ism)
Marks
Available 1
(ii) Phytochrome NOT PR/ PFR 1
(iii) Leaves 1(b) (i) Ammonium/ $\mathrm{NH}_{4}^{+}+$nitrate (ions)/ $\mathrm{NO}_{3}{ }^{-}$[both needed for 1mark]1NOT ammonia
(ii) Denitrification 1
(iii) Azotobacter 1
Question 1 total 6

Question	Marking details	Marks Available
2 (a)	Gram positive: purple/ violet NOT crystal violet	
	Gram negative: red / pink	1
	[both needed for 1 mark];	
	Gram + ve:	
	(thick) \{murein / peptidoglycan\} cell wall (only)/ no	3
	lipopolysaccharide layer;	
	\{retains/ binds/ absorbs\} crystal violet stain / purple colour;	
		max 2 if only
	Gram-ve:	discuss one
	\{lipoprotein / lipopolysaccharide\}\{ layer / wall\} (external to murein	type of
	cell wall);	
	Does not retain \{crystal violet stain / purple colour\};	
	Stains \{red/pink\} with \{counter stain / safranin / carbol fuchsin\};	
	Ignore references to Gram +ve / Gram -ve.	
	A bacillus/ bacilli; NOT rod	1
	B spirillum/ spirilli; NOT spiral	1
	C coccus/ cocci; NOT round / staphylococcus	1
	(lipoprotein / lipopolysaccharide layer)	
	protects against (some) \{antibiotics) / penicillin / antibodies\} /	
	makes them less susceptible to attack by lysozyme/	
	(lipid component) acts as an (endo)toxin;	

QuestionMarks
(d) (i) Plate U - enough colonies for reliable results/

- colonies easily countable;
NOT the right number/ we can see them
Plate R/S - cannot distinguish individual colonies;
Plate $T \quad$ - too many colonies to count reliably;
Plate V - not enough colonies for reliable estimate
(ii) 69 colonies $\times 10000$ (dilution factor) $\times 2$ (or $1 / 0.5$);
$1380000 / 1.38 \times 10^{6}$ colonies per cm^{3};
(iii) does not include \{dead / non-viable bacteria\}/
cannot be sure that \{each colony has grown from a single 1 bacterium/ colonies are not clumped\}/ ORA;
(iv) need to count pathogenic bacteria / pathogenic bacteria more likely to grow at temperature close to body temperature/ want bacteria to grow quickly to identify to treat infection as quickly as possible;
NOT want to grow them as quickly as possible without qualification
Question 2 total

Question Marking details | Marks |
| :---: |
| Available |

3 (a) (i) \{maximum number / density/ size\} of a population;2
Sustained/ maintained (indefinitely) by a particular environment/ OWTTE;
(ii) 24 to 26 ;1
(iii) I. Density Dependent max 2 nutrient / food / yeast levels; oxygen level / concentration; disease/ infection/ contamination; toxins / waste products; accept pH NOT mates
II. Density Independent
temperature;
size of container;
accept pH if not awarded in I
(b) (i) competition for (same) food source/ niche; reject nutrients 2 P.aurelia \{more successful than/ outcompetes\} P.caudatum;
(ii) Live in different locations in same habitat/ P. caudatum swims freely while P. bursaria lives at bottom of ponds/ P. caudatum feeds (on yeast suspended) in water while P. bursaria feeds (on yeast that have settled) at the bottom;
Less interspecific competition;
Question 3 Total

Question

Marking details
4 (a)

Chloroplasts	Mitochondria
D;	H;
A;	F;
B;	J;
E;	G;

8 active transport/ muscle contraction etc NOT movement Different types of energy can be transferred into a common form;

Only 1 molecule needed to transfer energy to chemical reactions;

Energy can be supplied in \{small amounts/ packages/ approx
30.6 kJ \} /less \{energy/ heat\} wasted;

Easily transported (across membranes);
\{Single enzyme/ only ATPase\} needed to release energy from
ATP;
\{Single bond needed to be broken/ one step reaction\} to release energy;
(ii) used by all organisms/ species; NOT cells

To provide \{energy/ fuel\} for (nearly all biochemical) reactions;
NOT provide energy unqualified

Question Marking details | Marks |
| :---: |
| Available |

5 (a) (i) $\mathbf{A}+40 \mathrm{mV}$
C $\quad-70 \mathrm{mV} \quad$ [both needed for 1 mark] (accept suitable alternatives eg., -60 / + 30)
(ii) depolarisation

Sodium / Na ${ }^{+}$(ion) channels open;
Na^{+}\{flood / diffuse rapidly\} into axon;
(pd) inside axon becomes \{positive/ +40\};
repolarisation
Na^{+}(ion) channels close and $\underline{\mathrm{K}^{+}}$(ion) channels open;
K^{+}\{flood / diffuse rapidly\} out of axon ;
Must infer sudden movement out
(pd) inside axon becomes \{negative/ returns to-70\};
(iii) threshold potential not reached / all sub-threshold stimuli;
stimulus / depolarisation not enough to open Na^{+}(ion)
channels;
ref. to action potential being 'All or Nothing';
(b) (i) \{2 or more/ a number of/ several\} polypeptide chains;

NOT group
\{bonded/ joined\} together; NOT held
Reject if used 'wrong' bond - i.e. hydrogen (alone)/ glycosidic/
ester/ peptide
to form functional protein/ OWTTE;
(ii)

(iii) middle of cell membrane is composed of \{lipid /
fatty acid side chains / tails\}/ non polar;
Question Marking details
(c) (i) Myelin;
Accept phosphopilid 1
(ii) Schwann cell; 1
(iii) Accept annotation on diagram $\max 4$myelin inhibits\{loss of charge/ movement of ions\} (fromaxon) / insulates (axon)/ prevemts depolarisation;\{gaps/ spaces\} (between Schwann cells) called nodes ofRanvier;no myelin present in \{nodes/ gaps/ spaces\};depolarisation only possible at Nodes of Ranvier / actionpotential can only form \{at the nodes/ where there is nomyelin\}/ channels can only \{open/close\} in the nodes;action potential jumps from one node to the next / saltatoryconduction/ lengthens local circuits/ OWTTE;nerve impulse transmission faster;
Question 5 Total [17]
Question Marking details
6 (a) (i) Glycolysis cytoplasm;

Link reaction	matrix (of mitochondria);
Krebs Cycle	matrix (of mitochondria);
[1 mark each row]	

(ii) Glycolysis; 1
(b) (i) Carbon dioxide/ CO_{2}; 1
(ii) Decarboxylase; 1
(c) Substrate- level phosphorylation 2; and 6; 4
Glycerol can be converted to a 3C sugar which enters respiration at this point
ATP is used in phosphorylation 1;
Question 6 Total [10]
Question
Marking detailsDescribe how the light-independent stage of photosynthesis(Calvin cycle) leads to the production of triose phosphate. [7]Indicate the origin of the raw materials required for this stage ofphotosynthesis and the possible uses of the triose phosphateproduced.
A In stroma (of chloroplast);
B 5 carbon compound;
C ribulose bisphosphate / RuBP;
D carbon dioxide fixed/ fixation;
E By enzyme RuBisco;
F To form hexose bisphosphate / 6C compound;
G (breaks down into $2 \times 3 \mathrm{C}$) glycerate 3 phosphate/PGA/GP;
H (converted into $2 \times 3 \mathrm{C}$) triose phosphate/TP/GALP;
I NADPH H ${ }^{+}$reduced NADP / NADPH ${ }_{2}$;
J supplies hydrogen/used for reduction;
K ATP broken down into ADP and Pi supplies energy. (not ATP supplies energy).
L ATP + NADPH ${ }_{2}$ from light dependent stage,
$\mathrm{M} \quad \mathrm{CO}_{2}$ from \{environment/respiration\}
N RuBP regenerated from TP.
O Phosphate from ATP needed for this.
P TP starting point for synthesis of: glucose, lipids, amino acids, chlorophyll, cellulose, starch etc. Any 2 products.
Question Marking details
7 (b) Give an account of how the kidney is involved in osmoregulation in mammals.

A Antidiuretic hormone; NOT abbreviated

B (ADH) Is $\{$ secreted/ released\} by the (posterior lobe of the) pituitary;
C (ADH) is carried in the bloodstream to the (distal convoluted tubule and) collecting duct;

D When the blood is more concentrated / low Ψ / more negative/ low blood volume;

E Detected by (osmo) receptors in hypothalamus;
F (more) ADH released;
G ADH levels increases the permeability of the (cells lining the) DCT/CD to water /explanation of water channels opening / aquaporins inserted into DCT membrane.;

H Water moves out of the DCT/CD by osmosis;
I Into the \{interstitial / tissue\} fluid where it is rapidly removed by the capillary network/ vasa recta;

J This occurs because the \{medulla of the kidney/ tissue fluid\} has a high \{solute/ salt/ ion\} concentration/low Ψ;

K Due to the countercurrent multiplier system operating in the Loop of Henle/ correct reference of how counter current produced;

L This (conserves water and) produces \{small volumes/ concentrated urine\};

M Most water absorbed in the PCT;

N Length of loop of Henle effects the volume of urine produced
O Short loop of Hemle results in less water reabsorbed/ ORA
P Correct ref to adaptation to their environment

GCE Biology - HB2

Markscheme - January 2013

Question Marking details Marks
Available
1 (a) 70 (plus/minus 5); 7myogenic;right atrium;sino-atrial node;atrio-ventricular node;bundle of His/Purkinje/Purkyne fibres;contract;
(b) (i) Carried/circulates in a system of tubes/vessels/ 2 veins and arteries;blood pumped at high pressure;organs/tissues not in direct contact with blood;
(ii) Separate pulmonary/ lungs and systemic/ body circulation; 2blood passes through heart twice in one complete circuit;
Question 1 total [11]
Question Marking details
2 (a) hooks and suckers; 3
attach (head/scolex) to intestinal wall; can embed deeply into wall; can't be removed by passage of gut contents/ peristalsis/ egestion;
(b) absorbs digested products of host; 3
because it has a large surface area to volume ratio; no need to digest own food;
(c) little/no oxygen (available in environment/host gut); 1
Question 2 total [7]
Question Marking details
3 (a) (i) Homo sapiens; 1
(ii) Homo sapiens dates back over 200,000 years in Africa;3oldest ancestor Homo ergaster originated in Africa;Homo sapiens evolved from Homo rhodesiensis which is inAfrica;Homo rhodesiensis evolved from Homoantecessor/mauritancus were in Africa;
(b) Homo erectus lived for a longer period of time/ figures quoted; 3 therefore more of them; lived more recently;
200,000 years ago as opposed to 700,000 years ago;
Question 3 Total [7]
QuestionMarking details
4 (a) gram negative; 1
(b) via faecal - oral route/faeces of infected person to 1mouth of uninfected person/via contaminated water/food/flies;
(c) water not absorbed/reabsorbed/water lost from body; 3
low conc. of solutes/ions in blood;
low blood volume;
dehydration;
poor nerve conduction;
poor heart activity/failure;
(d) sewage treatment/ better sanitation; 2
clean water supply/chlorination; good food hygiene;
transmission cycle broken;
(e) (i) stops growth/division/protein synthesis; 1
(ii) resistance of bacterium; Reject immune 2 can recover with ORT only;
Question 4 Total[10]
Question Marking details

5
(a) (i) one peak and trough marked on appropriate part of trace;1
(ii) peak and trough marked on appropriate part of trace; 1
(b) addition of all tidal volumes/ 0.5×4; 2
$2 \mathrm{dm}^{3}$;
(c) to absorb carbon dioxide breathed out; 2
otherwise results are affected;
high level of carbon dioxide are toxic;
(d) sterilize mouthpiece ; 2to prevent passing of (pathogenic) bacteria/micro-organisms/spread of disease;
replenish oxygen;
otherwise damage to cells/ tissues;
replace soda lime;
to ensure all of the carbon dioxide is absorbed;
(e) dead space; 2
trachea/bronchi/bronchioles;
(f) all air can't be forced out; 2
lungs therefore never completely empty;
residual volume;
Question 5 Total[12]
Question Marking details
6 (a) (i) suitable axes; 5
axes labelled; points plotted;; -1 each incorrect plot lines labelled;
(b) (i) correct point; 1
(ii) Bohr shift/effect; 1
(iii) release of carbon dioxide during aerobic respiration; 2forming carbonic acid/ more H^{+};
(iv) more oxygen released; 1
(c) (i) curve to the left of ones drawn; 1
(ii) more saturated than maternal haemoglobin/greater affinity for 2 oxygen;
at all oxygen partial pressures;
oxygen will pass from maternal to foetal blood;
Question 6 Total[13]

Question Marking details

7 (a) A active immunity caused by introduction of antigen;

B antibody production stimulated;

C antigen is bacteria/virus/pathogen;

D vaccination;

E killed organism/live attenuated organism;

F toxoid;

G (Life)long protection from disease;

H ref memory cells;

I passive immunity;
J antibody can be injected;

K temporary/short term protection;

L antibody crosses placenta;

M also in colostrums/breast milk;

N provides immediate protection;

O until own antibody produced;

Question Marking details

7 (b) A stomach is a muscular sac;

B enables churning and mixing of food;
C expands to accommodate food;

D small intestine/ileum long/ thrown into folds/villi/microvilli;
E increases surface area;

F two layers of muscle/longitudinal and circular muscles;
G for peristalsis;
H glands outside of gut/pancreas, secrete enzymes;

I glands in gut wall secrete enzymes;
J liver/gall bladder supplies bile;
K for emulsification of fats/lipids;
L thin epithelial lining;
M (sub mucosa) of capillaries and lymph vessels/lacteals;

N to remove absorbed digested food/soluble molecules/ glucose/ amino acids/fatty acids/glycerol;

O inner mucosa/ goblet cells secrete mucus;

P for lubrication/ease of passage of food/ prevents autolysis/ autodigestion;

Question 8 Total

GCE Biology - HB4

Markscheme - January 2013

Question Marking details Marks Available
1 (a) (i) Calculation \% increase $1600-1800$ (0.5 billion);2Calc. \% increase 1800 - 2000 (5.8 billion);
(ii) Lag phase, 1
Log phase;
Both correct for 1mk.(b) (i) Increased food production;Max 2Improved removal waste / sanitation;Medicine / disease control;
(ii) Birth control; Max 2Disease;New diseases which humans cannot find cure eg. HIV;
Government intervention on pop. Size;
Warfare;
Lack food / water / climate change;
AVP;
(c) (i) Human pop. lag and log phase ; Max 3
Not yet reached plateau / stationary phase;
No decline / death phase;
Not reached carrying capacity;
(ii) 234×10000; 2
2.3 million per cm^{3};
Question 1 total [12]
Question Marking details
2 (a) (i) Cytoplasm; 1
(ii) C ; 4
C;
A;
B;
(iii) 2; 1
(iv) Accept hydrogen / reduced by; 3
NADH 2 / reduced NAD / NADH H+;Lactate/ lactic acid;
(b) (i) Fats to fatty acids and glycerol; 3
Glycerol into glycolysis;
Fatty acids to 2C fragments;
Acetyl group into Krebs;
oxidative phosphorylation
More hydrogen in a substrate more for oxidative
phosphorylation;
Ref.Chemiosmosis;
(ii) $\mathrm{CO}_{2} /$ urea; 1
(iii) More O_{2}; 2More CO_{2};For blood to supply and remove;
Anaerobic;
Question 2 total[15]

Question Marking details

3 (a)
(i) $\mathrm{A}=$ Myofibril;
$B=Z$ line;
C = mitochondrion / accept T system;
D = sarcomere;
(ii) I band

A band
Both for 1 mark
(iii) Glycogen;
(b)

Band	increase	decrease	same
I	\mathbf{x}	$\mathbf{}$	\mathbf{x}
A	\mathbf{x}	\mathbf{x}	$\mathbf{\checkmark}$
H	\mathbf{x}	\checkmark	\mathbf{x}

(c)

Slow	Fast
More ATP	Less ATP
Contract longer time	Short burst contraction
Fire slowly	anaerobic
aerobic	Quickly fatigue
Fatigue slowly	Poor blood supply
Good blood supply	Less myoglobin
High numbers mitochondria	low numbers mitochondria
More myoglobin	high density myofibrils
Low density myofibrils	Large diameter
Small diameter	High resistance to lactic acid
Low resistance to lactic acid	

(d) Detaching myosin bridge from actin binding site;

Return of myosin head to original position;
Pumping Ca^{2+} back into sarcoplasmic reticulum;
Creation of creatine phosphate from creatine;
Question 3 Total
Question Marking details

Marks

Available
4 (a) amino acids / polypeptides / proteins;
DNA;
RNA;
ATP;
NAD / FAD;
urea
(b) Nitrobacter, nitrites to nitrates; 2
Nitrosomonas, ammonium ions to nitrites;
(c) create aerobic conditions;
Max 2
encourage nitrification;
prevent denitrification;
allow aerobic respiration in roots for active uptake;
(d) crops absorb nitrate;
2
No / less decay;
Less nitrification;
$\begin{array}{ll}\text { (e) Leguminous plants / any named leguminous plant; } & \text { Max } 3 \\ \text { Rhizobium / nitrogen fixing bacteria (in root nodules); Reject } & \\ \text { nitrate fixing } & \\ \text { Convert nitrogen gas into ammonium/ ammonia/ amino acids; } \\ \text { Left to decay, ploughed in; } & \\ \text { Question 4 Total }\end{array}$
Question Marking details

5

(a)(i) Cortex;1
(ii) $\mathrm{X}=$ Proximal convoluted tubule / distal convoluted tubule; 3
Reject PCT
$\mathrm{Y}=$ Bowmans capsule;
Z = Glomerulus;
(iii) Microvilli; 3
Large numbers mitochondria;
Folded basement membrane;
Large number ribosomes;
(b) arterial pressure high/ high blood pressure; Max 4
Afferent vessel wider diameter than efferent;
Increase in pressure in glomerulus;Pores between endothelial cells;Pores in basement membrane;
Filtration slits podocyte feet;
Eg. of a substance not filtered and one which passes through;
Question 5 Total [11]
Question Marking details
6 (a) (i) Respiration 1
Combustion;Both for 1 mk .
Accept deforestation
(ii) Chloroplast; 1
(iii) Light independent; 2
Calvin cycle;
RUBP;
Rubisco
(unstable 6 C substance) 2 mols of GP
(b) (i) Produces carbohydrate / glucose / respiratory substrate; 1
(ii) Produces oxygen; 1
Question 6 Total[6]

Question Marking details

A Sodium potassium pump;
B $3 \mathrm{Na}^{+}$out, $2 \mathrm{~K}^{+}$in;
C creates a pd across membrane;
D inside -60/-70 mv;
E resting potential;
F membrane allows Na^{+}in, threshold reached;
G sodium voltage gated channels open;
$\mathrm{H} \mathrm{Na}^{+}$in causes depolarisation;
I Potassium voltage gated channels open;
J repolarisation;
K Ref. ATP;
L Synaptic knob, Ca^{+}channels open;
M Ca ${ }^{+}$in;
N Synaptic vesicles fuse with presynaptic membrane;
O Exocytosis;
P Receptors on post synaptic membrane;

Question Marking details

(b) Parkinson's
A. Caused by death of brain cells;
B. That produce dopamine / lack of dopamine;
C. A neurotransmitter/ involved in synaptic transmission;
D. Affects part of brain that controls movements;
E. Symptoms repetitive shaking / slowness of movement/ muscle stiffness;
F. Drug treatment/ levadopa that is converted into dopamine in brain;
G. Longer term physiotherapy / therapy to manage condition / stem cells.

Motor Neurone disease
H. Degeneration;
I. Motor neurones;
J. Impairment use of arms / legs;
K. Muscle twitch;
L. Throat and chest muscles affected;
M. Cause unknown;
N. No cure;
O. Drugs relieve symptoms;
P. Therapy;

WJEC
245 Western Avenue Cardiff CF5 2YX Tel No 02920265000
Fax 02920575994
E-mail: exams@wjec.co.uk website: www.wjec.co.uk

