Surname	Centre Number	Candidate Number
Other Names		2

GCE A LEVEL - NEW

1410U30-1

CHEMISTRY – A2 unit 3 Physical and Inorganic Chemistry

TUESDAY, 13 JUNE 2017 - AFTERNOON

1 hour 45 minutes

Section A
Section B

For Examiner's use only					
Question	Maximum Mark	Mark Awarded			
1. to 6.	10				
7.	7				
8.	10				
9.	15				
10.	11				
11.	10				
12.	17				
Total	80				

ADDITIONAL MATERIALS

In addition to this examination paper, you will need a:

- calculator:
- Data Booklet supplied by WJEC.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

Write your name, centre number and candidate number in the spaces at the top of this page.

Section A Answer **all** questions in the spaces provided.

Section B Answer **all** questions in the spaces provided.

Candidates are advised to allocate their time appropriately between **Section A (10 marks)** and **Section B (70 marks)**.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

The maximum mark for this paper is 80.

Your answers must be relevant and must make full use of the information given to be awarded full marks for a question.

The assessment of the quality of extended response (QER) will take place in **Q.8**(*b*).

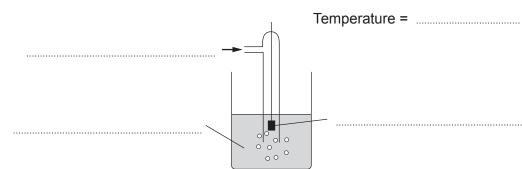
If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.

SECTION A

Answer all questions in the spaces provided.

1. When aqueous iodide ions are added to an aqueous solution of lead(II) nitrate, a precipitate is formed.

(a) Give the colour of the precipitate. [1]


(b) Write an **ionic** equation for the reaction that occurs, including state symbols. [1]

Give an example of a transition metal used as a catalyst. You should name the metal and identify the reaction it catalyses.

3. Calcium chloride, CaCl₂, is soluble in water. Use the values below to explain why this is the case. [2]

Equation 1 $Ca^{2+}(g) + 2Cl^{-}(g) \longrightarrow CaCl_{2}(s)$ $\Delta H^{\theta} = -2237 \text{ kJ mol}^{-1}$

Equation 2 $Ca^{2+}(g) + 2Cl^{-}(g) + aq \longrightarrow CaCl_2(aq) \Delta H^{\theta} = -2378 \text{ kJ mol}^{-1}$

5. Reaction rates can be measured using an iodine clock reaction. The data below shows the results obtained by a student in an iodine clock experiment. The concentration of iodide ions was the only difference between the experiments.

Concentration of iodide,	Time	Mean time taken			
Concentration of iodide, [I ⁻] / mol dm ⁻³	1 st run	2 nd run	3 rd run	4 th run	/s
0.200	35	46	36	34	
0.400	18	17	18	17	

- (a) Complete the table with appropriate values of mean time taken. [1]
- (b) Calculate the rate of reaction for these two concentrations. [1]

Rate for 0.200 mol
$$dm^{-3}[I^{-}] = \dots s^{-1}$$

Rate for 0.400 mol
$$dm^{-3}[I^{-}] = \dots s^{-1}$$

	nitrogen gas	copper metal	water	air	
Lowest					Highest

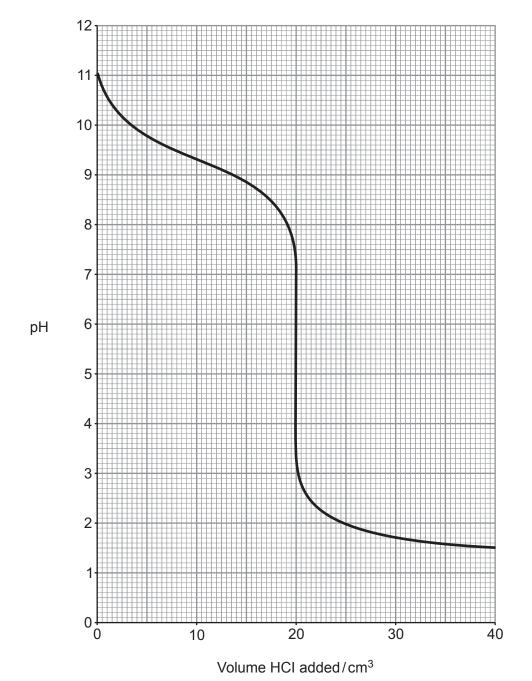
© WJEC CBAC Ltd.

(1410U30-1)

SECTION B

Answer all questions in the spaces provided.

		the second and the second are the se
7.	(a)	Ammonia is an example of a weak base. Describe what is meant by the term weak base. [1]
	(b)	A mixture of ammonia and ammonium chloride in aqueous solution can be used as a basic buffer solution. Explain what is meant by a <i>buffer solution</i> and how this mixture can act as a buffer solution. [3]
	•••••	
	•••••	
	• • • • • • • • • • • • • • • • • • • •	
	•••••	
	• • • • • • • • • • • • • • • • • • • •	
	•••••	
	•••••	



© WJEC CBAC Ltd. (1410U30-1)

Turn over.

Examiner only

(c) The pH curve for titration of a solution of ammonia against hydrochloric acid of an equal concentration is given below.

(i) Calculate $K_{\rm a}$ for the ammonium ion.

[2]

$$K_a = \dots \mod dm^{-3}$$

(ii) Select an appropriate indicator for this titration from the list below, giving a reason for your answer. [1]

Indicator	pH range	
bromothymol blue	6.0 – 7.6	
4-nitrophenol	5.0 – 7.0	
methyl yellow	2.9 – 4.0	
phenolphthalein	8.2 – 10.0	

• • • • • • • • • • • • • • • • • • • •	

1410U301 07

7

3.	(a)		ne elements in the p -block form compounds where the p -block atom does not have it electrons in its outer shell.				
		(i)	Explain why nitrogen can only form a chloride with eight outer shell electrons, but phosphorus can form a chloride with a different number of outer shell electrons.[2]				
			You should give the chemical formulae of relevant compounds in your answer.				
	•••••						
	• • • • • • • • • • • • • • • • • • • •						
		(ii)	Explain why aluminium forms compounds that are electron deficient. Show how one of these compounds can act to gain a full outer shell. [2]				
			You should give the dot and cross diagrams of the electron deficient species.				
		•••••					
		•••••					
		•••••					

Carbon	There are two common oxides of carbon. Carbon dioxide is an acidic oxide and carbon monoxide can be used as a reducing agent. Both of these are gases with very low boiling temperatures.
Lead	There are two common oxides of lead. Lead(II) oxide is an amphoteric oxide and lead(IV) oxide can be used as an oxidising agent. Both of these are solids that exhibit a large degree of ionic character.
	e differences between the oxides of carbon and lead, giving chemical equation e their acid/base and redox properties. [6 QER

10

Turn over. © WJEC CBAC Ltd. (1410U30-1)

9. The reversible reaction shown below was one of the first to be studied in detail in the gas and liquid phases and in solution.

$$N_2O_4 \rightleftharpoons 2NO_2$$

(a) One study of the liquid mixture showed that it contained 0.714 % NO₂ by mass. Calculate how many moles of NO₂ would be present in 25.0 g of this liquid. Give your answer to an appropriate number of significant figures. [2]

$$n(NO_2) = \dots mol$$

- (b) Both $\rm N_2O_4$ and $\rm NO_2$ are soluble in a range of solvents and the equilibrium constant, $\rm \textit{K}_c$, can be measured in these.
 - (i) Give the expression for the equilibrium constant, K_c , for this equilibrium, giving its unit if any. [2]

$$K_{\rm c} =$$

I Init =	•
Offic -	·

(ii) The equilibrium constants for the N_2O_4/NO_2 equilibrium measured at room temperature in some different solvents are listed below.

Solvent	Equilibrium constant, K _c (Unit not shown)
CS ₂	17.8
CCI ₄	8.05
CHCl ₃	5.53
C ₂ H ₅ Br	4.79
C ₆ H ₆	2.03
C ₆ H ₅ CH ₃	1.69

I. Samples of 0.4000 mol of N_2O_4 are dissolved separately in 1 dm³ of each of these solvents at room temperature and the reactions allowed to reach equilibrium. In one solution the concentration of N_2O_4 present at equilibrium is 5.81×10^{-2} mol dm³. Find the value of the equilibrium constant in this solution and hence identify the solvent. [3]

Solvent

II. The Gibbs free energy change, ΔG , of this reaction is different in different solvents. Explain how the data shows this and state, with a reason, which solvent would have the most negative ΔG value for this reaction. [2]

© WJEC CBAC Ltd. (1410U30-1) Turn over.

(c)	Nitrogen dioxide	is used in the	production of	nitric acid.	It is produced in	n two stages.
(~)	Title og om allomae	10 0000 111 1110	production of	mano aoia.	it io produced i	ii two otagoo.

Stage 1
$$4NH_3(g) + 5O_2(g) \rightleftharpoons 4NO(g) + 6H_2O(g) \Delta H^{\theta} = -900 \text{ kJ mol}^{-1}$$

Stage 2 2NO(g) +
$$O_2(g)$$
 \rightleftharpoons 2NO₂(g) $\Delta H^{\theta} = -115 \text{ kJ mol}^{-1}$

(i)	Explain why	the use	of a	catalyst	is	essential	in	industrial	processes	involving
	exothermic ed	quilibria s	such	as stage	1.					[2]

 	 	······································

(ii) A student attempted to perform stage 2 using a temperature of 450 K and a pressure of 5 atm. He obtained only a small yield. Suggest how the yield could be improved, explaining your reasons. [4]

••••	 															
• · · ·	 															

15

10.	Aqua regia is an acidic liquid that can dissolve unreactive metals such as gold. It can be formed
	by bubbling hydrogen chloride gas through concentrated nitric acid.

$$\mathsf{HNO}_3(\mathsf{I}) \ + \ 3\mathsf{HCI}(\mathsf{g}) \ --\!\!\!\!\!- \mathsf{NOCI}(\mathsf{g}) \ + \ \mathsf{CI}_2(\mathsf{g}) \ + \ 2\mathsf{H}_2\mathsf{O}(\mathsf{I}) \\ \Delta H^\theta = -69 \ \mathsf{kJ} \ \mathsf{mol}^{-1}$$

$$\Delta H^{\theta} = -69 \text{ kJ mol}^{-1}$$

Substance	Standard enthalpy change of formation, $\Delta_f H^\theta$ / kJ mol ⁻¹	Standard entropy, S ⁰ / J K ⁻¹ mol ⁻¹
HNO ₃ (I)	-173	156
HCI(g)		187
NOCI(g)	53	264
Cl ₂ (g)	0	223
H ₂ O(I)	-286	70

(a)	Show that this is a redox reaction.	[1
(b)	State why the enthalpy change of formation of $\operatorname{Cl}_2(g)$ is zero.	[1
•••••		
(c)	Calculate the standard enthalov change of formation of HCI(g).	[2

$\Delta_{\rm f}H^{\circ}$ = KJ mol	$\Delta_{\rm f}H^{\Theta} =$		kJ mol
------------------------------------	------------------------------	--	--------

Examiner			
only	Calculate the free energy change, ΔG^{θ} , for this reaction at 25 °C. [3]	(i)	(d)
	ΔG^{θ} = kJ mol ⁻¹		
	An alternative method of preparing aqua regia is to use concentrated hydrochloric acid with concentrated nitric acid. State, giving a reason, the effect of this on the value of ΔG^{θ} at 25 °C. [1]	(ii)	
	The pH of a dilute solution of nitric acid is measured using a pH probe and has a value of 0.3. Calculate the concentration of this solution. [1]	(i)	(e)
	O = = = = = = = = = = = = = = = = = = =		
	Concentration =	(ii)	
	State and explain which of these two methods will give the more precise value for the concentration. [2]		
44		•	

Turn over.

11. A hydrated compound $M_aAl_bZ_c.dH_2O$ contains an *s*-block metal ion, M, and a halide ion, Z. The following tests were undertaken.

Test	Result
Heating to constant mass	A 0.0200 mol sample lost 1.44 g when heated
Adding concentrated sulfuric acid	Observations included coloured fumes, an orange-brown solution, steamy fumes and a choking gas; there was no smell of rotten eggs
Adding excess silver nitrate to a solution	A 25.0 cm ³ sample of a solution of concentration 0.203 mol dm ⁻³ produced a precipitate with a dry mass of 3.814 g
Adding excess sodium hydroxide to a solution	A white precipitate formed which dissolved in excess sodium hydroxide
Elemental analysis	The hydrated compound was found to contain 1.63% by mass of s-block metal and 6.34% by mass of aluminium

Elem	nental	analysis	contain 1.63 % by mass of s-block metal and 6.34 % by mass of aluminium	
(a)	Calo	culate the value of <i>d</i> in the formula	$_{\rm a}$ $_{\rm a}$ $_{\rm b}$ $_{\rm c}$ $_{\rm c}$ $_{\rm c}$ $_{\rm c}$ $_{\rm c}$ $_{\rm c}$	[2]
			d =	
(b)	(i)	Identify the halide present in the to your conclusion.	compound, explaining fully all observations the	nat led [2]

	(ii) Calculate the value of c in the formula $M_aAl_bZ_c.dH_2O$. [2]	Examiner only
(c)	c = State what the observations with sodium hydroxide indicate about the acidity/basicity of the aluminium ions.	
	the diaminant lone.	
(d)	The M_r of the original hydrated compound is 425.62. Use all the information above to find the formula of the hydrated compound. Explain your reasoning. [3]	I
	Formula of the hydrated compound	10

Turn over.

only

18 Examiner The diagram below shows some reactions of copper(II) ions in solution. 12. (a) addition of solution B pale blue royal blue solution precipitate A C addition of NaOH(aq) addition of KI(aq) pale blue solution precipitate **D** and containing Cu²⁺(aq) brown solution E addition of concentrated HCI green-yellow solution F Identify the species present in each of the following. [3] A B C D F.....

© WJEC CBAC Ltd.

(1410U30-1)

variable oxidation states.	exes. Explain why transition elements
(c) Blue oxovanadium(IV) cations, VO ²⁺ , can b VO ₂ +, by bromate(V) ions, BrO ₃	e oxidised to yellow oxovanadium(V)
	Standard electrode potential, E^{θ} / V
$VO_2^+ + 2H^+ + e^- \rightleftharpoons VO^{2+} + H_2O$	+1.00
Br ₂ + 2e ⁻	+1.09
$BrO_3^- + 6H^+ + 6e^- \rightleftharpoons Br^- + 3H_2O$	+1.44
Use these standard electrode potentials to informed when excess bromate(V) ions are ad reasons for your answer.	dentify the main bromine-containing produced to a solution containing VO ²⁺ ions.

(d) The effect of the concentration of H⁺ ions on the rate of the reaction in part (c) was studied using the same concentrations and volumes of all other reactants. The following data were collected.

рН	Rate / mol dm ⁻³ s ⁻¹
1.0	3.287×10^{-3}
1.4	1.308 × 10 ⁻³
1.8	5.193 × 10 ⁻⁴
2.2	2.071 × 10 ⁻⁴

Find the order of the reaction with respect to H⁺. You **must** show your working. [3]

Order with respect to H⁺ =

[4]

(e) The value of the rate constant, *k*, for this reaction at two temperatures is given below.

Temperature / K	Rate constant (unit not shown)
288	0.0761
300	0.2873

The activation energy for this reaction is 79.333 kJ mol⁻¹ and the Arrhenius equation is:

$$k = Ae^{-\left(\frac{E_a}{RT}\right)}$$

Calculate the value of the rate constant, *k*, at a temperature of 295 K.

k at 295K =

(1	f)	VO^{2+} ions may also be oxidised to VO_2^+ ions using coloured Ce^{4+} , which is itself reduced to colourless Ce^{3+} . A titration using this reaction does not usually include an indicator and colorimetry is sometimes used.	only
		State why an indicator may not be useful in this reaction and explain how colorimetry can be used to find the end point of the titration. [3]	

END OF PAPER

17

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examiner only
		1
		··[
		[

