Question	Marking Guidance	Mark	Comments
1(a)	Enthalpy change when 1 mol of an (ionic) compound/lattice (under standard conditions) Is dissociated/broken/separated into its (component) ions The ions being in the gaseous state (at infinite separation)	1 1 1	Allow heat energy change Mark independently. Ignore any conditions.
1(b)	There is an <u>attractive</u> force between the <u>nucleus</u> of an O atom and an external <u>electron</u> .	1	Allow any statement that implies attraction between the nucleus and an electron
1(c)	$Mg^{2+}(g) + O(g) + 2e^{-}$ $Mg^{2+}(g) + O^{-}(g) + e^{-}$ $Mg^{2+}(g) + O^{2-}(g)$ First new level for Mg^{2+} and O above last on E Next level for E	1 1 1 1	Ignore lack of state symbols Penalise incorrect state symbols If levels are not correct allow if steps are in correct order with arrows in the correct direction and correct ΔH values Allow +124 Allow M4 with incorrect number of electrons
1(d)	LE MgO = 602 + 150 + 736 + 1450 + 248 - 142 + 844 = +3888 kJ mol ⁻¹	1	Note use of 124 instead of 248 CE=0 Allow 1 for -3888 Allow no units Penalise wrong units

1(e)	Forms a protective layer/barrier of MgO / MgO prevents oxygen attacking Mg	1	Allow activation energy is (very) high Allow reaction (very) slow
1(f)	$\Delta G = \Delta H - T \Delta S$	1	$\Delta S = \underbrace{(\Delta H - \Delta G)}_{T}$
	$\Delta S = (-602 - (-570)) \times 1000/298$ = -107 J K ⁻¹ mol ⁻¹ / -0.107 kJ K ⁻¹ mol ⁻¹	1	If units not correct or missing, lose mark Allow -107 to -108 +107 with correct units scores max 1/3
1(g)	mol of solid and 0.5 mol of gas reactants form 1 mol solid products System becomes more ordered	1	Decrease in number of moles (of gas/species) Allow gas converted into solid Numbers of moles/species, if given, must be correct Allow consequential provided ΔS is -ve in 1(f)
	e, stem bosomos meno enacion		If ΔS is +ve in 1(f) can only score M1

Question	Marking Guidance	Mark	Comments
2(a)	Standard pressure (100 kPa) (and a stated temperature)	1	Allow standard conditions. Do not allow standard states Allow any temperature Allow 1 bar but not 1atm Apply list principle if extra wrong conditions given Penalise reference to concentrations
2(b)	Hydrogen bonds between water molecules Energy must be supplied in order to break (or loosen) them	1	Allow M2 if intermolecular forces mentioned Otherwise cannot score M2 CE = 0/2 if covalent or ionic bonds broken
2(c)	$T = \Delta H/\Delta S$ = $(6.03 \times 1000)/22.1$ = 273 K	1 1 1	Allow 272 to 273; units K must be given Allow 0°C if units given 0.273 (with or without units) scores 1/3 only Must score M2 in order to score M3 Negative temperature can score M1 only
2(d)	The heat given out escapes	1	

2(e)	(Red end of white) light (in visible spectrum) absorbed by ice	1	Allow complementary colour to blue absorbed
	Blue light / observed light is reflected / transmitted / left	1	Penalise emission of blue light

Question	Marking Guidance	Mark	Comments
3(a)(i)	Ionic lattice / solid / giant ionic	1	CE = 0/2 if molecules / IMFs / atoms / metallic
	Strong (electrostatic) forces/attraction between ions	1	Allow strong ionic bonds for M2 only
			Allow lot of energy to break ionic bonds
3(a)(ii)	Molecular/molecules	1	
	Weak dipole-dipole and/or van der Waals forces between	1	QoL
	<u>molecules</u>		Type of force must be mentioned
3(b)	P ₄ O ₁₀ bigger molecule/has larger surface area than SO ₂	1	Allow M_r of P ₄ O ₁₀ greater than for SO ₂
			If P_4O_{10} macromolecule/ionic, $CE = 0/2$
	van der Waals forces between molecules stronger		Allow stronger IMF
		1	
3(c)	$Na_2O + H_2O \rightarrow 2Na^+ + 2OH^-$	1	Allow 2NaOH
	14	1	Allow 12-14
	$P_4O_{10} + 6H_2O \rightarrow 4H_3PO_4$	1	Allow ions
	0	1	Allow -1 to +2
3(d)	$6Na_2O + P_4O_{10} \rightarrow 4Na_3PO_4$	1	Allow ionic
			Allow correct formula of product with atoms in any order

Question	Marking Guidance	Mark	Comments
4(a)	HCI 1.0 mol dm ⁻³	1	Allow H ₂ SO ₄ 0.5 mol dm ⁻³
			Allow HNO ₃ 1.0 mol dm ⁻³
			Allow name or formula
			Concentration can be given after "conditions"
	(Hydrogen at) 100kPa / 1 bar	1	
	298 K	1	
4(b)	Pt / Platinum	1	Mark on if no answer for M1
			If wrong answer for M1, only mark on if electrode is Au, Ag, Pb or Ti
	Inert / unreactive / does not create a potential difference	1	
	Conducts electricity / allows electron flow / conducts / conductor	1	
4(c)	KCI	1	Allow NaCl, KNO ₃ , Na ₂ SO ₄ etc NOT NH ₄ Cl
	Does not react with either electrode / solution in electrode	1	Allow unreactive / inert
	Ions can move	1	Allow conducts electricity / electrical connection / carries charge
			Do not allow just connects / completes the circuit
			Do not allow conducts / carries electrons
			Mark these independently

4(d)	Pt H ₂ H ⁺ Fe ³⁺ ,Fe ²⁺ Pt	1	Ignore state symbols Order must be correct must be correct but allow instead of , separating Fe ³⁺ from Fe ²⁺ Allow , instead of separating H ₂ and H ⁺
4(e)(i)	$2Fe^{3+} + H_2 \rightarrow 2Fe^{2+} + 2H^+$	1	Allow multiples
4(e)(ii)	The Fe ³⁺ ions would be used up / reaction completed	1	Answer must relate to reactants in 4(e)(i) equation if given Allow reactant / reactants used up Do not allow concentration of Fe ³⁺ decreases Allow concentration of Fe ³⁺ falls to zero

Question	Marking Guidance	Mark	Comments
5(a)	H ₂ O ₂	1	Ignore state symbols
5(b)	$E^{\Theta} \text{Cl}_2/\text{Cl}^- > E^{\Theta} \text{O}_2/\text{H}_2\text{O}$	1	Allow potential for chlorine/Cl ₂ greater than for oxygen/O ₂
	$CI_2 + H_2O \rightarrow 2CI^- + 1/2O_2 + 2H^+$	1	Allow 1.36 > 1.23 / E cell = 0.13 Allow multiples Allow + HCl
5(c)	Activation energy is high / light/UV provides the activation energy / light breaks chlorine molecule / CI–CI bond	1	If light used to break CI–CI bond award 1 mark and ignore product e.g. CI ⁻
5(d)	\underline{O} (-1) (in H_2O_2) Changes to $\underline{O(-2)}$ (in water)	1	Must give oxidation state of O in H_2O_2 = -1 Must give oxidation state of O in water = -2 CE = 0/2 if refers to oxidation state of H changing
5(e)	$E^{\Theta} H_2 O_2 / H_2 O > E^{\Theta} O_2 / H_2 O_2$	1	Allow stated in words Allow 1.77 > 0.68 / E cell = 1.09
	$2H_2O_2 \rightarrow O_2 + 2H_2O$	1	Allow multiples H ⁺ and e ⁻ must be cancelled

Question	Marking Guidance	Mark	Comments
6(a)	$2MnO_4^- + 16H^+ + 5C_2O_4^{-2-} \rightarrow 2Mn^{2+} + 8H_2O + 10CO_2$	1	For all species correct / moles and species correct but charge incorrect
		1	For balanced equation including all charges (also scores first mark)
6(b)	Manganate(VII) ions are coloured (purple)	1	
	All other reactants and products are not coloured (or too faintly	1	Allow (all) other species are colourless
	coloured to detect)		Allow Mn ²⁺ are colourless / becomes colourless / pale pink
6(c)	The catalyst for the reaction is a reaction product	1	
	Reaction starts off slowly / gradient shallow	1	
	Then gets faster/rate increases / gradient increases	1	Allow concentration of MnO ₄ decreases faster / falls rapidly
6(d)	Mn ²⁺ ions	1	Allow Mn ³⁺ ions
6(e)	$MnO_4^- + 8H^+ + 4Mn^{2+} \rightarrow 5Mn^{3+} + 4H_2O$	1	Allow multiples
	$2Mn^{3+} + C_2O_4^{2-} \rightarrow 2Mn^{2+} + 2CO_2$	1	

Question	Marking Guidance	Mark	Comments
7(a)	Variable oxidation state	1	
	eg Fe(II) and Fe (III)	1	Any correctly identified pair
			Allow two formulae showing complexes with different oxidation states even if oxidation state not given
	(Characteristic) colour (of complexes)	1	
	eg Cu ²⁺ (aq) / [Cu(H ₂ O) ₆] ²⁺ is blue	1	Any correct ion with colour scores M3 and M4
			Must show (aq) or ligands OR identified coloured compound (e.g. CoCO ₃)
7(b)	Tetrahedral	1	
	[CuCl ₄] ²⁻ / [CoCl ₄] ²⁻	1	Any correct complex
			(Note charges must be correct)
	Square planar	1	
	(NH ₃) ₂ PtCl ₂	1	Any correct complex
	Linear	1	Do not allow linear planar
	[Ag(NH ₃) ₂] ⁺	1	[AgCl ₂] ⁻ etc
7(c)(i)	$[Ca(H2O)6]2+ + EDTA4- \rightarrow [CaEDTA]2- + 6H2O$	1	If equation does not show increase in number of moles of particles CE = 0/3 for 7(c)(ii) If no equation, mark on

7(c)(ii)	2 mol of reactants form 7 mol of products	1	Allow more moles/species of products Allow consequential to 7(c)(i)
	Therefore disorder increases	1	
	Entropy increases / +ve entropy change / free-energy change is negative	1	
7(c)(iii)	Moles EDTA = $6.25 \times 0.0532 / 1000 = (3.325 \times 10^{-4})$	1	
	Moles of Ca ²⁺ in 1 dm ³ = $3.325 \times 10^{-4} \times 1000 / 150 = (2.217 \times 10^{-3})$	1	Mark is for M1 x 1000 / 150 OR M1 x 74.1
			If ratio of Ca ²⁺ : EDTA is wrong or 1000 / 150 is wrong, CE and can score M1 only
			This applies to the alternative
	Mass of Ca(OH) ₂ = $2.217 \times 10^{-3} \times 74.1 = 0.164 \text{ g}$	1	M1 x 74.1 x 1000 / 150
			Answer expressed to 3 sig figs or better
			Must give unit to score mark
			Allow 0.164 to 0.165

Question	Marking Guidance	Mark	Comments
8(a)	Electron pair donor	1	Allow lone pair donor
8(b)	$[Cu(H_2O)_6]^{2+} + 2NH_3 \rightarrow Cu(H_2O)_4(OH)_2 + 2NH_4^+$	1	
	(Blue solution) gives a (pale) <u>blue precipitate/solid</u>	1	M2 only awarded if M1 shows Bronsted-Lowry reaction
8(c)	$[Cu(H_2O)_6]^{2+} + 4NH_3 \rightarrow [Cu(H_2O)_2(NH_3)_4]^{2+} + 4H_2O$	1	Allow formation in two equations via hydroxide
	(Blue solution) gives a <u>dark/deep blue solution</u>	1	If 8(b) and 8(c) are the wrong way around allow one mark only for each correct equation with a correct observation (max 2/4)
			M2 only awarded if M1 shows Lewis base reaction
8(d)	(Start with) green (solution)	1	
	Green precipitate of Fe(H ₂ O) ₄ (OH) ₂ / Fe(OH) ₂ / iron(II) hydroxide	1	Do not allow observation if compound incorrect or not given
	Slowly changes to brown solid	1	Allow red-brown ppt
			Allow turns brown or if precipitate implied
			Can only score M3 if M2 scored
	(Iron(II) hydroxide) oxidised by air (to iron(III) hydroxide)	1	Allow Fe(OH) ₂ oxidised to Fe(OH) ₃ by air / O ₂
			Ignore equations even if incorrect

8(e)(i)	$2[AI(H_2O)_6]^{3+} + 3H_2NCH_2CH_2NH_2 \rightarrow 2AI(H_2O)_3(OH)_3 + \\ 3[H_3NCH_2CH_2NH_3]^{2+}$ White precipitate	1 1 1	For correct AI species For correct balanced equation Allow equation with formation of 3[H ₂ NCH ₂ CH ₂ NH ₃] ⁺ from 1 mol [AI(H ₂ O) ₆] ³⁺
8(e)(ii)	$[Co(H_2O)_6]^{2+} + 3H_2NCH_2CH_2NH_2 \rightarrow [Co(H_2NCH_2CH_2NH_2)_3]^{2+} + 6H_2O$	1	
	Complex with 3 en showing 6 correct bonds from N to Co	1	Ignore charge Accept N – N for ligand Ignore incorrect H If C shown, must be 2 per ligand
	Co-ordinate bonds (arrows) shown from N to Co	1	Can only score M3 if M2 correct
	$4[Co(H_2NCH_2CH_2NH_2)_3]^{2+} + O_2 + 2H_2O \rightarrow$	1	For Co(III) species
	4[Co(H ₂ NCH ₂ CH ₂ NH ₂) ₃] ³⁺ + 4OH ⁻	1	For balanced equation (others are possible) $ \begin{array}{ll} \text{Allow} & + O_2 & + 4 \text{H}^+ \rightarrow & 2 \text{H}_2 \text{O} \\ \text{If en used can score M4 and M5 only} \\ \text{If Cu not Co, can only score M2 and M3} \\ \text{Allow N}_2 \text{C}_2 \text{H}_8 \text{in equations} \end{array} $